US20020035297A1 - Hydroformylation process employing a catalyst based on cobalt and/or rhodium in a non-aqueous ionic solvent - Google Patents

Hydroformylation process employing a catalyst based on cobalt and/or rhodium in a non-aqueous ionic solvent Download PDF

Info

Publication number
US20020035297A1
US20020035297A1 US09/935,330 US93533001A US2002035297A1 US 20020035297 A1 US20020035297 A1 US 20020035297A1 US 93533001 A US93533001 A US 93533001A US 2002035297 A1 US2002035297 A1 US 2002035297A1
Authority
US
United States
Prior art keywords
process according
cation
rhodium
cobalt
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/935,330
Other versions
US6410799B1 (en
Inventor
Frederic Favre
Dominique Commereuc
Helene Olivier-Bourbigou
Lucien Saussine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Assigned to INSTITUT FRANCAIS DU PETROLE reassignment INSTITUT FRANCAIS DU PETROLE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COMMEREUC, DOMINIQUE, FAVRE, FREDERIC, OLIVIER-BOURBIGOU, HELENE, SAUSSINE, LUCIEN
Publication of US20020035297A1 publication Critical patent/US20020035297A1/en
Application granted granted Critical
Publication of US6410799B1 publication Critical patent/US6410799B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions

Definitions

  • the present invention relates to an improved process for hydroformylation of olefinically unsaturated compounds using a catalyst based on cobalt and/or rhodium used in a two-phase medium.
  • One of the phases is constituted by a non-aqueous ionic solvent comprising at least one quaternary ammonium and/or phosphonium cation Q + and at least one anion A ⁇ .
  • the catalyst comprises at least one complex of cobalt and/or rhodium coordinated with at least one ligand selected from the group formed by nitrogen-containing or phosphorus-containing ligands also carrying an ionic function (Q′) + (A′) ⁇ where Q and Q′ and/or A and A′ are chemically identical.
  • United States patent U.S. Pat. No. 3,565,823 describes a technique consisting of dispersing a transition metal compound in a quaternary ammonium or phosphonium tin or germanium salt with formula (R 1 R 2 R 3 R 4 Z)YX 3 , where R 1 , R 2 , R 3 and R 4 are hydrocarbyl residues containing up to 18 carbon atoms, Z is nitrogen or phosphorus, Y is tin or germanium and X is a halogen, for example chlorine or bromine.
  • U.S. Pat. No. 3,832,391 describes a process for carbonylating olefins using such a composition. Those compositions have the disadvantage of having a relatively high melting point, for example more than 90° C., which complicates manipulation of the solutions of catalyst and reaction products.
  • the invention provides a process for liquid phase hydroformylation of olefinically unsaturated compounds in which the reaction is carried out in the presence of at least one non-aqueous ionic solvent comprising at least one salt with general formula Q + A ⁇ , where Q + represents a quaternary ammonium and/or phosphonium cation, and A represents an anion, and at least one cobalt and/or rhodium complex coordinated by at least one ligand selected from the group formed by nitrogen-containing or phosphorus-containing ligands also carrying an ionic function (Q′) + (A′) ⁇ where at least the cation (Q′) + or anion (A′) ⁇ has the same chemical nature as the cation Q + or anion A ⁇ of the non-aqueous ionic solvent.
  • Q + represents a quaternary ammonium and/or phosphonium cation
  • A represents an anion
  • the non-aqueous ionic solvent is selected from the group formed by liquid salts with general formula Q + A ⁇ where Q + represents a quaternary ammonium and/or phosphonium and N represents any anion which can form a liquid salt at low temperature, i.e., below 90° C., advantageously at most 85° C., preferably below 50° C.
  • Preferred anions A ⁇ are nitrate, sulfate, phosphate, acetate, halogenoacetates, tetrafluoroborate, tetrachloroborate, hexafluorophosphate, hexafluoroantimonate, fluorosulfonate, perfluoroalkylsulfonates and arene-sulfonates, these latter optionally being substituted by halogen or halogenoalkyl groups.
  • the quaternary ammonium and/or phosphonium cations Q + preferably have general formula NR 1 R 2 R 3 R 4+ and PR 1 R 2 R 3 R 4+ or general formulae R 1 R 2 N ⁇ C R 3 R 4+ or R 1 R 2 P ⁇ C R 3 R 4+ where R 1 , R 2 , R 3 and R 4 , which may be identical or different, represent hydrogen (with the exception of the NH 4 + cation for NR 1 R 2 R 3 R 4 +), preferably a single substituent represents hydrogen, or hydrocarbyl residues containing 1 to 30 carbon atoms, for example saturated or unsaturated, cycloalkyl or aromatic alkyl groups, or aryl or aralkyl groups, which may be substituted, containing 1 to 30 carbon atoms.
  • ammonium and/or phosphonium cation can also be derived from nitrogen-containing and/or phosphorus-containing heterocycles containing 1, 2 or 3 nitrogen and/or phosphorus atoms, in which the cycles are constituted by 4 to 10 atoms, preferably 5 or 6 atoms.
  • the quaternary ammonium and/or phosphonium cation can also be a cation with formula:
  • R 1 , R 2 and R 3 which may be identical or different, are defined as above and R 5 represents an alkylene or phenylene residue.
  • groups R 1 , R 2 , R 3 and R 4 include the following radicals: methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, amyl, methylene, ethylidene, phenyl or benzyl; R 5 can be a methylene, ethylene, propylene or phenylene group.
  • the ammonium and/or phosphonium cation Q + is preferably selected from the group formed by N-butylpyridinium, N-ethylpyridinium, pyridinium, 3-ethyl-1-methyl-imidazolium, 3-butyl-1-methyl-imidazolium, diethylpyrazolium, N-butyl-N-methylpyrrolidinium, trimethylphenyl-ammonium, tetrabutylphosphonium and tributyl-(tetradecyl)-phosphonium.
  • salts which can be used which can be cited are N-butyl pyridinium hexafluorophosphate, N-ethylpyridinium tetrafluoroborate, pyridinium fluorosulfonate, 3-butyl-1-methyl imidazolium tetrafluoroborate, 3-butyl-1-methyl-imidazolium hexafluoroantimonate, 3-butyl-1-methyl-imidazolium hexafluorophosphate, 3-butyl-1-methyl-imidazolium trifluoroacetate, 3-butyl-1-methyl-imidazolium trifluoromethylsulfonate, trimethylphenylammonium hexafluorophosphate and tetrabutylphosphonium tetrafluoroborate. These salts can be used alone or as a mixture.
  • the cobalt and/or rhodium compound precursors of the catalyst are selected from the group formed by cobalt and/or rhodium salts such as acetylacetonates, carboxylates, in particular formate or acetate, and carbonyl compounds, such as dicobalt-octacarbonyl, cobalt-tetracarbonyl hydride, rhodium-dicarbonyl acetylacetonate and carbonyl clusters.
  • cobalt and/or rhodium compound precursor is not critical but it is generally preferable to avoid halides.
  • the nitrogen-containing ligand is selected from the group formed by monoamines, di-, tri- and polyamines, imines, di-imines, pyridines, bipyridines, imidazoles, pyrroles and pyrazoles, all also containing in their formula at least one substituent carrying an ionic function (Q′) + (A′) ⁇ where at least the cation (Q′) + or anion (A′) ⁇ has the same chemical nature as cation Q + or anion A ⁇ of the non-aqueous ionic solvent defined above.
  • the phosphorus-containing ligand is selected from the group formed by phosphines, polyphosphines, phosphine oxides and phosphites, all also containing in their formula at least one substituent carrying an ionic function (Q′) + (A′) ⁇ such that at least the cation (Q′) + or anion (A′) ⁇ has the same chemical nature as cation Q + or anion A ⁇ of the non-aqueous ionic solvent defined above.
  • N-(3-diphenylphosphinophenyl)-N′-dimethyl-guanidinium tetrafluoroborate ligand (5) used in ionic solvents constituted by quaternary ammonium or phosphonium tetrafluoroborates and by salts comprising N-phenyl-N′-dialkyl-guanidinium cations;
  • tris-(tetrabutylammonium 3-phenylsulfonate)-phosphine tetrabutylammonium triphenylphosphine trisulfonate
  • ionic solvents constituted by tetrabutylammonium salts and by salts comprising sulfonate anions, such as tosylates and triflates;
  • the catalytic composition is obtained by mixing, in any manner, the liquid salt with the cobalt and/or rhodium salt and the ligand.
  • the transition metal compound and/or the ligand can initially be dissolved in an organic solvent.
  • the complex between the cobalt and/or rhodium precursor and the ligand can be prepared prior to the reaction by mixing the cobalt and/or rhodium precursor with the ligand in a suitable solvent, for example an organic solvent or the non-aqueous ionic solvent which will subsequently be used in the catalytic reaction.
  • a suitable solvent for example an organic solvent or the non-aqueous ionic solvent which will subsequently be used in the catalytic reaction.
  • the complex can also be prepared in situ by mixing the cobalt and/or rhodium precursor and the ligand directly in the hydroformylation reactor.
  • the concentration of the cobalt and/or rhodium complex in the liquid ionic solvent is not critical. It is advantageously in the range 0.1 mmoles to 5 moles per liter of liquid ionic solvent, preferably in the range 1 mmole to 1 mole per liter, and more preferably in the range 10 to 500 mmoles per liter.
  • the mole ratio between the ligand and the cobalt and/or rhodium compound is in the range 0.1 to 500, preferably in the range 1 to 100.
  • the components in the composition of the invention can be mixed in any order, at a temperature in the range ⁇ 20° C. to 200° C., preferably in the range 0° C. to 140° C. and advantageously in the range 20° C. to 90° C.
  • the olefinically unsaturated compounds which can be hydroformylated are selected from the group formed by mono-olefins, di-olefins, in particular conjugated di-olefins, olefinic compounds comprising one or more heteroatoms, in particular from unsaturated groups such as ketone and carboxylic acid functions. Examples that can be cited are the hydroformylation of pentenes to hexanal and methylpentanal, of hexenes to isoheptanals, of isooctenes to isononanals and of C 10 to C 16 olefinic cuts to C 11 , to C 17 aldehydes. These olefinic compounds can be used in the pure form or diluted with saturated hydrocarbons or other unsaturated hydrocarbons.
  • the ratio of the partial pressures of hydrogen and carbon monoxide used in the reaction medium for hydroformylation can be 10:1 to 1:10, preferably in a ratio of 1:1, but any other ratio can be used depending on the process.
  • the temperature at which hydroformylation is carried out is in the range 30° C. to 200° C., advantageously the temperature is less than 150° C., preferably in the range 50° C. to less than 150° C.
  • the pressure can be in the range 1 MPa to 20 MPa, preferably in the range 2 MPa to 15 MPa.
  • the catalytic unsaturated compound hydroformylation reaction can be carried out on a closed system, in a semi-open system or batchwise using one or more reaction stages.
  • the organic phase containing the reaction products is advantageously separated by simple decanting of the ionic solvent phase containing the “molten salt” and the major portion of the catalyst.
  • At least a portion of this ionic solvent phase, which contains at least a portion of the catalyst, is returned to the reactor, the other portion being treated to eliminate the catalyst residues.
  • the hydroformylation reaction was carried out in a 100 ml capacity stainless steel autoclave provided with a double envelope enabling the temperature to be regulated by circulating a heat exchange fluid.
  • the following were introduced into this autoclave, initially purged of air and moisture and placed under a hydrogen/carbon monoxide mixture (1/1 molar) at atmospheric pressure: 0.0193 g of rhodium dicarbonyl acetylacetonate (i.e., 0.075 mmoles of rhodium), 4 mole equivalents of sodium triphenylphosphinetrisulfonate, 4 ml of 3-butyl-1-methyl-imidazolium trifluoromethylsulfonate, 2 ml of heptane (standard) and 7.5 ml of hexene-1.
  • the sulfonate anion was the common ion of the ligand and the non-aqueous ionic solvent.
  • the pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 2 MPa and the temperature to 80° C. and stirring was commenced. After 2 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was colorless. The hexene-l conversion was 99% by weight.
  • the selectivity for C7 aldehydes was 93% and the n/iso (n-heptanal/isoheptanals) ratio was 3.5. Analysis of the upper organic phase showed that it contained less than 5 ppm of rhodium metal (ppm: parts per million, by weight).
  • the pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 2 MPa and the temperature to 80° C. and stirring was commenced. After 2 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was colorless. The hexene-1 conversion was 98% by weight. The selectivity for C7 aldehydes was 96% and the n/iso (n-heptanal/isoheptanals) ratio was 3.5. Analysis of the upper organic phase showed that it contained less than 5 ppm of rhodium metal (ppm: parts per million, by weight).
  • the tetrafluoroborate anion was the common ion between the ligand and the non-aqueous ionic solvent.
  • the pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 2 MPa and the temperature to 80° C., and stirring was commenced. After 2 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was colorless. The hexene-1 conversion was 77% by weight.
  • the selectivity for C7 aldehydes was 74% and the n/iso (n-heptanal/isoheptanals) ratio was 3. Analysis of the upper organic phase showed that it contained less than 5 ppm of rhodium metal (ppm: parts per million, by weight).
  • the tetrafluoroborate anion was the common ion between the ligand and the non-aqueous ionic solvent.
  • the pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 2 MPa and the temperature to 80° C., and stirring was commenced. After 4 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was colorless. The hexene-1 conversion was 84% by weight.
  • the selectivity for C7 aldehydes was 99% and the n/iso (n-heptanal/isoheptanals) ratio was 2.6. Analysis of the upper organic phase showed that it contained less than 10 ppm of rhodium metal (ppm: parts per million, by weight).
  • the hydroformylation reaction was carried out in a 300 ml capacity stainless steel autoclave provided with a double envelope enabling the temperature to be regulated by circulating a heat exchange fluid, and provided with an efficient mechanical stirrer with blades and counter-blades.
  • the pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 9 MPa and the temperature to 95° C. and stirring was commenced. After 6 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was slightly colored, indicating that only traces of cobalt had been extracted.
  • the hexene-1 conversion was 80% by weight.
  • the selectivity for C7 aldehydes was 96.4% and the n/iso (n-heptanal/isoheptanals) ratio was 3.6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

In a process for hydroformylation of olefinically unsaturated compounds using a catalyst based on cobalt and/or rhodium coordinated by at least one ligand selected from the group formed by nitrogen-containing or phosphorus-containing ligands used in a non-aqueous ionic solvent, which catalyst is liquid at a temperature of less than 90° C., in which the aldehydes formed are not or are only slightly soluble and which comprises at least one quaternary ammonium and/or phosphonium cation Q+ and at least one anion A, the improvement of the invention consists in that in the cobalt and/or rhodium complex, the ligand also carries an ionic function (Q′)+(A′) where Q and Q′ and/or A and A′ are chemically identical.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to an improved process for hydroformylation of olefinically unsaturated compounds using a catalyst based on cobalt and/or rhodium used in a two-phase medium. One of the phases is constituted by a non-aqueous ionic solvent comprising at least one quaternary ammonium and/or phosphonium cation Q[0002] + and at least one anion A. The catalyst comprises at least one complex of cobalt and/or rhodium coordinated with at least one ligand selected from the group formed by nitrogen-containing or phosphorus-containing ligands also carrying an ionic function (Q′)+(A′) where Q and Q′ and/or A and A′ are chemically identical.
  • 2. Description of the Prior Art [0003]
  • Hydroformylation of olefinic compounds is a reaction of great industrial importance and the majority of processes use homogeneous catalysts dissolved in an organic phase constituted by the reactants, products and possibly an excess of ligand, although difficulties are encountered in separating and recovering the catalyst, in particular when it is used in relatively large quantities, as is the case with catalysts based on cobalt, or with a noble metal, as is the case with rhodium based catalysts. [0004]
  • One solution to resolving that problem has been suggested by Bartik et al.: Organometallics (1993) 12 164-170, J. Organometal. Chem. (1994) 480 15-21, and by Beller et al.: J. Molecular Catal. A: Chemical (1999) 143 31-39. It consists of carrying out hydroformylation in the presence of an aqueous solution containing a cobalt complex which is rendered water-soluble by the presence of a phosphine-sulfonate ligand such as the sodium salt of trisulfonated triphenylphosphine or a trisulfonated tris-(alkylphenyl)phosphine. International patent application WO-A-97/00 132 describes clusters of cobalt substituted by trialkoxysilylmethyl groups, which render them water-soluble. In that manner, the organic phase containing the aldehydes is readily separated from the aqueous phase containing the catalyst. [0005]
  • A further solution to the problem has been described in U.S. Pat. No. 4,248,802. It consists of carrying out hydroformylation in the presence of an aqueous solution containing a rhodium complex which is rendered water-soluble by the presence of a sulfonated phosphine ligand which is itself water-soluble, such as the sodium salt of trisulfonated triphenylphosphine. In that manner, the organic phase containing the aldehydes is readily separated from the aqueous phase containing the catalyst. This technique has formed the subject matter of a considerable number of studies which have been discussed in an article by W. A. Herrmann in “Angewandte Chemie International”, 1993, volume 32, page 1524 ff. [0006]
  • Despite the huge industrial interest of such techniques in the hydroformylation of propylene, such two-phase systems suffer from a lack of solubility of the olefins in water, which leads to relatively low reaction rates which renders them unsuitable for long chain olefins. [0007]
  • Further, United States patent U.S. Pat. No. 3,565,823 describes a technique consisting of dispersing a transition metal compound in a quaternary ammonium or phosphonium tin or germanium salt with formula (R[0008] 1R2R3R4Z)YX3, where R1, R2, R3 and R4 are hydrocarbyl residues containing up to 18 carbon atoms, Z is nitrogen or phosphorus, Y is tin or germanium and X is a halogen, for example chlorine or bromine. U.S. Pat. No. 3,832,391 describes a process for carbonylating olefins using such a composition. Those compositions have the disadvantage of having a relatively high melting point, for example more than 90° C., which complicates manipulation of the solutions of catalyst and reaction products.
  • The Applicant's patent U.S. Pat. No. 5,874,638 describes benefiting both from the advantages of two-phase processing and avoiding the disadvantages connected firstly with using water and secondly with using compounds with high melting points, by dissolving certain catalytic compounds of transition metals from groups 8, 9 or 10, known to catalyze hydroformylation, in non-aqueous ionic solvents which are constituted by organic-inorganic salts which are liquid at ambient temperature. [0009]
  • SUMMARY OF THE INVENTION
  • It has now been discovered that, in the hydroformylation reaction catalyzed by complexes based on cobalt and/or rhodium carried out in a non-aqueous ionic solvent comprising at least one quaternary ammonium and/or phosphonium cation Q[0010] + and at least one anion A, which catalyst is liquid at a temperature of less than 90° C., the amount of metal retained in the ionic solvent is greatly improved when the catalyst comprises at least one cobalt and/or rhodium complex coordinated by at least one ligand selected from the group formed by nitrogen-containing or phosphorus-containing ligands also carrying an ionic function (Q′)+(A′) where Q and Q′ and/or A and A′ are chemically identical.
  • More precisely, the invention provides a process for liquid phase hydroformylation of olefinically unsaturated compounds in which the reaction is carried out in the presence of at least one non-aqueous ionic solvent comprising at least one salt with general formula Q[0011] + A, where Q+ represents a quaternary ammonium and/or phosphonium cation, and A represents an anion, and at least one cobalt and/or rhodium complex coordinated by at least one ligand selected from the group formed by nitrogen-containing or phosphorus-containing ligands also carrying an ionic function (Q′)+(A′) where at least the cation (Q′)+ or anion (A′) has the same chemical nature as the cation Q+ or anion A of the non-aqueous ionic solvent.
  • The non-aqueous ionic solvent is selected from the group formed by liquid salts with general formula Q[0012] + A where Q+ represents a quaternary ammonium and/or phosphonium and N represents any anion which can form a liquid salt at low temperature, i.e., below 90° C., advantageously at most 85° C., preferably below 50° C. Preferred anions A are nitrate, sulfate, phosphate, acetate, halogenoacetates, tetrafluoroborate, tetrachloroborate, hexafluorophosphate, hexafluoroantimonate, fluorosulfonate, perfluoroalkylsulfonates and arene-sulfonates, these latter optionally being substituted by halogen or halogenoalkyl groups.
  • The quaternary ammonium and/or phosphonium cations Q[0013] + preferably have general formula NR1R2R3R4+ and PR1R2R3R4+ or general formulae R1R2N═C R3R4+ or R1R2P═C R3R4+ where R1, R2, R3 and R4, which may be identical or different, represent hydrogen (with the exception of the NH4 + cation for NR1R2R3R4+), preferably a single substituent represents hydrogen, or hydrocarbyl residues containing 1 to 30 carbon atoms, for example saturated or unsaturated, cycloalkyl or aromatic alkyl groups, or aryl or aralkyl groups, which may be substituted, containing 1 to 30 carbon atoms. The ammonium and/or phosphonium cation can also be derived from nitrogen-containing and/or phosphorus-containing heterocycles containing 1, 2 or 3 nitrogen and/or phosphorus atoms, in which the cycles are constituted by 4 to 10 atoms, preferably 5 or 6 atoms.
  • The quaternary ammonium and/or phosphonium cation can also be a cation with formula:[0014]
  • R1R2+N═CR3-R5-R3C═N+R1R2 or
  • R1R2+P−CR3-R5-R3C−P+R1R2
  • where R[0015] 1, R2 and R3, which may be identical or different, are defined as above and R5 represents an alkylene or phenylene residue.
  • groups R[0016] 1, R2, R3 and R4 include the following radicals: methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, amyl, methylene, ethylidene, phenyl or benzyl; R5 can be a methylene, ethylene, propylene or phenylene group.
  • The ammonium and/or phosphonium cation Q[0017] + is preferably selected from the group formed by N-butylpyridinium, N-ethylpyridinium, pyridinium, 3-ethyl-1-methyl-imidazolium, 3-butyl-1-methyl-imidazolium, diethylpyrazolium, N-butyl-N-methylpyrrolidinium, trimethylphenyl-ammonium, tetrabutylphosphonium and tributyl-(tetradecyl)-phosphonium. Examples of salts which can be used which can be cited are N-butyl pyridinium hexafluorophosphate, N-ethylpyridinium tetrafluoroborate, pyridinium fluorosulfonate, 3-butyl-1-methyl imidazolium tetrafluoroborate, 3-butyl-1-methyl-imidazolium hexafluoroantimonate, 3-butyl-1-methyl-imidazolium hexafluorophosphate, 3-butyl-1-methyl-imidazolium trifluoroacetate, 3-butyl-1-methyl-imidazolium trifluoromethylsulfonate, trimethylphenylammonium hexafluorophosphate and tetrabutylphosphonium tetrafluoroborate. These salts can be used alone or as a mixture.
  • The cobalt and/or rhodium compound precursors of the catalyst are selected from the group formed by cobalt and/or rhodium salts such as acetylacetonates, carboxylates, in particular formate or acetate, and carbonyl compounds, such as dicobalt-octacarbonyl, cobalt-tetracarbonyl hydride, rhodium-dicarbonyl acetylacetonate and carbonyl clusters. The choice of cobalt and/or rhodium compound precursor is not critical but it is generally preferable to avoid halides. [0018]
  • The nitrogen-containing ligand is selected from the group formed by monoamines, di-, tri- and polyamines, imines, di-imines, pyridines, bipyridines, imidazoles, pyrroles and pyrazoles, all also containing in their formula at least one substituent carrying an ionic function (Q′)[0019] +(A′) where at least the cation (Q′)+ or anion (A′) has the same chemical nature as cation Q+ or anion A of the non-aqueous ionic solvent defined above.
  • The phosphorus-containing ligand is selected from the group formed by phosphines, polyphosphines, phosphine oxides and phosphites, all also containing in their formula at least one substituent carrying an ionic function (Q′)[0020] +(A′) such that at least the cation (Q′)+ or anion (A′) has the same chemical nature as cation Q+ or anion A of the non-aqueous ionic solvent defined above.
  • Non limiting examples of associations between the ligands and molten salts which can be cited are: [0021]
  • 1-(4-pyridyl)-2-(dicyclopentyl-methyl-phosphonium)-ethane tetrafluoroborate (1) and 1-(N-imidazolyl)-2-(dicyclopentylmethyl-phosphonium)-ethane tetrafluoroborate (2) ligands, used in ionic solvents constituted by quaternary ammonium or phosphonium tetrafluoroborates and by salts comprising dicyclopentyl-methyl-alkyl-phosphonium cations; [0022]
  • 1-(diphenylphosphino)-2-(4-N-methyl-pyridinium)-ethane hexafluorophosphate (3) ligand, used in ionic solvents constituted by quaternary ammonium or phosphonium hexafluorophosphates and by salts comprising 4-alkyl-N-methyl-pyridnium cations, the 1-(dicyclopentylphosphino)-2-(3-methyl-1-imidazolium)-ethane hexafluorophosphate (4), used in ionic solvents constituted by quaternary ammonium or phosphonium hexafluorophosphates and by salts comprising 3-alkyl-1-methyl-imidazolium cations; [0023]
    Figure US20020035297A1-20020321-C00001
     R═Me,X═BF4,Y═PF6
  • N-(3-diphenylphosphinophenyl)-N′-dimethyl-guanidinium tetrafluoroborate ligand (5), used in ionic solvents constituted by quaternary ammonium or phosphonium tetrafluoroborates and by salts comprising N-phenyl-N′-dialkyl-guanidinium cations; [0024]
  • tris-(tetrabutylammonium 3-phenylsulfonate)-phosphine (tetrabutylammonium triphenylphosphine trisulfonate) (6), used in ionic solvents constituted by tetrabutylammonium salts and by salts comprising sulfonate anions, such as tosylates and triflates; [0025]
  • tris-(sodium 3-phenyl sulfonate)-phosphine ((sodium triphenylphosphine trisulfonate) (7), used in ionic solvents constituted by salts comprising sulfonate anions, such as tosylates and triflates; [0026]
    Figure US20020035297A1-20020321-C00002
  • and the ligand (di-t-butyl-3,5-catecholato)-(tetrabutylammonium 4-phenoxy-sulfonate)-phosphite (8), used in ionic solvents constituted by tetrabutylammonium salts and by salts comprising sulfonate anions, for example tosylates and triflates. [0027]
    Figure US20020035297A1-20020321-C00003
  • The catalytic composition is obtained by mixing, in any manner, the liquid salt with the cobalt and/or rhodium salt and the ligand. The transition metal compound and/or the ligand can initially be dissolved in an organic solvent. [0028]
  • The complex between the cobalt and/or rhodium precursor and the ligand can be prepared prior to the reaction by mixing the cobalt and/or rhodium precursor with the ligand in a suitable solvent, for example an organic solvent or the non-aqueous ionic solvent which will subsequently be used in the catalytic reaction. The complex can also be prepared in situ by mixing the cobalt and/or rhodium precursor and the ligand directly in the hydroformylation reactor. [0029]
  • The concentration of the cobalt and/or rhodium complex in the liquid ionic solvent is not critical. It is advantageously in the range 0.1 mmoles to 5 moles per liter of liquid ionic solvent, preferably in the range 1 mmole to 1 mole per liter, and more preferably in the range 10 to 500 mmoles per liter. The mole ratio between the ligand and the cobalt and/or rhodium compound is in the range 0.1 to 500, preferably in the range 1 to 100. [0030]
  • The components in the composition of the invention can be mixed in any order, at a temperature in the range −20° C. to 200° C., preferably in the range 0° C. to 140° C. and advantageously in the range 20° C. to 90° C. [0031]
  • The olefinically unsaturated compounds which can be hydroformylated are selected from the group formed by mono-olefins, di-olefins, in particular conjugated di-olefins, olefinic compounds comprising one or more heteroatoms, in particular from unsaturated groups such as ketone and carboxylic acid functions. Examples that can be cited are the hydroformylation of pentenes to hexanal and methylpentanal, of hexenes to isoheptanals, of isooctenes to isononanals and of C[0032] 10 to C16 olefinic cuts to C11, to C17 aldehydes. These olefinic compounds can be used in the pure form or diluted with saturated hydrocarbons or other unsaturated hydrocarbons.
  • The ratio of the partial pressures of hydrogen and carbon monoxide used in the reaction medium for hydroformylation can be 10:1 to 1:10, preferably in a ratio of 1:1, but any other ratio can be used depending on the process. [0033]
  • The temperature at which hydroformylation is carried out is in the range 30° C. to 200° C., advantageously the temperature is less than 150° C., preferably in the range 50° C. to less than 150° C. The pressure can be in the range 1 MPa to 20 MPa, preferably in the range 2 MPa to 15 MPa. [0034]
  • The catalytic unsaturated compound hydroformylation reaction can be carried out on a closed system, in a semi-open system or batchwise using one or more reaction stages. At the reaction outlet, the organic phase containing the reaction products is advantageously separated by simple decanting of the ionic solvent phase containing the “molten salt” and the major portion of the catalyst. At least a portion of this ionic solvent phase, which contains at least a portion of the catalyst, is returned to the reactor, the other portion being treated to eliminate the catalyst residues. [0035]
  • The following examples illustrate the invention without limiting its scope.[0036]
  • EXAMPLE 1
  • The hydroformylation reaction was carried out in a 100 ml capacity stainless steel autoclave provided with a double envelope enabling the temperature to be regulated by circulating a heat exchange fluid. The following were introduced into this autoclave, initially purged of air and moisture and placed under a hydrogen/carbon monoxide mixture (1/1 molar) at atmospheric pressure: 0.0193 g of rhodium dicarbonyl acetylacetonate (i.e., 0.075 mmoles of rhodium), 4 mole equivalents of sodium triphenylphosphinetrisulfonate, 4 ml of 3-butyl-1-methyl-imidazolium trifluoromethylsulfonate, 2 ml of heptane (standard) and 7.5 ml of hexene-1. In this example, the sulfonate anion was the common ion of the ligand and the non-aqueous ionic solvent. The pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 2 MPa and the temperature to 80° C. and stirring was commenced. After 2 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was colorless. The hexene-l conversion was 99% by weight. The selectivity for C7 aldehydes was 93% and the n/iso (n-heptanal/isoheptanals) ratio was 3.5. Analysis of the upper organic phase showed that it contained less than 5 ppm of rhodium metal (ppm: parts per million, by weight). [0037]
  • EXAMPLE 2 (comparative)
  • The hydroformylation reaction was carried out in the same apparatus and using the same procedure as that described for Example 1. The following were introduced into this autoclave, initially purged of air and moisture and placed under a hydrogen/carbon monoxide mixture (1/1 molar) at atmospheric pressure: 0.0193 g of rhodium dicarbonyl acetylacetonate (i.e., 0.075 mmoles of rhodium), 4 mole equivalents of sodium triphenylphosphine trisulfonate, 4 ml of 3-butyl-1-methyl-imidazolium fluorophosphate, 2 ml of heptane (standard) and 7.5 ml of hexene-1. In this comparative example, there was no common ion between the ligand and the non-aqueous ionic solvent. The pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 2 MPa and the temperature to 80° C. and stirring was commenced. After 3 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was colorless. The hexene-1 conversion was 74% by weight. The selectivity for C7 aldehydes was 48% and the n/iso (n-heptanal/isoheptanals) ratio was 2.7. Analysis of the upper organic phase showed that it contained 195 ppm of rhodium metal (ppm: parts per million, by weight). [0038]
  • EXAMPLE 3
  • The hydroformylation reaction was carried out in the same apparatus and using the same procedure as that described for Example 1. 0.0193 g of rhodium dicarbonyl acetylacetonate (i.e., 0.075 mmoles of rhodium), 4 mole equivalents of sodium triphenylphosphine-disulfonate, 4 ml of 3-butyl-1-methyl-imidazolium trifluoromethanesulfonate, 2 ml of heptane (standard) and 7.5 ml of hexene-1 were introduced. In this example, the sulfonate anion was the common ion between the ligand and the non-aqueous ionic solvent. The pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 2 MPa and the temperature to 80° C. and stirring was commenced. After 2 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was colorless. The hexene-1 conversion was 98% by weight. The selectivity for C7 aldehydes was 96% and the n/iso (n-heptanal/isoheptanals) ratio was 3.5. Analysis of the upper organic phase showed that it contained less than 5 ppm of rhodium metal (ppm: parts per million, by weight). [0039]
  • EXAMPLE 4
  • The hydroformylation reaction was carried out in the same apparatus and using the same procedure as that described for Example 1. 0.0193 g of rhodium dicarbonyl acetylacetonate (i.e., 0.075 mmoles of rhodium), 10 mole equivalents of N-(3-diphenylphosphinophenyl)-N′-dimethyl-guanidinium tetrafluoroborate, 4 ml of 3-butyl-1-methyl-imidazolium tetrafluoroborate, 2 ml of heptane (standard) and 7.5 ml of hexene-1 were introduced. In this example, the tetrafluoroborate anion was the common ion between the ligand and the non-aqueous ionic solvent. The pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 2 MPa and the temperature to 80° C., and stirring was commenced. After 2 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was colorless. The hexene-1 conversion was 77% by weight. The selectivity for C7 aldehydes was 74% and the n/iso (n-heptanal/isoheptanals) ratio was 3. Analysis of the upper organic phase showed that it contained less than 5 ppm of rhodium metal (ppm: parts per million, by weight). [0040]
  • EXAMPLE 5
  • The hydroformylation reaction was carried out in the same apparatus and using the same procedure as that described for Example 1. 0.0193 g of rhodium dicarbonyl acetylacetonate (i.e., 0.075 mmoles of rhodium), 7 mole equivalents of 1-(diphenylphosphino)-2-(4-N-methyl-pyridinium)-ethane tetrafluoroborate, 4 ml of 3-butyl-1-methyl-imidazolium tetrafluoroborate, 2 ml of heptane (standard) and 7.5 ml of hexene-1 were introduced. In this example, the tetrafluoroborate anion was the common ion between the ligand and the non-aqueous ionic solvent. The pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 2 MPa and the temperature to 80° C., and stirring was commenced. After 4 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was colorless. The hexene-1 conversion was 84% by weight. The selectivity for C7 aldehydes was 99% and the n/iso (n-heptanal/isoheptanals) ratio was 2.6. Analysis of the upper organic phase showed that it contained less than 10 ppm of rhodium metal (ppm: parts per million, by weight). [0041]
  • EXAMPLE 6
  • The hydroformylation reaction was carried out in a 300 ml capacity stainless steel autoclave provided with a double envelope enabling the temperature to be regulated by circulating a heat exchange fluid, and provided with an efficient mechanical stirrer with blades and counter-blades. The following were introduced into this autoclave, initially purged of air and moisture and placed under a hydrogen/carbon monoxide mixture (1/1 molar) at atmospheric pressure: 0.4 g of dicobalt-octacarbonyl (i.e., 2.3 mmoles of cobalt), 1 mole equivalent of 1-(4-pyridyl)-2-(dicyclopentyl-methyl-phosphonium)-ethane tetrafluoroborate, 10 ml of 3-butyl-1-methyl-imidazolium tetrafluoro-borate, 30 ml of heptane and 30 ml of hexene-1. The pressure of the hydrogen-carbon monoxide mixture (1/1 molar) was raised to 9 MPa and the temperature to 95° C. and stirring was commenced. After 6 hours, stirring was stopped and the reaction mixture was allowed to decant and cool, then the pressure was released. After removal from the autoclave, the upper organic phase was slightly colored, indicating that only traces of cobalt had been extracted. The hexene-1 conversion was 80% by weight. The selectivity for C7 aldehydes was 96.4% and the n/iso (n-heptanal/isoheptanals) ratio was 3.6. [0042]
  • The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples. Also, the preceding specific embodiments are to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. [0043]
  • The entire disclosure of all applications, patents and publications cited above and below, and of corresponding French application 00/10971, filed Aug. 23, 2000, are hereby incorporated by reference. [0044]
  • From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. [0045]

Claims (15)

1. A process for liquid phase hydroformylation of olefinically unsaturated compounds in which the reaction is carried out in the presence of at least one non-aqueous ionic solvent comprising at least one salt with general formula Q+A, where Q+ represents a quaternary ammonium and/or phosphonium cation, and A represents an anion, and at least one cobalt and/or rhodium complex coordinated by at least one ligand selected from the group formed by nitrogen-containing or phosphorus-containing ligands also carrying an ionic function (Q′)+(A′) where at least the cation (Q′)+ or anion (A′) has the same chemical nature as the cation Q+ or anion A of the non-aqueous ionic solvent.
2. A process according to claim 1, wherein the non-aqueous ionic solvent is selected from the group formed by liquid salts with general formula Q+A where Q+ represents a quaternary ammonium and/or phosphonium cation and A represents any anion which can form a liquid salt at low temperature, i.e., below 90° C.
3. A process according to claim 1 or claim 2, wherein the A anions are selected from nitrate, sulfate, phosphate, acetate, halogenoacetates, tetrafluoroborate, tetrachloroborate, hexafluorophosphate, hexafluoroantimonate, fluorosulfonate, perfluoroalkylsulfonates and arene-sulfonates, these latter optionally being substituted by halogen or halogenoalkyl groups.
4. A process according to any one of claims 1 to 3, wherein the quaternary ammonium and/or phosphonium cations have general formulae NR1R2R3R4+ and PR1R2R3R4+ or general formulae R1R2N═C R3R4+ or R1R2P═C R3R4+ where R1, R2, R3 and R4, which may be identical or different, represent hydrogen with the exception of the NH4 + cation, one single substituent representing hydrogen, or hydrocarbyl residues containing 1 to 30 carbon atoms
5. A process according to any one of claims 1 to 3, wherein the ammonium and/or phosphonium cation can also be derived from nitrogen-containing and/or phosphorus-containing heterocycles containing 1, 2 or 3 nitrogen and/or phosphorus atoms, in which the cycles are constituted by 4 to 10 atoms, preferably 5 or 6 atoms.
6. A process according to any one of claims 1 to 3, wherein the quaternary ammonium or phosphonium cation is constituted by a cation with formula:
R1R2+N═CR3-R5-R3C═N+R1R2
or
R1R2+P═CR3-R5-R3C═P+R1R2
where R1, R2 and R3, which may be identical or different, are defined as above and R5 represents an alkylene or phenylene residue.
7. A process according to any one of claims 1 to 6, wherein the ammonium and/or phosphonium cation is selected from the group formed by N-butylpyridinium, N-ethylpyridinium, pyridinium, 3-ethyl-1-methyl-imidazolium, 3-butyl-1-methyl-imidazolium, diethylpyrazolium, N-butyl-N-methylpyrrolidinium, trimethylphenylammonium, tetrabutyl-phosphonium and tributyl-(tetradecyl)-phosphonium.
8. A process according to any one of claims 1 to 7, wherein the non-aqueous ionic solvent is selected from the group formed by N-butyl pyridinium hexafluorophosphate, N-ethylpyridinium tetrafluoroborate, pyridinium fluorosulfonate, 3-butyl-1-methyl imidazolium tetrafluoroborate, 3-butyl-1-methyl-imidazolium hexafluoroantimonate, 3-butyl-1-methyl-imidazolium hexafluorophosphate, 3-butyl-1-methyl-imidazolium trifluoroacetate, 3-butyl-1-methyl-imidazolium trifluoromethylsulfonate, trimethylphenylammonium hexafluoro-phosphate and tetrabutylphosphonium tetrafluoroborate.
9. A process according to any one of claims 1 to 8, wherein the cobalt and/or rhodium precursor compounds of the catalyst are selected from the group formed by cobalt and/or rhodium salts and carbonyl complexes.
10. A process according to any one of claims 1 to 9, wherein the cobalt and/or rhodium catalyst precursors are selected from the group formed by acetylacetonates, carboxylates dicobalt-octacarbonyl, cobalt-tetracarbonyl hydride, rhodium-dicarbonyl acetylacetonate and carbonyl clusters.
11. A process according to any one of claims 1 to 10, wherein the nitrogen-containing ligand is selected from the group formed by monoamines, di-, tri- and polyamines, imines, di-imines, pyridines, bipyridines, imidazoles, pyrroles and pyrazoles, all also containing in their formula at least one substituent carrying an ionic function (Q′)+(A′) where at least the cation (Q′)+ or anion (A′) has the same chemical nature as cation Q+ or anion A of the non-aqueous ionic solvent defined above.
12. A process according to any one of claims 1 to 10, wherein the phosphorus-containing ligand is selected from the group formed by phosphines, polyphosphines, phosphine oxides and phosphites, all also containing in their formula at least one substituent carrying an ionic function (Q′)+(A′) such that at least the cation (Q′)+ or anion (A′) has the same chemical nature as cation Q+ or anion A of the non-aqueous ionic solvent defined above.
13. A process according to any one of claims 1 to 12, wherein the concentration of the cobalt and/or rhodium complex in the liquid ionic solvent is in the range 0.1 mmoles per liter to 5 moles per liter and the mole ratio between the nitrogen-containing ligand or the phosphorus-containing ligand and the cobalt and/or rhodium compound is in the range 0.1 to 500.
14. A process according to any one of claims 1 to 13, wherein at least one olefinically unsaturated compound selected from the group formed by mono-olefins, di-olefins, in particular conjugated di-olefins, olefinic compounds comprising one or more heteroatoms, in particular in unsaturated groups such as ketone and carboxylic acid functions, undergoes the hydroformylation reaction.
15. A process according to any one of claims 1 to 14, wherein the hydroformylation reaction is carried out with a partial pressure of hydrogen and carbon monoxide of 10:1 to 1:10, at a temperature in the range 30° C. to 200° C. and at a pressure in the range 1 MPa to 20 MPa.
US09/935,330 2000-08-23 2001-08-23 Hydroformylation process employing a catalyst based on cobalt and/or rhodium in a non-aqueous ionic solvent Expired - Lifetime US6410799B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR00/10.971 2000-08-23
FR00/10971 2000-08-23
FR0010971A FR2813305B1 (en) 2000-08-23 2000-08-23 IMPROVED HYDROFORMYLATION PROCESS USING A COBALT AND / OR RHODIUM-BASED CATALYST IN A NON-AQUEOUS IONIC SOLVENT

Publications (2)

Publication Number Publication Date
US20020035297A1 true US20020035297A1 (en) 2002-03-21
US6410799B1 US6410799B1 (en) 2002-06-25

Family

ID=8853751

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/935,330 Expired - Lifetime US6410799B1 (en) 2000-08-23 2001-08-23 Hydroformylation process employing a catalyst based on cobalt and/or rhodium in a non-aqueous ionic solvent

Country Status (7)

Country Link
US (1) US6410799B1 (en)
EP (1) EP1182187B1 (en)
JP (1) JP2002114731A (en)
DE (1) DE60106161T2 (en)
ES (1) ES2230249T3 (en)
FR (1) FR2813305B1 (en)
ZA (1) ZA200005824B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327556A (en) * 2002-04-11 2003-11-19 Inst Fr Petrole Process for hydroformylation using catalyst based on cobalt in nonaqueous ionic liquid with improved catalyst recycle
DE10243446B4 (en) * 2002-09-19 2005-12-15 Celanese Chemicals Europe Gmbh Process for the preparation of aldehydes
WO2006072775A3 (en) * 2005-01-04 2007-04-26 Univ Belfast Ionic liquids with a cation comprising a basic moiety

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT102937A (en) * 2003-04-09 2004-10-29 Reis De Aguiar Navarro Y Rosa NEW IONIC LIQUIDS BASED ON THE TETRA-RENT-DIMETHYL-GUANIDINUM UNIT
FR2875235B1 (en) * 2004-09-10 2006-11-24 Inst Francais Du Petrole PROCESS FOR SEPARATING OXYGEN COMPOUNDS CONTAINED IN A HYDROCARBONATED LOAD USING AN IONIC LIQUID

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451680A (en) * 1982-10-21 1984-05-29 Texaco Inc. Alcohols prepared from olefins and synthesis gas
US4451679A (en) * 1982-10-21 1984-05-29 Texaco Inc. Alcohols and aldehydes prepared from olefins and synthesis gas
DE3411034A1 (en) * 1984-03-26 1985-09-26 Ruhrchemie Ag, 4200 Oberhausen Process for the recovery of rhodium from reaction products of the oxo synthesis
DE3412335A1 (en) * 1984-04-03 1985-10-10 Ruhrchemie Ag, 4200 Oberhausen METHOD FOR PRODUCING ALDEHYDES
US4716250A (en) * 1986-07-10 1987-12-29 Union Carbide Corporation Hydroformylation using low volatile/organic soluble phosphine ligands
DE4242723A1 (en) * 1992-12-17 1994-06-23 Hoechst Ag Process for the preparation of aldehydes
FR2741875B1 (en) * 1995-11-30 1998-01-02 Inst Francais Du Petrole PROCESS FOR THE HYDROFORMYLATION OF OLEFINIC COMPOUNDS
FR2763938B1 (en) * 1997-05-27 1999-10-22 Inst Francais Du Petrole PROCESS FOR THE HYDROFORMYLATION OF OLEFINS
ID21537A (en) * 1997-12-22 1999-06-24 Celanese Gmbh ALDEHID MAKING PROCESS
DE19756945C2 (en) * 1997-12-22 2000-08-03 Celanese Chem Europe Gmbh Non-aqueous ionic ligand liquids, process for their preparation and their use as a catalyst component
DE19919494A1 (en) * 1999-04-29 2000-11-02 Celanese Chem Europe Gmbh Ionic liquids, their production and their use
FR2802203B1 (en) * 1999-12-08 2003-04-04 Inst Francais Du Petrole IMPROVED HYDROFORMYLATION PROCESS USING A CATALYST BASED ON COBALT AND / OR RHODIUM IMPLEMENTED IN A BIPHASIC ENVIRONMENT

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327556A (en) * 2002-04-11 2003-11-19 Inst Fr Petrole Process for hydroformylation using catalyst based on cobalt in nonaqueous ionic liquid with improved catalyst recycle
DE10243446B4 (en) * 2002-09-19 2005-12-15 Celanese Chemicals Europe Gmbh Process for the preparation of aldehydes
WO2006072775A3 (en) * 2005-01-04 2007-04-26 Univ Belfast Ionic liquids with a cation comprising a basic moiety
US20090270248A1 (en) * 2005-01-04 2009-10-29 The Queen's University Of Belfast Basic ionic liquids
US8609572B2 (en) 2005-01-04 2013-12-17 The Queen's University Of Belfast Basic ionic liquids

Also Published As

Publication number Publication date
US6410799B1 (en) 2002-06-25
EP1182187B1 (en) 2004-10-06
FR2813305A1 (en) 2002-03-01
EP1182187A1 (en) 2002-02-27
ES2230249T3 (en) 2005-05-01
JP2002114731A (en) 2002-04-16
FR2813305B1 (en) 2004-02-13
ZA200005824B (en) 2002-04-19
DE60106161D1 (en) 2004-11-11
DE60106161T2 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP3744536B2 (en) Hydroformylation process
CS271475B2 (en) Method of aldehydes production by means of hydromylation in non-conducting medium
JP4210800B2 (en) Process for hydroformylation of olefinic compounds
KR19990066999A (en) Hydroformylation Method
KR890003783B1 (en) Process for the preparation of aldehydes
US4593126A (en) Process for preparing aldehydes
US7223374B2 (en) Hydroformylation process employing a cobalt-based catalyst in a non-aqueous liquid with improved catalyst recycling
HU199381B (en) Process for producing aldehydes
HUT66778A (en) Method for reactivation of hydroformylation catalysts
US6025529A (en) Process for preparing aldehydes
CA1263407A (en) Process for the preparation of aldehydes
US6410799B1 (en) Hydroformylation process employing a catalyst based on cobalt and/or rhodium in a non-aqueous ionic solvent
JP4048317B2 (en) Method for improving hydroformylation of olefinically unsaturated compounds in non-aqueous ionic solvents
US7781621B2 (en) Hydroformylation method involving a cobalt-based catalyst in a non-aqueous ionic liquid
KR100565135B1 (en) Hydroformylation of Olefin
JP5030326B2 (en) Improved hydroformylation process using cobalt and / or rhodium based catalysts carried out in a two-phase medium
US6677268B2 (en) Catalyst based on cobalt and/or rhodium employed in a two-phase medium
KR930002361B1 (en) Process for producing aldehydes or mixtures of ketones and aldehydes

Legal Events

Date Code Title Description
AS Assignment

Owner name: INSTITUT FRANCAIS DU PETROLE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FAVRE, FREDERIC;COMMEREUC, DOMINIQUE;OLIVIER-BOURBIGOU, HELENE;AND OTHERS;REEL/FRAME:012298/0110

Effective date: 20011016

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12