US20020028804A1 - Cosmetic compositions containing substituted iminodibenzyl or fluorene derivatives - Google Patents
Cosmetic compositions containing substituted iminodibenzyl or fluorene derivatives Download PDFInfo
- Publication number
- US20020028804A1 US20020028804A1 US09/873,159 US87315901A US2002028804A1 US 20020028804 A1 US20020028804 A1 US 20020028804A1 US 87315901 A US87315901 A US 87315901A US 2002028804 A1 US2002028804 A1 US 2002028804A1
- Authority
- US
- United States
- Prior art keywords
- compound
- retinol
- retinyl
- skin
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 *C(=O)N1C2=C(C=CC=C2)CCC2=C1C=CC=C2 Chemical compound *C(=O)N1C2=C(C=CC=C2)CCC2=C1C=CC=C2 0.000 description 6
- IAEPQFMHXKVNCD-UHFFFAOYSA-N O=C(NC1=CC=C(O)C=C1)N1C2=C(C=CC=C2)CCC2=C1C=CC=C2 Chemical compound O=C(NC1=CC=C(O)C=C1)N1C2=C(C=CC=C2)CCC2=C1C=CC=C2 IAEPQFMHXKVNCD-UHFFFAOYSA-N 0.000 description 5
- AMKKCQLUYFWTJH-UHFFFAOYSA-N CC(O)C1=CC=CC(NC(=O)N2C3=C(C=CC=C3)CCC3=C2C=CC=C3)=C1 Chemical compound CC(O)C1=CC=CC(NC(=O)N2C3=C(C=CC=C3)CCC3=C2C=CC=C3)=C1 AMKKCQLUYFWTJH-UHFFFAOYSA-N 0.000 description 4
- BKBOYBCXQJAZLP-UHFFFAOYSA-N CC(C)N1CCC(O)(C2=CC=C(Cl)C=C2)CC1 Chemical compound CC(C)N1CCC(O)(C2=CC=C(Cl)C=C2)CC1 BKBOYBCXQJAZLP-UHFFFAOYSA-N 0.000 description 3
- ZTBMYEYBMRNGEU-UHFFFAOYSA-N CC(C)N1CCC(O)(C2=CC=CC=C2)CC1 Chemical compound CC(C)N1CCC(O)(C2=CC=CC=C2)CC1 ZTBMYEYBMRNGEU-UHFFFAOYSA-N 0.000 description 3
- GBWPXTSAHFECCQ-UHFFFAOYSA-N CC(C)NC1=CC(C(C)O)=CC=C1 Chemical compound CC(C)NC1=CC(C(C)O)=CC=C1 GBWPXTSAHFECCQ-UHFFFAOYSA-N 0.000 description 3
- STVPBVIJXUKAMI-UHFFFAOYSA-N CC(C)NC1=CC=C(O)C=C1 Chemical compound CC(C)NC1=CC=C(O)C=C1 STVPBVIJXUKAMI-UHFFFAOYSA-N 0.000 description 3
- IEUGASXGIGWNCK-UHFFFAOYSA-N CC(C)NC1=CC=C(OC(F)(F)F)C=C1 Chemical compound CC(C)NC1=CC=C(OC(F)(F)F)C=C1 IEUGASXGIGWNCK-UHFFFAOYSA-N 0.000 description 3
- RLCSMDIEQDRNQY-UHFFFAOYSA-N CC1=C(Cl)CCC=C1NC(=O)N1C2=C(C=CC=C2)CCC2=C1C=CC=C2 Chemical compound CC1=C(Cl)CCC=C1NC(=O)N1C2=C(C=CC=C2)CCC2=C1C=CC=C2 RLCSMDIEQDRNQY-UHFFFAOYSA-N 0.000 description 3
- CDFGAXXPIIJXSS-UHFFFAOYSA-N CC1=C(NC(C)C)C=CC=C1Cl Chemical compound CC1=C(NC(C)C)C=CC=C1Cl CDFGAXXPIIJXSS-UHFFFAOYSA-N 0.000 description 3
- PWERRRFAYRBRHO-UHFFFAOYSA-N CCCN(CCO)C(=O)CC1C2=CC=CC=C2C2=C1C=CC=C2 Chemical compound CCCN(CCO)C(=O)CC1C2=CC=CC=C2C2=C1C=CC=C2 PWERRRFAYRBRHO-UHFFFAOYSA-N 0.000 description 3
- GYWWIDNDJPVOSH-UHFFFAOYSA-N CCCN(CCO)C(C)C Chemical compound CCCN(CCO)C(C)C GYWWIDNDJPVOSH-UHFFFAOYSA-N 0.000 description 3
- NSNZXLGKAVRNFJ-UHFFFAOYSA-N COC1=CC=C(N(C)C(=O)O2C3=C(C=CC=C3)CCC3=C2C=CC=C3)C=C1 Chemical compound COC1=CC=C(N(C)C(=O)O2C3=C(C=CC=C3)CCC3=C2C=CC=C3)C=C1 NSNZXLGKAVRNFJ-UHFFFAOYSA-N 0.000 description 3
- CONPECNZQHHHMB-UHFFFAOYSA-N COC1=CC=C(N(C)C(C)C)C=C1 Chemical compound COC1=CC=C(N(C)C(C)C)C=C1 CONPECNZQHHHMB-UHFFFAOYSA-N 0.000 description 3
- KGVCRBFBHYILFL-UHFFFAOYSA-N O=C(CC1C2=CC=CC=C2C2=C1C=CC=C2)N1CCC(O)(C2=CC=C(Cl)C=C2)CC1 Chemical compound O=C(CC1C2=CC=CC=C2C2=C1C=CC=C2)N1CCC(O)(C2=CC=C(Cl)C=C2)CC1 KGVCRBFBHYILFL-UHFFFAOYSA-N 0.000 description 3
- MAMHMYOYXVFKDP-UHFFFAOYSA-N O=C(CC1C2=CC=CC=C2C2=C1C=CC=C2)N1CCC(O)(C2=CC=CC=C2)CC1 Chemical compound O=C(CC1C2=CC=CC=C2C2=C1C=CC=C2)N1CCC(O)(C2=CC=CC=C2)CC1 MAMHMYOYXVFKDP-UHFFFAOYSA-N 0.000 description 3
- IXUPJBIKUNJOFB-UHFFFAOYSA-N O=C(NC1=CC=C(OC(F)(F)F)C=C1)N1C2=C(C=CC=C2)CCC2=C1C=CC=C2 Chemical compound O=C(NC1=CC=C(OC(F)(F)F)C=C1)N1C2=C(C=CC=C2)CCC2=C1C=CC=C2 IXUPJBIKUNJOFB-UHFFFAOYSA-N 0.000 description 3
- GARZZLSTTYYEJK-UHFFFAOYSA-N CNN(C)c(cc1)ccc1OC Chemical compound CNN(C)c(cc1)ccc1OC GARZZLSTTYYEJK-UHFFFAOYSA-N 0.000 description 1
- IARFDRTTYGOFIU-UHFFFAOYSA-N NC(CC1c2ccccc2-c2c1cccc2)=O Chemical compound NC(CC1c2ccccc2-c2c1cccc2)=O IARFDRTTYGOFIU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/69—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing fluorine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/42—Amides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/4906—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/008—Preparations for oily skin
Definitions
- a frequent, undesirable skin condition is “oily skin,” the condition which results from the excessive amount of sebum on the skin.
- Sebum is skin oil which is produced by sebocytes (cells of the sebaceous glands in the skin) and is then secreted to the skin surface.
- Oily skin is associated with a shiny, undesirable appearance and a disagreeable tactile sensation. Oily skin affects various age groups. Cosmetic products which provide sebum control are highly desirable.
- the present invention includes, in its first aspect, a cosmetic composition comprising:
- the present invention also includes a method of controlling or preventing an oily skin condition, especially in the facial area, by applying to the skin the inventive composition.
- the invention also includes a cosmetic method of reducing, preventing or controlling sebum secretion from sebocytes by applying to the skin the inventive composition.
- Cosmetic compositions within the scope of the invention are generally personal care compositions including but not limited to skin care compositions (leave-on or rinse-off), hair care compositions (shampoos and conditioners and hair tonics), dentifrices (toothpastes and mouthwashes), and lipsticks and color cosmetics.
- Inventive compositions may be in the form of lotions, creams, gels, soap bars, shower gels, toners, and face masks.
- compositions are skin care compositions, in order to deliver anti-sebum benefit to the skin.
- skin as used herein includes the skin on the face, neck, chest, back, arms, hands, legs and scalp.
- inventive methods and compositions include the substituted iminodibenzyl compound
- the substituted iminodibenzyl or fluorine compounds are employed in the present invention in an amount of from 0.0001% to 50%, preferably from 0.0001% to 10%, most preferably from 0.0001% to 5%.
- the substituted iminodibenzyl or fluorine compounds can be obtained from New Chemical Entities, Inc. (Bothell, Wash.).
- compositions according to the invention comprise a cosmetically acceptable vehicle to act as a diluant, dispersant or carrier for the substituted iminodibenzyl or fluorine compounds in the composition, so as to facilitate its distribution when the composition is applied to the substrate.
- the vehicle may be aqueous, anhydrous or an emulsion.
- the compositions are aqueous or an emulsion, especially water-in-oil or oil-in-water emulsion.
- Water when present will be in amounts which may range from 5 to 99%, preferably from 40 to 90%, optimally between 60 and 90% by weight.
- relatively volatile solvents may also serve as carriers within compositions of the present invention.
- monohydric C 1 -C 3 alkanols include ethyl alcohol, methyl alcohol and isopropyl alcohol.
- the amount of monohydric alkanol may range from 1 to 70%, preferably from 10 to 50%, optimally between 15 and 40% by weight.
- Emollient materials may also serve as cosmetically acceptable carriers. These may be in the form of silicone oils and synthetic esters. Amounts of the emollients may range anywhere from 0.1 to 50%, preferably between 1 and 20% by weight.
- Silicone oils may be divided into the volatile and non-volatile variety.
- volatile refers to those materials which have a measurable vapor pressure at ambient temperature.
- Volatile silicone oils are preferably chosen from cyclic or linear polydimethylsiloxanes containing from 3 to 9, preferably from 4 to 5, silicon atoms. Linear volatile silicone materials generally have viscosities less than about 5 centistokes at 25° C. while cyclic materials typically have viscosities of less than about 10 centistokes.
- Nonvolatile silicone oils useful as an emollient material include polyalkyl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers.
- the essentially non-volatile polyalkyl siloxanes useful herein include, for example, polydimethyl siloxanes with viscosities of from about 5 to about 25 million centistokes at 25° C.
- the preferred non-volatile emollients useful in the present compositions are the polydimethyl siloxanes having viscosities from about 10 to about 400 centistokes at 25° C.
- ester emollients are:
- Alkenyl or alkyl esters of fatty acids having 10 to 20 carbon atoms examples thereof include isoarachidyl neopentanoate, isononyl isonanonoate, oleyl myristate, oleyl stearate, and oleyl oleate.
- Ether-esters such as fatty acid esters of ethoxylated fatty alcohols.
- Ethylene glycol mono and di-fatty acid esters diethylene glycol mono- and di-fatty acid esters, polyethylene glycol (200-6000) mono- and di-fatty acid esters, propylene glycol mono- and di-fatty acid esters, polypropylene glycol 2000 monooleate, polypropylene glycol 2000 monostearate, ethoxylated propylene glycol monostearate, glyceryl mono- and di-fatty acid esters, polyglycerol poly-fatty esters, ethoxylated glyceryl monostearate, 1,3-butylene glycol monostearate, 1,3-butylene glycol distearate, polyoxyethylene polyol fatty acid ester, sorbitan fatty acid esters, and polyoxyethylene sorbitan fatty acid esters are satisfactory polyhydric alcohol esters.
- Wax esters such as beeswax, spermaceti, myristyl myristate, stearyl stearate and arachidyl behenate.
- Sterols esters of which cholesterol fatty acid esters are examples thereof.
- Fatty acids having from 10 to 30 carbon atoms may also be included as cosmetically acceptable carriers for compositions of this invention.
- Illustrative of this category are pelargonic, lauric, myristic, palmitic, stearic, isostearic, hydroxystearic, oleic, linoleic, ricinoleic, arachidic, behenic and erucic acids.
- Humectants of the polyhydric alcohol type may also be employed as cosmetically acceptable carriers in compositions of this invention.
- the humectant aids in increasing the effectiveness of the emollient, reduces scaling, stimulates removal of built-up scale and improves skin feel.
- Typical polyhydric alcohols include glycerol, polyalkylene glycols and more preferably alkylene polyols and their derivatives, including propylene glycol, dipropylene glycol, polypropylene glycol, polyethylene glycol and derivatives thereof, sorbitol, hydroxypropyl sorbitol, hexylene glycol, 1,3-butylene glycol, 1,2,6-hexanetriol, ethoxylated glycerol, propoxylated glycerol and mixtures thereof.
- the humectant is preferably propylene glycol or sodium hyaluronate.
- the amount of humectant may range anywhere from 0.5 to 30%, preferably between 1 and 15% by weight of the composition.
- Thickeners may also be utilized as part of the cosmetically acceptable carrier of compositions according to the present invention.
- Typical thickeners include crosslinked acrylates (e.g. Carbopol 982), hydrophobically-modified acrylates (e.g. Carbopol 1382), cellulosic derivatives and natural gums.
- useful cellulosic derivatives are sodium carboxymethylcellulose, hydroxypropyl methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, ethyl cellulose and hydroxymethyl cellulose.
- Natural gums suitable for the present invention include guar, xanthan, sclerotium, carrageenan, pectin and combinations of these gums.
- Amounts of the thickener may range from 0.0001 to 5%, usually from 0.001 to 1%, optimally from 0.01 to 0.5% by weight.
- the water, solvents, silicones, esters, fatty acids, humectants and/or thickeners will constitute the cosmetically acceptable carrier in amounts from 1 to 99.9%, preferably from 80 to 99% by weight.
- An oil or oily material may be present, together with an emulsifier to provide either a water-in-oil emulsion or an oil-in-water emulsion, depending largely on the average hydrophilic-lipophilic balance (HLB) of the emulsifier employed.
- HLB hydrophilic-lipophilic balance
- Surfactants may also be present in cosmetic compositions of the present invention. Total concentration of the surfactant will range from 0.1 to 40%, preferably from 1 to 20%, optimally from 1 to 5% by weight of the composition.
- the surfactant may be selected from the group consisting of anionic, nonionic, cationic and amphoteric actives.
- nonionic surfactants are those with a C 10 -C 20 fatty alcohol or acid hydrophobe condensed with from 2 to 100 moles of ethylene oxide or propylene oxide per mole of hydrophobe; C 2 -C 10 alkyl phenols condensed with from 2 to 20 moles of alkylene oxide; mono- and di- fatty acid esters of ethylene glycol; fatty acid monoglyceride; sorbitan, mono- and di- C 8 -C 20 fatty acids; block copolymers (ethylene oxide/propylene oxide); and polyoxyethylene sorbitan as well as combinations thereof.
- Alkyl polyglycosides and saccharide fatty amides are also suitable nonionic surfactants.
- Preferred anionic surfactants include soap, alkyl ether sulfate and sulfonates, alkyl sulfates and sulfonates, alkylbenzene sulfonates, alkyl and dialkyl sulfosuccinates, C 8 -C 20 acyl isethionates, acyl glutamates, C 8 -C 20 alkyl ether phosphates and combinations thereof.
- Actives are defined as skin benefit agents other than emollients and other than ingredients that merely improve the physical characteristics of the composition. Although not limited to this category, general examples include additional anti-sebum ingredients and sunscreens.
- Sunscreens include those materials commonly employed to block ultraviolet light.
- Illustrative compounds are the derivatives of PABA, cinnamate and salicylate.
- avobenzophenone Parsol 1789®
- octyl methoxycinnamate and 2-hydroxy-4-methoxy benzophenone also known as oxybenzone
- Octyl methoxycinnamate and 2-hydroxy-4-methoxy benzophenone are commercially available under the trademarks, Parsol MCX and Benzophenone-3, respectively.
- the exact amount of sunscreen employed in the compositions can vary depending upon the degree of protection desired from the sun's UV radiation.
- a preferred additional anti-sebum agent is a retinoid. It has been found that compounds E through H had improved sebum suppressive activity in the presence of a retinoid. Retinoids (e.g. retinol/retinyl ester/retinal/retinoic acid) are present in the epidermis, so compounds E through H will have the improved sebum suppressive activity when applied to the skin.
- the preferred compositions include a retinoid as an additional ingredient.
- retinol includes the following isomers of retinol: all-trans-retinol, 13-cis-retinol, 11 -cis-retinol, 9-cis-retinol, 3,4-didehydro-retinol. Preferred isomers are all-trans-retinol, 13-cis-retinol, 3,4-didehydro-retinol, 9-cis-retinol. Most preferred is all-trans-retinol, due to its wide commercial availability.
- Retinyl ester is an ester of retinol.
- the term “retinol” has been defined above.
- Retinyl esters suitable for use in the present invention are C 1-C 30 esters of retinol, preferably C 2-C 20 esters, and most preferably C 2, C 3, and C 16 esters because they are more commonly available.
- retinyl esters include but are not limited to: retinyl palmitate, retinyl formate, retinyl acetate, retinyl propionate, retinyl butyrate, retinyl valerate, retinyl isovalerate, retinyl hexanoate, retinyl heptanoate, retinyl octanoate, retinyl nonanoate, retinyl decanoate, retinyl undecandate, retinyl laurate, retinyl tridecanoate, retinyl myristate, retinyl pentadecanoate, retinyl heptadeconoate, retinyl stearate, retinyl isostearate, retinyl nonadecanoate, retinyl arachidonate, retinyl behenate, retiny
- the preferred ester for use in the present invention is selected from retinyl palmitate, retinyl acetate and retinyl propionate, because these are the most commercially available and therefore the cheapest. Retinyl ester is also preferred due to its efficacy.
- the retinoid is employed in the inventive composition in an amount of from about 0.001% to about 10%, preferably in an amount of from about 0.01% to about 1%, most preferably in an amount of from about 0.01% to about 0.5%.
- Suitable preservatives include alkyl esters of p-hydroxybenzoic acid, hydantoin derivatives, propionate salts, and a variety of quaternary ammonium compounds. Particularly preferred preservatives of this invention are methyl paraben, propyl paraben, phenoxyethanol and benzyl alcohol. Preservatives will usually be employed in amounts ranging from about 0.1% to 2% by weight of the composition.
- composition according to the invention is intended primarily as a product for topical application to human skin, especially as an agent for controlling or preventing excessive sebum secretion.
- a quantity of the composition for example from 1 to 100 ml, is applied to exposed areas of the skin, from a suitable container or applicator and, if necessary, it is then spread over and/or rubbed into the skin using the hand or fingers or a suitable device.
- the cosmetic composition of the invention can be in any form, e.g. formulated as a toner, gel, lotion, a fluid cream, a soap bar or a cream.
- the composition can be packaged in a suitable container to suit its viscosity and intended use by the consumer.
- a lotion or fluid cream can be packaged in a bottle or a roll-ball applicator or a propellant-driven aerosol device or a container fitted with a pump suitable for finger operation.
- the composition is a cream, it can simply be stored in a non-deformable bottle or squeeze container, such as a tube or a lidded jar.
- the invention accordingly also provides a closed container containing a cosmetically acceptable composition as herein defined.
- composition may also be included in capsules such as those described in U.S. Pat. No. 5,063,057, incorporated by reference herein.
- Sebocyte growth medium consisted of Clonetics Keratinocyte Basal Medium (KBM) supplemented with 14 ⁇ g/ml bovine pituitary extract, 0.4 ⁇ g/ml hydrocortisone, 5 ⁇ g/ml insulin, 10 ng/ml epidermal growth factor, 1.2 ⁇ 10 ⁇ 10 M cholera toxin, 100 units/ml penicillin, and 100 ⁇ g/ml streptomycin. All cultures were incubated at 37° C. in the presence of 7.5% CO2. Medium was changed three times per week.
- DMEM Dulbecco's Modified Eagle Medium
- Fresh DMEM was added to each sample (duplicates, triplicates, or quadruplicates depending on the experiment) with 5 microliter of test agent solubilized in ethanol either alone or in the presence of one or 10 micromolar of retinol.
- Controls consisted of addition of ethanol alone, retinol alone, or phenol red, which has estrogen-like activity and is included as a positive control.
- Each plate was returned to the incubator for 20 hours followed by the addition of 14C-acetate buffer (5 mM final concentration, 56 mCi/mmol specific activity).
- Sebocytes were returned to the incubator for four hours after which each culture was rinsed three times with phosphate buffered saline to remove unbound label. Radioactive label remaining in the sebocytes was harvested and counted using a Beckman scintillation counter.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Cosmetics (AREA)
Abstract
Description
- Cosmetic methods and compositions containing iminodibenzyl or fluorene derivatives.
- A frequent, undesirable skin condition is “oily skin,” the condition which results from the excessive amount of sebum on the skin. Sebum is skin oil which is produced by sebocytes (cells of the sebaceous glands in the skin) and is then secreted to the skin surface. Oily skin is associated with a shiny, undesirable appearance and a disagreeable tactile sensation. Oily skin affects various age groups. Cosmetic products which provide sebum control are highly desirable.
- The present invention includes, in its first aspect, a cosmetic composition comprising:
-
-
-
- and
- (ii) a cosmetically acceptable vehicle.
- The present invention also includes a method of controlling or preventing an oily skin condition, especially in the facial area, by applying to the skin the inventive composition.
- The invention also includes a cosmetic method of reducing, preventing or controlling sebum secretion from sebocytes by applying to the skin the inventive composition.
- Except in the operating and comparative examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts of material or conditions of reaction, physical properties of materials and/or use are to be understood as modified by the word “about.” All amounts are by weight of the oil-in-water emulsion, unless otherwise specified.
- Cosmetic compositions within the scope of the invention are generally personal care compositions including but not limited to skin care compositions (leave-on or rinse-off), hair care compositions (shampoos and conditioners and hair tonics), dentifrices (toothpastes and mouthwashes), and lipsticks and color cosmetics. Inventive compositions may be in the form of lotions, creams, gels, soap bars, shower gels, toners, and face masks.
- The preferred compositions are skin care compositions, in order to deliver anti-sebum benefit to the skin.
- The term “skin” as used herein includes the skin on the face, neck, chest, back, arms, hands, legs and scalp.
-
- or
-
-
- The substituted iminodibenzyl or fluorine compounds are employed in the present invention in an amount of from 0.0001% to 50%, preferably from 0.0001% to 10%, most preferably from 0.0001% to 5%.
- The substituted iminodibenzyl or fluorine compounds can be obtained from New Chemical Entities, Inc. (Bothell, Wash.).
- The compositions according to the invention comprise a cosmetically acceptable vehicle to act as a diluant, dispersant or carrier for the substituted iminodibenzyl or fluorine compounds in the composition, so as to facilitate its distribution when the composition is applied to the substrate.
- The vehicle may be aqueous, anhydrous or an emulsion. Preferably, the compositions are aqueous or an emulsion, especially water-in-oil or oil-in-water emulsion. Water when present will be in amounts which may range from 5 to 99%, preferably from 40 to 90%, optimally between 60 and 90% by weight.
- Besides water, relatively volatile solvents may also serve as carriers within compositions of the present invention. Most preferred are monohydric C1-C3 alkanols. These include ethyl alcohol, methyl alcohol and isopropyl alcohol. The amount of monohydric alkanol may range from 1 to 70%, preferably from 10 to 50%, optimally between 15 and 40% by weight.
- Emollient materials may also serve as cosmetically acceptable carriers. These may be in the form of silicone oils and synthetic esters. Amounts of the emollients may range anywhere from 0.1 to 50%, preferably between 1 and 20% by weight.
- Silicone oils may be divided into the volatile and non-volatile variety. The term “volatile” as used herein refers to those materials which have a measurable vapor pressure at ambient temperature. Volatile silicone oils are preferably chosen from cyclic or linear polydimethylsiloxanes containing from 3 to 9, preferably from 4 to 5, silicon atoms. Linear volatile silicone materials generally have viscosities less than about 5 centistokes at 25° C. while cyclic materials typically have viscosities of less than about 10 centistokes. Nonvolatile silicone oils useful as an emollient material include polyalkyl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers. The essentially non-volatile polyalkyl siloxanes useful herein include, for example, polydimethyl siloxanes with viscosities of from about 5 to about 25 million centistokes at 25° C. Among the preferred non-volatile emollients useful in the present compositions are the polydimethyl siloxanes having viscosities from about 10 to about 400 centistokes at 25° C.
- Among the ester emollients are:
- (1) Alkenyl or alkyl esters of fatty acids having 10 to 20 carbon atoms. Examples thereof include isoarachidyl neopentanoate, isononyl isonanonoate, oleyl myristate, oleyl stearate, and oleyl oleate.
- (2) Ether-esters such as fatty acid esters of ethoxylated fatty alcohols.
- (3) Polyhydric alcohol esters. Ethylene glycol mono and di-fatty acid esters, diethylene glycol mono- and di-fatty acid esters, polyethylene glycol (200-6000) mono- and di-fatty acid esters, propylene glycol mono- and di-fatty acid esters, polypropylene glycol 2000 monooleate, polypropylene glycol 2000 monostearate, ethoxylated propylene glycol monostearate, glyceryl mono- and di-fatty acid esters, polyglycerol poly-fatty esters, ethoxylated glyceryl monostearate, 1,3-butylene glycol monostearate, 1,3-butylene glycol distearate, polyoxyethylene polyol fatty acid ester, sorbitan fatty acid esters, and polyoxyethylene sorbitan fatty acid esters are satisfactory polyhydric alcohol esters.
- (4) Wax esters such as beeswax, spermaceti, myristyl myristate, stearyl stearate and arachidyl behenate.
- (5) Sterols esters, of which cholesterol fatty acid esters are examples thereof.
- Fatty acids having from 10 to 30 carbon atoms may also be included as cosmetically acceptable carriers for compositions of this invention. Illustrative of this category are pelargonic, lauric, myristic, palmitic, stearic, isostearic, hydroxystearic, oleic, linoleic, ricinoleic, arachidic, behenic and erucic acids.
- Humectants of the polyhydric alcohol type may also be employed as cosmetically acceptable carriers in compositions of this invention. The humectant aids in increasing the effectiveness of the emollient, reduces scaling, stimulates removal of built-up scale and improves skin feel. Typical polyhydric alcohols include glycerol, polyalkylene glycols and more preferably alkylene polyols and their derivatives, including propylene glycol, dipropylene glycol, polypropylene glycol, polyethylene glycol and derivatives thereof, sorbitol, hydroxypropyl sorbitol, hexylene glycol, 1,3-butylene glycol, 1,2,6-hexanetriol, ethoxylated glycerol, propoxylated glycerol and mixtures thereof. For best results the humectant is preferably propylene glycol or sodium hyaluronate. The amount of humectant may range anywhere from 0.5 to 30%, preferably between 1 and 15% by weight of the composition.
- Thickeners may also be utilized as part of the cosmetically acceptable carrier of compositions according to the present invention. Typical thickeners include crosslinked acrylates (e.g. Carbopol 982), hydrophobically-modified acrylates (e.g. Carbopol 1382), cellulosic derivatives and natural gums. Among useful cellulosic derivatives are sodium carboxymethylcellulose, hydroxypropyl methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, ethyl cellulose and hydroxymethyl cellulose. Natural gums suitable for the present invention include guar, xanthan, sclerotium, carrageenan, pectin and combinations of these gums. Amounts of the thickener may range from 0.0001 to 5%, usually from 0.001 to 1%, optimally from 0.01 to 0.5% by weight.
- Collectively, the water, solvents, silicones, esters, fatty acids, humectants and/or thickeners will constitute the cosmetically acceptable carrier in amounts from 1 to 99.9%, preferably from 80 to 99% by weight.
- An oil or oily material may be present, together with an emulsifier to provide either a water-in-oil emulsion or an oil-in-water emulsion, depending largely on the average hydrophilic-lipophilic balance (HLB) of the emulsifier employed.
- Surfactants may also be present in cosmetic compositions of the present invention. Total concentration of the surfactant will range from 0.1 to 40%, preferably from 1 to 20%, optimally from 1 to 5% by weight of the composition. The surfactant may be selected from the group consisting of anionic, nonionic, cationic and amphoteric actives. Particularly preferred nonionic surfactants are those with a C10-C20 fatty alcohol or acid hydrophobe condensed with from 2 to 100 moles of ethylene oxide or propylene oxide per mole of hydrophobe; C2-C10 alkyl phenols condensed with from 2 to 20 moles of alkylene oxide; mono- and di- fatty acid esters of ethylene glycol; fatty acid monoglyceride; sorbitan, mono- and di- C8-C20 fatty acids; block copolymers (ethylene oxide/propylene oxide); and polyoxyethylene sorbitan as well as combinations thereof. Alkyl polyglycosides and saccharide fatty amides (e.g. methyl gluconamides) are also suitable nonionic surfactants.
- Preferred anionic surfactants include soap, alkyl ether sulfate and sulfonates, alkyl sulfates and sulfonates, alkylbenzene sulfonates, alkyl and dialkyl sulfosuccinates, C8-C20 acyl isethionates, acyl glutamates, C8-C20 alkyl ether phosphates and combinations thereof.
- Various types of additional active ingredients may be present in cosmetic compositions of the present invention. Actives are defined as skin benefit agents other than emollients and other than ingredients that merely improve the physical characteristics of the composition. Although not limited to this category, general examples include additional anti-sebum ingredients and sunscreens.
- Sunscreens include those materials commonly employed to block ultraviolet light. Illustrative compounds are the derivatives of PABA, cinnamate and salicylate. For example, avobenzophenone (Parsol 1789®) octyl methoxycinnamate and 2-hydroxy-4-methoxy benzophenone (also known as oxybenzone) can be used. Octyl methoxycinnamate and 2-hydroxy-4-methoxy benzophenone are commercially available under the trademarks, Parsol MCX and Benzophenone-3, respectively. The exact amount of sunscreen employed in the compositions can vary depending upon the degree of protection desired from the sun's UV radiation.
- A preferred additional anti-sebum agent is a retinoid. It has been found that compounds E through H had improved sebum suppressive activity in the presence of a retinoid. Retinoids (e.g. retinol/retinyl ester/retinal/retinoic acid) are present in the epidermis, so compounds E through H will have the improved sebum suppressive activity when applied to the skin. The preferred compositions, however, include a retinoid as an additional ingredient.
- The term “retinol” includes the following isomers of retinol: all-trans-retinol, 13-cis-retinol, 11 -cis-retinol, 9-cis-retinol, 3,4-didehydro-retinol. Preferred isomers are all-trans-retinol, 13-cis-retinol, 3,4-didehydro-retinol, 9-cis-retinol. Most preferred is all-trans-retinol, due to its wide commercial availability.
- Retinyl ester is an ester of retinol. The term “retinol” has been defined above. Retinyl esters suitable for use in the present invention are C 1-C 30 esters of retinol, preferably C 2-C 20 esters, and most preferably C 2, C 3, and C 16 esters because they are more commonly available. Examples of retinyl esters include but are not limited to: retinyl palmitate, retinyl formate, retinyl acetate, retinyl propionate, retinyl butyrate, retinyl valerate, retinyl isovalerate, retinyl hexanoate, retinyl heptanoate, retinyl octanoate, retinyl nonanoate, retinyl decanoate, retinyl undecandate, retinyl laurate, retinyl tridecanoate, retinyl myristate, retinyl pentadecanoate, retinyl heptadeconoate, retinyl stearate, retinyl isostearate, retinyl nonadecanoate, retinyl arachidonate, retinyl behenate, retinyl linoleate, retinyl oleate, retinyl lactate, retinyl glycolate, retinyl hydroxy caprylate, retinyl hydroxy laurate, retinyl tartarate.
- The preferred ester for use in the present invention is selected from retinyl palmitate, retinyl acetate and retinyl propionate, because these are the most commercially available and therefore the cheapest. Retinyl ester is also preferred due to its efficacy.
- The retinoid is employed in the inventive composition in an amount of from about 0.001% to about 10%, preferably in an amount of from about 0.01% to about 1%, most preferably in an amount of from about 0.01% to about 0.5%.
- Many cosmetic compositions, especially those containing water, must be protected against the growth of potentially harmful microorganisms. Preservatives are, therefore, necessary. Suitable preservatives include alkyl esters of p-hydroxybenzoic acid, hydantoin derivatives, propionate salts, and a variety of quaternary ammonium compounds. Particularly preferred preservatives of this invention are methyl paraben, propyl paraben, phenoxyethanol and benzyl alcohol. Preservatives will usually be employed in amounts ranging from about 0.1% to 2% by weight of the composition.
- The composition according to the invention is intended primarily as a product for topical application to human skin, especially as an agent for controlling or preventing excessive sebum secretion.
- In use, a quantity of the composition, for example from 1 to 100 ml, is applied to exposed areas of the skin, from a suitable container or applicator and, if necessary, it is then spread over and/or rubbed into the skin using the hand or fingers or a suitable device.
- Product Form and Packaging:
- The cosmetic composition of the invention can be in any form, e.g. formulated as a toner, gel, lotion, a fluid cream, a soap bar or a cream. The composition can be packaged in a suitable container to suit its viscosity and intended use by the consumer. For example, a lotion or fluid cream can be packaged in a bottle or a roll-ball applicator or a propellant-driven aerosol device or a container fitted with a pump suitable for finger operation. When the composition is a cream, it can simply be stored in a non-deformable bottle or squeeze container, such as a tube or a lidded jar. The invention accordingly also provides a closed container containing a cosmetically acceptable composition as herein defined.
- The composition may also be included in capsules such as those described in U.S. Pat. No. 5,063,057, incorporated by reference herein.
- The following specific examples further illustrate the invention, but the invention is not limited thereto.
- Compounds A through H were tested for their potential to suppress sebum expression, alone or in the presence of a retinoid.
- Secondary cultures of human sebocytes obtained from an adult male were grown in 48-well tissue culture plates (Costar Corp.; Cambridge, Mass.) or 96-well tissue culture plates (Packard Co.; Meriden, Conn.) until confluent. Sebocyte growth medium consisted of Clonetics Keratinocyte Basal Medium (KBM) supplemented with 14 μg/ml bovine pituitary extract, 0.4 μg/ml hydrocortisone, 5 μg/ml insulin, 10 ng/ml epidermal growth factor, 1.2×10−10 M cholera toxin, 100 units/ml penicillin, and 100 μg/ml streptomycin. All cultures were incubated at 37° C. in the presence of 7.5% CO2. Medium was changed three times per week.
- On the day of experimentation, the growth medium was removed and the sebocytes washed three times with sterile Dulbecco's Modified Eagle Medium (DMEM; phenol red free). Fresh DMEM was added to each sample (duplicates, triplicates, or quadruplicates depending on the experiment) with 5 microliter of test agent solubilized in ethanol either alone or in the presence of one or 10 micromolar of retinol. Controls consisted of addition of ethanol alone, retinol alone, or phenol red, which has estrogen-like activity and is included as a positive control.
- Each plate was returned to the incubator for 20 hours followed by the addition of 14C-acetate buffer (5 mM final concentration, 56 mCi/mmol specific activity). Sebocytes were returned to the incubator for four hours after which each culture was rinsed three times with phosphate buffered saline to remove unbound label. Radioactive label remaining in the sebocytes was harvested and counted using a Beckman scintillation counter.
TABLE 1 Compound A (n = 2) Experiment A Treatment % of Control p-value 1 μM Compound A 85.7 0.140 1 μM Compound A + 1 μM Retinol 82.8 0.050 1 μM Compound A + 10 μM Retinol 93.2 0.187 10 μM Compound A 91.3 0.496 10 μM Compound A + 1 μM Retinol 85.8 0.017 10 μM Compound A + 10 μM Retinol 80.1 0.044 100 μM Compound A 2.1 0.00005 100 μM Compound A + 1 μM Retinol 1.0 0.00005 100 μM Compound A + 10 μM Retinol 0.6 0.00004 1 μM Retinol 96.5 0.397 10 μM Retinol 101.8 0.636 -
TABLE 2 Compound A (n = 3) Experiment B Treatment % of Control p-value 1 μM Compound A 85.7 0.139 1 μM Compound A + 1 μM Retinol 86.2 0.014 1 μM Compound A + 10 μM Retinol 82.8 0.186 10 μM Compound A 88.8 0.246 10 μM Compound A + 1 μM Retinol 45.9 0.0035 10 μM Compound A + 10 μM Retinol 44.3 0.0074 1 μM Retinol 98.4 0.533 10 μM Retinol 111.7 0.066 -
TABLE 3 Compound B (n = 3) Experiment A Treatment % of Control p-value 1 μM Compound B 94.1 0.211 1 μM Compound B + 1 μM Retinol 104.1 0.596 1 μM Compound B + 10 μM Retinol 65.7 0.0035 10 μM Compound B 89.4 0.092 10 μM Compound B + 1 μM Retinol 81.8 0.231 10 μM Compound B + 10 μM Retinol 52.0 0.00035 28 μM Phenol Red 95.3 0.530 280 μM Phenol Red 15.9 8.9 × 10−6 -
TABLE 4 Compound B (n = 2) Experiment B Treatment % of Control p-value 1 μM Compound B 88.9 0.086 1 μM Compound B + 1 μM Retinol 86.0 0.108 1 μM Compound B + 10 μM Retinol 74.2 0.007 10 μM Compound B 82.0 0.073 10 μM Compound B + 1 μM retinol 96.0 0.547 10 μM Compound B + 10 μM Retinol 110.9 0.038 100 μM Compound B 1.7 0.00016 100 μM Compound B + 1 μM Retinol 0.8 0.00012 100 μM Compound B + 10 μM Retinol 0.6 0.00012 1 μM Retinol 96.5 0.397 10 μM Retinol 101.8 0.636 -
TABLE 5 Compound C (n = 4) Experiment A Treatment % of Control p-value 1 μM Compound C 66.4 0.029166 1 μM Compound C + 1 μM Retinol 37.8 0.000465 1 μM Compound C + 10 μM Retinol 48.5 0.005775 10 μM Compound C 56.1 0.006919 10 μM Compound C + 1 μM Retinol 37.4 0.000573 10 μM Compound C + 10 μM Retinol 47.5 0.0076 28 μM Phenol Red 74.7 0.075611 -
TABLE 6 Compound C (n = 4) Experiment B Treatment % of Control p-value 0.1 μM Compound C 102.7 0.750 0.1 μM Compound C + 1 μM Retinol 95.1 0.308 0.1 μM Compound C + 10 μM Retinol 84.6 0.050 1 μM Compound C 91.4 0.011 1 μM Compound C + 1 μM Retinol 83.7 0.015 1 μM Compound C + 10 μM Retinol 70.3 0.055 10 μM Compound C 41.5 0.00025 10 μM Compound C + 1 μM Retinol 27.5 0.00056 10 μM Compound C + 10 μM Retinol 1.4 0.00002 1 μM Retinol 99.9 0.987 10 μM Retinol 100.1 0.765 28 μM Phenol Red 67.6 0.0055 280 μM Phenol Red 56.8 0.0057 -
TABLE 7 Compound D (n = 3) Experiment A Treatment % of Control p-value 1 μM Compound D 77.6 0.0102 1 μM Compound D + 1 μM Retinol 96.9 0.565 1 μM Compound D + 10 μM Retinol 74.6 0.0034 10 μM Compound D 82.7 0.0117 10 μM Compound D + 1 μM Retinol 97.1 0.568 10 μM Compound D + 10 μM Retinol 76.8 0.0136 280 μM Phenol Red 13.2 0.0001 1 μM Retinol 98.1 0.394 10 μM Retinol 105.8 0.476 -
TABLE 8 Compound D (n = 2) Experiment B Treatment % of Control p-value 1 μM Compound D 80.1 0.0964 1 μM Compound D + 1 μM Retinol 75.4 0.0165 1 μM Compound D + 10 μM Retinol 74.3 0.0699 10 μM Compound D 101.2 0.908 10 μM Compound D + 1 μM Retinol 104.6 0.689 10 μM Compound D + 10 μM Retinol 88.7 0.239 100 μM Compound D 1.8 0.0010 100 μM Compound D + 1 μM Retinol 1.1 0.0010 100 μM Compound D + 10 μM Retinol 0.5 0.0010 1 μM Retinol 96.5 0.397 10 μM Retinol 101.8 0.636 -
TABLE 9 Compound E (n = 3) Treatment % of Control p-value 1 μM Compound E 88.0 0.028 1 μM Compound E + 1 μM Retinol 72.1 0.055 1 μM Compound E + 10 μM Retinol 62.4 0.010 10 μM Compound E 92.3 0.069 10 μM Compound E + 1 μM Retinol 73.0 0.001 10 μM Compound E + 10 μM Retinol 79.5 0.036 28 μM Phenol Red 95.3 0.530 280 μM Phenol Red 15.9 8.9 × 10−6 -
TABLE 10 Compound F (n = 4) Experiment A Treatment % of Control p-value 1 μM Compound F 72.3 0.0938 1 μM Compound F + 1 μM Retinol 35.7 0.000268 1 μM Compound F + 10 μM Retinol 29.3 0.000264 10 μM Compound F 26.7 0.000564 10 μM Compound F + 1 μM Retinol 15.3 0.000048 10 μM Compound F + 10 μM Retinol 16.7 0.00004 28 μM Phenol Red 84.4 0.26672 280 μM Phenol Red 16.9 0.000041 -
TABLE 11 Compound F (n = 3) Experiment B Treatment % of Control p-value 0.1 μM Compound F 95.8 0.819 0.1 μM Compound F + 1 μM Retinol 92.8 0.817 0.1 μM Compound F + 10 μM Retinol 83.6 0.077 1 μM Compound F 90.2 0.383 1 μM Compound F + 1 μM Retinol 84.0 0.075 1 μM Compound F + 10 μM Retinol 71.2 0.0099 10 μM Compound F 71.2 0.007 10 μM Compound F + 1 μM Retinol 59.4 0.006 10 μM Compound F + 10 μM Retinol 27.0 4.5 × 10−5 28 μM Phenol Red 67.6 0.0057 280 μM Phenol Red 56.8 0.0298 1 μM Retinol 99.9 0.987 10 μM Retinol 100.1 0.765 -
TABLE 12 Compound G (n = 3) Experiment A Treatment % of Control p-value 1 μM Compound G 77.3 0.0024 1 μM Compound G + 1 μM Retinol 114.5 0.076 1 μM Compound G + 10 μM Retinol 80.2 0.021 10 μM Compound F 75.0 0.0009 10 μM Compound G + 1 μM Retinol 65.3 0.026 10 μM Compound G + 10 μM Retinol 63.8 0.0006 1 μM Retinol 85.5 0.0001 10 μM Retinol 81.8 0.0088 -
TABLE 13 Compound G (n = 4) Experiment B Treatment % of Control p value 1 μM Compound G 70.7 0.0966 1 μM Compound G + 1 μM Retinol 40.4 0.0003 1 μM Compound G + 10 μM Retinol 39.1 0.00179 10 μM Compound G 67.7 0.0644 10 μM Compound G + 1 μM Retinol 27.7 0.00009 10 μM Compound G + 10 μM Retinol 29.2 0.00066 28 μM Phenol Red 84.4 0.26672 280 μM Phenol Red 16.9 0.000041 -
TABLE 14 Compound G (n = 3) Experiment C Treatment % of Control p value 1 μM Compound G 105.2 0.472 1 μM Compound G + 10 μM Retinol 102.9 0.666 10 μM Compound G 63.0 0.00196 10 μM Compound G + 10 μM Retinol 75.4 0.0373 100 μM Compound G 2.0 0.000018 100 μM Compound G + 10 μM Retinol 0.6 0.000017 10 μM Retinol 104.8 0.3559 -
TABLE 15 Compound H (n = 2) Experiment A Treatment % of Control p-value 1 μM Compound H 74.8 0.009 1 μM Compound H + 1 μM Retinol 86.4 0.291 1 μM Compound H + 10 μM Retinol 72.8 0.003 10 μM Compound H 74.6 0.005 10 μM Compound H + 1 μM Retinol 76.6 0.002 10 μM Compound H + 10 μM Retinol 80.2 0.021 100 μM Compound H 79.8 0.078 100 μM Compound H + 1 μM Retinol 67.6 0.002 100 μM Compound H + 10 μM Retinol 27.2 0.026 1 μM Retinol 96.5 0.397 10 μM Retinol 101.8 0.636 -
TABLE 16 Compound H (n = 6) Experiment B Treatment % of Control p-value 1 μM Compound H 65.9 0.010 1 μM Compound H + 1 μM Retinol 76.8 0.137 1 μM Compound H + 10 μM Retinol 68.0 0.017 10 μM Compound H 71.1 0.0144 10 μM Compound H + 1 μM Retinol 71.0 0.0262 10 μM Compound H + 10 μM Retinol 73.5 0.0855 280 μM Phenol Red 73.0 0.0235 1 μM Retinol 99.3 0.953 10 μM Retinol 95.2 0.750 -
TABLE 17 Compound H (n = 3) Experiment C Treatment % of Control p-value 1 μM Compound H 102.7 0.786 1 μM Compound H + 10 μM Retinol 99.9 0.989 10 μM Compound H 111.7 0.303 10 μM Compound H + 10 μM Retinol 100.4 0.940 100 μM Compound H 73.6 0.0153 100 μM Compound H + 10 μM Retinol 44.4 0.0450 10 μM Retinol 104.8 0.3559 - It can be seen from the results in Tables 1-17, that Compounds A through H had sebum suppressive activity. Retinol alone was inactive, but Compounds C, and E through H had improved activity when combined with retinol.
- It should be understood that the specific forms of the invention herein illustrated and described are intended to be representative only. Changes, including but not limited to those suggested in this specification, may be made in the illustrated embodiments without departing from the clear teachings of the disclosure. Accordingly, reference should be made to the following appended claims in determining the full scope of the invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/873,159 US6355687B1 (en) | 2000-06-30 | 2001-06-01 | Cosmetic compositions containing substituted iminodibenzyl or fluorene derivatives |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21564800P | 2000-06-30 | 2000-06-30 | |
US09/873,159 US6355687B1 (en) | 2000-06-30 | 2001-06-01 | Cosmetic compositions containing substituted iminodibenzyl or fluorene derivatives |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020028804A1 true US20020028804A1 (en) | 2002-03-07 |
US6355687B1 US6355687B1 (en) | 2002-03-12 |
Family
ID=22803819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/873,159 Expired - Fee Related US6355687B1 (en) | 2000-06-30 | 2001-06-01 | Cosmetic compositions containing substituted iminodibenzyl or fluorene derivatives |
Country Status (7)
Country | Link |
---|---|
US (1) | US6355687B1 (en) |
JP (1) | JP4704663B2 (en) |
KR (1) | KR100816580B1 (en) |
CN (1) | CN1318017C (en) |
AU (1) | AU2001283840A1 (en) |
MX (1) | MXPA02012546A (en) |
WO (1) | WO2002000186A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6355686B1 (en) * | 2000-06-30 | 2002-03-12 | Unilever Home And Personal Care Usa, Division Of Conopco, Inc. | Cosmetic compositions containing substituted amine derivatives |
US20050031699A1 (en) | 2003-06-26 | 2005-02-10 | L'oreal | Porous particles loaded with cosmetically or pharmaceutically active compounds |
FR2944443B1 (en) | 2009-04-21 | 2012-11-09 | Arkema France | METHOD FOR MANUFACTURING IMPREGNATED FREE POLYAMIDE FREE POWDER PARTICLES, AND POLYAMIDE FREE POWDER PARTICLES HAVING A CONTENT OF AT LEAST 25% BY WEIGHT OF AT LEAST ONE COSMETIC OR PHARMACEUTICAL AGENT |
MX2021004990A (en) * | 2018-11-09 | 2021-06-15 | Unilever Ip Holdings B V | Red colorant free of cochineal red and compositions comprising the same. |
CN111363718A (en) * | 2020-03-25 | 2020-07-03 | 东北农业大学 | By exogenously adding a differentiation promoting reagent YYQ1 capable of obviously promoting the myoblast differentiation of mouse C2C12 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3989719A (en) * | 1971-03-23 | 1976-11-02 | G. D. Searle & Co. | Dibenzoxazepine N-carboxylic acid hydrazides and derivatives |
US3853926A (en) * | 1973-05-29 | 1974-12-10 | Searle & Co | 17{62 -hydroxy-16,16-dimethylester-4-en-3-one |
IL104043A0 (en) * | 1991-12-12 | 1993-05-13 | Scios Nova Inc | Fluorenyl derivatives and pharmaceutical compositions containing them |
US5690948A (en) * | 1997-01-10 | 1997-11-25 | Elizabeth Arden Co., Division Of Conopco, Inc. | Antisebum and antioxidant compositions containing guguliped and alcoholic fraction thereof |
US6355686B1 (en) * | 2000-06-30 | 2002-03-12 | Unilever Home And Personal Care Usa, Division Of Conopco, Inc. | Cosmetic compositions containing substituted amine derivatives |
CA2506732A1 (en) * | 2002-12-12 | 2004-06-24 | Galderma Research & Development, S.N.C. | Compounds which modulate ppar.gamma. type receptors, and use thereof in cosmetic or pharmaceutical compositions |
-
2001
- 2001-06-01 US US09/873,159 patent/US6355687B1/en not_active Expired - Fee Related
- 2001-06-05 CN CNB018121489A patent/CN1318017C/en not_active Expired - Fee Related
- 2001-06-05 MX MXPA02012546A patent/MXPA02012546A/en active IP Right Grant
- 2001-06-05 KR KR1020027017954A patent/KR100816580B1/en not_active IP Right Cessation
- 2001-06-05 AU AU2001283840A patent/AU2001283840A1/en not_active Abandoned
- 2001-06-05 JP JP2002504968A patent/JP4704663B2/en not_active Expired - Fee Related
- 2001-06-05 WO PCT/EP2001/006373 patent/WO2002000186A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN1318017C (en) | 2007-05-30 |
AU2001283840A1 (en) | 2002-01-08 |
MXPA02012546A (en) | 2003-04-10 |
US6355687B1 (en) | 2002-03-12 |
JP4704663B2 (en) | 2011-06-15 |
JP2004501174A (en) | 2004-01-15 |
KR100816580B1 (en) | 2008-03-24 |
KR20030020321A (en) | 2003-03-08 |
WO2002000186A3 (en) | 2002-06-13 |
CN1630505A (en) | 2005-06-22 |
WO2002000186A2 (en) | 2002-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6623728B2 (en) | Cosmetic skin care compositions and containing gum mastic | |
US6599936B1 (en) | Anti-sebum skin care cosmetic compositions containing branched esters | |
US6372795B1 (en) | Cosmetic compositions containing substituted amide derivatives | |
US20070142255A1 (en) | Skin benefit composition and a method for using the same | |
US6355687B1 (en) | Cosmetic compositions containing substituted iminodibenzyl or fluorene derivatives | |
US6355686B1 (en) | Cosmetic compositions containing substituted amine derivatives | |
KR100373282B1 (en) | Method for Reducing Skin Oils and Grease | |
US6432427B1 (en) | Cosmetic compositions containing substituted sulfonamide derivatives | |
US6534073B2 (en) | Skin care cosmetic compositions containing carboxymethylates of branched alcohols and/or ethoxylates thereof | |
US20020018792A1 (en) | Skin care anti-sebum compositions containing 3,4,4-trichlorocarbanilide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNILEVER HOME & PERSONAL CARE USA, DIVISION OF CON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAJOR, JOHN STEVEN;POCALYKO, DAVID JOSEPH;REEL/FRAME:012109/0546 Effective date: 20010522 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140312 |