US20020003373A1 - Method of manufacturing cold formed light alloy automotive wheel rim - Google Patents
Method of manufacturing cold formed light alloy automotive wheel rim Download PDFInfo
- Publication number
- US20020003373A1 US20020003373A1 US09/827,659 US82765901A US2002003373A1 US 20020003373 A1 US20020003373 A1 US 20020003373A1 US 82765901 A US82765901 A US 82765901A US 2002003373 A1 US2002003373 A1 US 2002003373A1
- Authority
- US
- United States
- Prior art keywords
- rim
- blank
- outboard
- flange
- inboard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B3/00—Disc wheels, i.e. wheels with load-supporting disc body
- B60B3/04—Disc wheels, i.e. wheels with load-supporting disc body with a single disc body not integral with rim, i.e. disc body and rim being manufactured independently and then permanently attached to each other in a second step, e.g. by welding
- B60B3/041—Disc wheels, i.e. wheels with load-supporting disc body with a single disc body not integral with rim, i.e. disc body and rim being manufactured independently and then permanently attached to each other in a second step, e.g. by welding characterised by the attachment of rim to wheel disc
- B60B3/042—Disc wheels, i.e. wheels with load-supporting disc body with a single disc body not integral with rim, i.e. disc body and rim being manufactured independently and then permanently attached to each other in a second step, e.g. by welding characterised by the attachment of rim to wheel disc characterised by circumferential position of attachment means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/26—Making other particular articles wheels or the like
- B21D53/30—Making other particular articles wheels or the like wheel rims
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B21/00—Rims
- B60B21/10—Rims characterised by the form of tyre-seat or flange, e.g. corrugated
- B60B21/104—Rims characterised by the form of tyre-seat or flange, e.g. corrugated the shape of flanges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B3/00—Disc wheels, i.e. wheels with load-supporting disc body
- B60B3/10—Disc wheels, i.e. wheels with load-supporting disc body apertured to simulate spoked wheels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49481—Wheel making
- Y10T29/49492—Land wheel
- Y10T29/49524—Rim making
- Y10T29/49529—Die-press shaping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49481—Wheel making
- Y10T29/49492—Land wheel
- Y10T29/49524—Rim making
- Y10T29/49531—Roller forming
Definitions
- the present invention relates to the field of automobile wheels and more particularly to an improved automobile wheel rim and method of making same.
- Automobile owners often desire to improve the appearance and performance of their cars by replacing the original equipment wheels supplied by the vehicle manufacturer (OEM) with aftermarket wheels of lighter weight and more stylish appearance. While many owners are satisfied with aftermarket wheels that are comparatively more stylish than OEM wheels, some owners, “automotive enthusiasts” (drivers of sports and high performance type cars), desire wheels that are of substantially lighter weight and therefore improve the performance as well as the appearance of their vehicles.
- OEM vehicle manufacturer
- Automobile wheels of a type which provide a decorative appearance and relatively light weight are most commonly manufactured by using a light weight casting alloy, typically A356 or A357 aluminum, to cast a wheel in the desired configuration. Typically these wheels are cast as one piece units with integral wheel-centers and rims. After casting, the wheels are finish machined to final dimensions.
- a light weight casting alloy typically A356 or A357 aluminum
- Some cast alloy wheels possess an ornamental design feature that provides for a smooth, stepless, radially outwardly curving relatively thick appearing outboard flange. This appearance feature has proved to be popular in the aftermarket.
- An example of a wheel of this type is U.S. Pat. No. Des. 389,446, entitled “Rim for a Vehicle Wheel” issued to Bradley, Jan. 20, 1998.
- Cold forged wheels are manufactured from cold rolled aluminum alloy tube, bar, or plate stock.
- Cold rolled aluminum alloy has a dense grain structure giving the metal excellent ductility and a high fatigue strength. Alloys commonly used in forging such as 7075 and 7050 series aluminum have significantly higher yield and tensile strength than the A356 and A357 casting alloys.
- a cold forged wheel may be manufactured as a one or two piece unit. The process begins by hammer forging the initial stock (bar, tube, or plate) into a donut shape.
- the rim portion is coaxially extruded from the forged blank.
- the hub is forged radially inwardly to its desired configuration.
- Critical surfaces are then finish machined.
- An example of a cold forged wheel is described in U.S. Pat. No. 5,446,962, entitled “Process of Manufacturing One Piece Forged Wheels” issued to Matossian et al., Sep. 5, 1995.
- Cold forged wheels have the characteristics of light weight and high strength that are greatly prized among “automotive enthusiasts”. However, due to the high cost of producing these wheels few enthusiasts can aspire to owning a set.
- the present invention provides an improved cold formed (spun) alloy wheel rim which possesses the light weight and high strength characteristics, which are prized by “automotive enthusiasts”, and are typically associated with forged wheels, at a cost comparatively less than that of a forged wheel.
- a further advantage of the invention is that it incorporates in a spun alloy rim, a smooth, step less, radially outwardly curving exterior flange which provides for a clean exterior rim appearance often associated with cast wheels. This clean, stepless, radially outwardly curving exterior flange is an ornamental design feature desired by “automotive enthusiasts” that formally was only available in cast alloy wheels.
- the improved wheel rim of the present invention achieves its advantages through a novel combination of cold rolling and spinning manufacturing techniques.
- the improved rim's exterior flange is rolled radially outwardly and turned back axially inwardly and then rolled radially inwardly to form an annular bearing surface defining the outboard wall of the bead seat, thereby providing for the smooth, step less, radially outwardly curving exterior desired by enthusiasts.
- the drop well of the improved rim is located entirely inboard of the rim's centroidal axis, a feature that allows the wheel-center to be mounted at or near the wheel centroid minimizing bending moments that occur when the wheel-center is offset from the wheel centroid.
- a lighter, stronger, wheel can be fabricated thereby making the wheel more attractive to “automotive enthusiasts”.
- FIG. 1 is a front perspective view of a wheel rim embodying the present invention
- FIG. 2 is a left side view of the rim shown in FIG. 1;
- FIG. 3 is a sectional view, enlarged in scale, of the rim taken along the line 1 - 1 as shown in FIG. 2;
- FIG. 4 is a cutaway front side view, enlarged in scale, of a wheel incorporating the rim shown in FIG. 1 which includes a wheel-center;
- FIG. 5 is a cross sectional view, enlarged in scale, of the rim to wheel-center joint, taken along line 2 - 2 as shown in FIG. 4;
- FIG. 6 is a left sectional view, enlarged in scale, taken along a plane passing through the radial axis of a cylindrical unitary rim blank utilized in a method for making the rim shown in FIG. 1;
- FIG. 7 is a sectional view similar to FIG. 6, showing the inboard and outboard extent of the blank being flared radially outwardly;
- FIG. 8 is a sectional view similar to FIG. 6 showing formation of the drop well and further radial outwardly flaring of the inboard and outboard flanges;
- FIG. 9 is a sectional view similar to FIG. 6 showing the outboard extent of the flange being bent back on itself;
- FIG. 10 is a sectional view similar to FIG. 6 showing the inboard flange bent fully back on itself and the outboard flange in its final configuration.
- the improved spun alloy rim of the present invention comprises an annular rim body, generally designated as 18 , which possesses an axis of symmetry and is cold formed from light alloy metal sheet material such as aluminum, substantially 6 mm thick.
- the rim body includes a radially inwardly depressed, annular drop well, generally designated 30 .
- Formed on the inboard side of the drop well is an inboard bead seat 55 having a radially outwardly flared inboard flange 20 formed on the inboard side thereof.
- Formed on the outboard side of the drop well 30 is a cylindrical wheel-center barrel 38 configured at its outboard extent with an inboard second bead seat, generally designated 54 .
- outboard seat is configured with an outboard flange, generally designated 46 , constructed of the parent material and is cold formed to flare radially outwardly defining a funnel shaped radially outwardly curved flange face 48 and is then turned axially inwardly and then back on itself to project radially inwardly to define an axially inwardly facing bearing ring 52 .
- the rim is constructed from a metal plate blank rolled into a cylinder with the ends butt welded together.
- the blank may be constructed from any one of a number of aluminum, steel or other alloys.
- the rim is cold formed from the single cylindrical blank to define the desired end configuration and form the outboard flange 46 to provide the aesthetically appealing, outwardly flared rolled flange face 48 which, when combined with the back turned configuration, affords an appearance of axial depth typically associated with cast wheels.
- the blank is formed with the annularly indented drop well reduced in diameter so as to facilitate mounting of a conventional tire from the axial outer extremity of the rim itself.
- the first bead seat 55 is constructed with an inboard annular shoulder 48 and spaced axially from the inboard flange 20 to form therebetween an annular beat seat 28 .
- Such inboard flange is turned radially outwardly to form an annular flange ring having a radially inwardly facing ring 22 spaced from the shoulder 40 to cooperate in forming the inboard bead seat.
- the drop well is offset axially inboard from the centroid of the rim and is formed with a reduced-in-diameter clearance wall and oppositely disposed radially and axially outwardly angled side walls 32 and 36 joining respectively with the inboard seat and barrel 38 .
- Spacing of the drop well inboard of the rim's centroid serves to provide the wheel-center barrel 38 with a relatively long axial dimension so the wheel center can be spaced several cm, substantially 7 cm in the present embodiment, axially inwardly from the outboard flange face 48 to present an attractive deep appearance.
- This feature also enables the wheel-center to be placed at the rim's centroidal axis thereby minimizing the bending moments that would otherwise be produced with the wheel-center offset axially outwardly from the rim centroid.
- the drop well is located entirely inboard of the rim body's geometric center to create the deepest wheel-center barrel possible.
- other embodiments may include a drop well that is only partially offset from the rim body's geometric center.
- the cylindrical wheel-center barrel 38 projects from drop well side wall 36 , axially outboard along an axis parallel to the axes of the rim to connect with bead seat shoulder 42 and flange 46 .
- the drop well 30 is formed interiorly with a cylindrical cavity 56 to accept a disk shaped wheel-center 60 (FIG. 4) to be welded or otherwise secured thereto at 62 .
- the outboard bead seat 54 is formed by, in addition to the bead seat shoulder 42 , the annular seat surface 44 , outwardly curved flare forming the curved face 48 , axially inwardly projecting turn back 50 which turns radially inwardly to form the bearing ring 52 having a bearing surface facing axially inboard to be spaced axially from such bead seat shoulder 42 to secure the outboard tire bead (not shown).
- the radially outwardly curving flare portion 48 is about 6 mm thick and possesses an axially outwardly facing surface having a radius of curvature of substantially 8 mm.
- a bearing ring 52 is turned radially inwardly to cause the radially inner edge 53 to contact the radially outwardly facing bead seat surface to afford a bracing structure providing structural support for such outboard flange.
- the edge 53 is tapered radially and axially inwardly to complement the shape of the back sides of the flare 48 at its root.
- this arrangement provides for the appearance of a clean, stepless, radially outwardly curving outboard flange and serves to duplicate in a cold formed rim a design feature previously found only in cast alloy wheels.
- the rim body 18 is manufactured by a process known as cold working.
- Cold working is a manufacturing process whereby metal blanks, such as rim blank 70 (FIG. 6), are forced to assume a new shape through plastic flow.
- the grain of the metal is compressed resulting in an effect known as strain hardening.
- Strain hardening increases the strength of parts in the direction in which plastic flow has occurred with a concurrent loss in ductility.
- Cold working introduces biaxial strength characteristics into a part. Essentially, cold worked metal is stronger in the direction it has been forced to plastically flow an, depending on the degree of plastic flow, may suffer a loss of strength in the transverse direction.
- Cold working is readily distinguishable from hot working in that cold working takes place at room temperature. Hot working takes place at a temperature above the metals plastic temperature which is that temperature in which metal can be plastically formed without the occurrence of strain hardening.
- the improved rim of the present invention is produced from a 5000 series aluminum alloy at sub-plastic temperatures. Alloys of this type are formed in the TO (soft condition) and gain their high strength purely through the strain hardening created by cold working the metal. It is to be stressed, however, that the novel manufacturing process is not limited to strain hardening aluminum alloys but is equally applicable to heat treatable aluminum alloys as well as magnesium or steel and other ferrous or non-ferrous metal alloys which can be procured in plate, bar, sheet, or tube form.
- Manufacture of the rim involves two discrete types of cold working processes, cold rolling and spinning.
- a cold rolling process ductile metal of bar, plate or sheet stock, is formed by passing the stock between a pair of rollers at low speed.
- Cold rolling is typically used to strain harden plate and sheet stock by reducing its thickness, also the rollers may be in the form of mandrels which form features into the stock.
- Spinning is a cold working process similar to cold rolling. Spinning differs from cold rolling in that a metal blank of circular configuration is mounted in a rotary machine and spun at relatively low speeds about its axis.
- the blank may be of formed plate or sheet stock or of cut tube stock.
- the blank is forced to deform plastically by engaging the blank with a pair of radially inner and outer mandrels.
- Features are formed in the blank by moving the mandrels radially inward or outward according to a predetermined pattern. Multiple passes are usually required to create a finished product. The pattern for each pass is typically programmed into a special purpose computer which controls the sequence of forming operations.
- a method for making the improved automotive wheel rim of the present invention to by a combination of cold rolling and spinning manufacturing techniques includes selecting a metal sheet of aluminum about 6 mm thick and cutting it to predetermined dimensions for facing.
- the sheet is cold rolled into a circular configuration by rollers 82 and 84 to form a cylindrical blank with the ends of such rolled sheet abutted together. Such ends are then butt welded, thus forming a unitary cylindrical rim blank 70 as shown in FIG. 6, one side of which is shown in axial cross section.
- the cylindrical rim blank 70 is clamped in a hydraulic press equipped with respective radially outer and radially inner dies 86 and 88 of predetermined radii of curvature. These dies are pressed radially together to cold form flares in the axial opposite ends of the rim blank respective initial radially outwardly turned outboard and inboard flare beads 72 and 77 (FIG. 7).
- the initially flared rim blank is removed from the press and clamped in a four-axis-spinning-machine to be spun about its axis.
- a pair of inner and outer radially opposed mandrels 90 and 92 (FIG.
- a cylinder die 80 is telescoped over the cylindrical blank with the radially outer surface of the dog leg flange element 107 acting as a guide surface until contacting radially outward flare element 105 such die being advanced in the outboard direction. 72 .
- a radial mandrel 96 is then advanced to as the blank is spun to cold form the distal extremity of the flange element 105 over from the broken line radial position to the solid line axially inwardly projecting position 109 .
- Cylinder die 80 is then removed axially inwardly off the rim blank and radial mandrel 96 advanced further to contact the distal edge of flare element 109 and press it radially inwardly causing the distal extent thereof to roll further inwardly thus forming in the intermediate portion of the flange blank the turn back 50 and in the distal portion thereof the bearing ring 52 . It will be appreciated that such distal extent is rolled radially inwardly until the distal edge contacts the radially outwardly facing bead seat surface 28 to form the annular bearing ring 52 shown in broken line.
- the formed rim blank is then removed from the four-axis-spinning-machine and clamped into a single axis spinning machine where mandrels 98 and 100 form elements 76 and 78 into the finished configuration of the inboard flange as shown in FIG. 10.
- the overall rim width is controlled by trimming the inboard flange as a final operation.
- the rim is attached to a wheel center 60 (FIGS. 4 and 5), which can be of various ornamental designs. This is accomplished by heating the rim and then press fitting the wheel center to the rim. Upon cooling, a ten to fifteen thousandths on inch press fit is achieved. The wheel center is then seam welded 62 to the rim.
- the rim of the present invention may be mounted on a vehicle via the lug bores in the wheel center (FIG. 4) and the load of the vehicle will be transmitted through such center to the outboard side of the drop well 30 and downwardly through the tire having its bead seats mounted on the respective bead seat surfaces 28 and 44 .
- the outboard bead sets on the bead seat surface 44 centered between the outboard bead seat shoulder 42 and bearing surface 52 .
- the outboard bead will be held firmly in position on the bead seat surface 44 and supported against axial shifting.
- the outboard flange 46 will serve to support such beads from axially outwardly shifting by means of the inwardly facing bearing surface 52 .
- Axially outwardly acting loads applied to such bearing ring 52 will be resisted by the configuration of the cold formed flange 46 itself. That is, any such axially outwardly acting forces applied to such bearing ring will tend to force such ring axially outwardly but such axial outward movement will be resisted by the fact that the medially inward edge 53 is in intimate contact with the axially inwardly facing wall of the flare segment 48 such that outwardly shifting thereof is resisted. Consequently, the cold formed rim of the present invention serves to, not only provide an aesthetically pleasing appearance and extremely advantageous load carry capability but, provides an outboard flange configuration which provides effective support against loads applied thereto by the tire bead.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to the field of automobile wheels and more particularly to an improved automobile wheel rim and method of making same.
- 2. Description of the Prior Art
- Automobile owners often desire to improve the appearance and performance of their cars by replacing the original equipment wheels supplied by the vehicle manufacturer (OEM) with aftermarket wheels of lighter weight and more stylish appearance. While many owners are satisfied with aftermarket wheels that are comparatively more stylish than OEM wheels, some owners, “automotive enthusiasts” (drivers of sports and high performance type cars), desire wheels that are of substantially lighter weight and therefore improve the performance as well as the appearance of their vehicles.
- Automobile wheels of a type which provide a decorative appearance and relatively light weight are most commonly manufactured by using a light weight casting alloy, typically A356 or A357 aluminum, to cast a wheel in the desired configuration. Typically these wheels are cast as one piece units with integral wheel-centers and rims. After casting, the wheels are finish machined to final dimensions. There are many examples of wheels of this type, one of which is U.S. Pat. No. 5,292,182, entitled “Light Alloy Cast Wheel” issued to Kanazawa et al, Mar. 8, 1994. Some cast alloy wheels possess an ornamental design feature that provides for a smooth, stepless, radially outwardly curving relatively thick appearing outboard flange. This appearance feature has proved to be popular in the aftermarket. An example of a wheel of this type is U.S. Pat. No. Des. 389,446, entitled “Rim for a Vehicle Wheel” issued to Bradley, Jan. 20, 1998.
- That is, cast alloy wheels though economical to manufacture and appropriately decorative, possess certain drawbacks that render them undesirable to “automotive enthusiasts” who desire wheels of lighter weight and greater strength. The major drawback of a cast alloy wheel is excess weight. The most common alloys (A356 and A357) used in the production of these wheels possess relatively low yield and ultimate tensile strengths. The casting process produces a metal structure that is porus and brittle in nature, therefore resulting in a lower fatigue life in comparison to cold rolled alloy sheet of equivalent thickness. To account for these deficiencies, manufacturers of cast alloy wheels must use a relatively large mass of material and thereby produce a wheel that is heavier than that produced by other methods. Quality control is also a problem in the manufacture of cast wheels as differential cooling between relatively thick and comparatively thinner sections of an integral one piece wheel often results in the formation of voids and blowholes in the finished product.
- Another method of producing automotive wheels is cold forging. Due to their high cost, cold forged wheels are rarely seen on passenger cars but, rather, are used on high performance racing vehicles almost exclusively. Cold forged wheels are manufactured from cold rolled aluminum alloy tube, bar, or plate stock. Cold rolled aluminum alloy has a dense grain structure giving the metal excellent ductility and a high fatigue strength. Alloys commonly used in forging such as 7075 and 7050 series aluminum have significantly higher yield and tensile strength than the A356 and A357 casting alloys. A cold forged wheel may be manufactured as a one or two piece unit. The process begins by hammer forging the initial stock (bar, tube, or plate) into a donut shape. The rim portion is coaxially extruded from the forged blank. In the case of a one piece unit, after extrusion of the rim, the hub is forged radially inwardly to its desired configuration. Critical surfaces are then finish machined. An example of a cold forged wheel is described in U.S. Pat. No. 5,446,962, entitled “Process of Manufacturing One Piece Forged Wheels” issued to Matossian et al., Sep. 5, 1995. Cold forged wheels have the characteristics of light weight and high strength that are greatly prized among “automotive enthusiasts”. However, due to the high cost of producing these wheels few enthusiasts can aspire to owning a set. Thus, there remains a need for a lightweight, high strength wheel having, as an ornamental design feature, an outboard flange that flares radially outwardly in an attractive manner and exhibits an appearance of having axial depth, that can be produced at a cost comparable to that of a cast wheel.
- The present invention provides an improved cold formed (spun) alloy wheel rim which possesses the light weight and high strength characteristics, which are prized by “automotive enthusiasts”, and are typically associated with forged wheels, at a cost comparatively less than that of a forged wheel. A further advantage of the invention, is that it incorporates in a spun alloy rim, a smooth, step less, radially outwardly curving exterior flange which provides for a clean exterior rim appearance often associated with cast wheels. This clean, stepless, radially outwardly curving exterior flange is an ornamental design feature desired by “automotive enthusiasts” that formally was only available in cast alloy wheels.
- The improved wheel rim of the present invention achieves its advantages through a novel combination of cold rolling and spinning manufacturing techniques. By means of this process, the improved rim's exterior flange is rolled radially outwardly and turned back axially inwardly and then rolled radially inwardly to form an annular bearing surface defining the outboard wall of the bead seat, thereby providing for the smooth, step less, radially outwardly curving exterior desired by enthusiasts. Further, the drop well of the improved rim is located entirely inboard of the rim's centroidal axis, a feature that allows the wheel-center to be mounted at or near the wheel centroid minimizing bending moments that occur when the wheel-center is offset from the wheel centroid. Thus, a lighter, stronger, wheel can be fabricated thereby making the wheel more attractive to “automotive enthusiasts”.
- Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate by way of example, the features of the invention.
- FIG. 1 is a front perspective view of a wheel rim embodying the present invention;
- FIG. 2 is a left side view of the rim shown in FIG. 1;
- FIG. 3 is a sectional view, enlarged in scale, of the rim taken along the line1-1 as shown in FIG. 2;
- FIG. 4 is a cutaway front side view, enlarged in scale, of a wheel incorporating the rim shown in FIG. 1 which includes a wheel-center;
- FIG. 5 is a cross sectional view, enlarged in scale, of the rim to wheel-center joint, taken along line2-2 as shown in FIG. 4;
- FIG. 6 is a left sectional view, enlarged in scale, taken along a plane passing through the radial axis of a cylindrical unitary rim blank utilized in a method for making the rim shown in FIG. 1;
- FIG. 7 is a sectional view similar to FIG. 6, showing the inboard and outboard extent of the blank being flared radially outwardly;
- FIG. 8 is a sectional view similar to FIG. 6 showing formation of the drop well and further radial outwardly flaring of the inboard and outboard flanges;
- FIG. 9 is a sectional view similar to FIG. 6 showing the outboard extent of the flange being bent back on itself; and
- FIG. 10 is a sectional view similar to FIG. 6 showing the inboard flange bent fully back on itself and the outboard flange in its final configuration.
- As shown in FIGS. 1 and 2 for purposes of illustration only, the improved spun alloy rim of the present invention comprises an annular rim body, generally designated as18, which possesses an axis of symmetry and is cold formed from light alloy metal sheet material such as aluminum, substantially 6 mm thick. The rim body includes a radially inwardly depressed, annular drop well, generally designated 30. Formed on the inboard side of the drop well is an inboard
bead seat 55 having a radially outwardly flaredinboard flange 20 formed on the inboard side thereof. Formed on the outboard side of thedrop well 30 is a cylindrical wheel-center barrel 38 configured at its outboard extent with an inboard second bead seat, generally designated 54. Importantly, such outboard seat is configured with an outboard flange, generally designated 46, constructed of the parent material and is cold formed to flare radially outwardly defining a funnel shaped radially outwardlycurved flange face 48 and is then turned axially inwardly and then back on itself to project radially inwardly to define an axially inwardly facing bearingring 52. - In practice, the rim is constructed from a metal plate blank rolled into a cylinder with the ends butt welded together. The blank may be constructed from any one of a number of aluminum, steel or other alloys. The rim is cold formed from the single cylindrical blank to define the desired end configuration and form the
outboard flange 46 to provide the aesthetically appealing, outwardly flaredrolled flange face 48 which, when combined with the back turned configuration, affords an appearance of axial depth typically associated with cast wheels. - The blank is formed with the annularly indented drop well reduced in diameter so as to facilitate mounting of a conventional tire from the axial outer extremity of the rim itself.
- The
first bead seat 55 is constructed with an inboardannular shoulder 48 and spaced axially from theinboard flange 20 to form therebetween anannular beat seat 28. Such inboard flange is turned radially outwardly to form an annular flange ring having a radially inwardly facingring 22 spaced from theshoulder 40 to cooperate in forming the inboard bead seat. - The drop well is offset axially inboard from the centroid of the rim and is formed with a reduced-in-diameter clearance wall and oppositely disposed radially and axially outwardly
angled side walls barrel 38. - Spacing of the drop well inboard of the rim's centroid serves to provide the wheel-
center barrel 38 with a relatively long axial dimension so the wheel center can be spaced several cm, substantially 7 cm in the present embodiment, axially inwardly from theoutboard flange face 48 to present an attractive deep appearance. This feature also enables the wheel-center to be placed at the rim's centroidal axis thereby minimizing the bending moments that would otherwise be produced with the wheel-center offset axially outwardly from the rim centroid. In the present embodiment, the drop well is located entirely inboard of the rim body's geometric center to create the deepest wheel-center barrel possible. However, other embodiments may include a drop well that is only partially offset from the rim body's geometric center. - The cylindrical wheel-
center barrel 38 projects from drop wellside wall 36, axially outboard along an axis parallel to the axes of the rim to connect withbead seat shoulder 42 andflange 46. The drop well 30 is formed interiorly with acylindrical cavity 56 to accept a disk shaped wheel-center 60 (FIG. 4) to be welded or otherwise secured thereto at 62. - The
outboard bead seat 54 is formed by, in addition to thebead seat shoulder 42, theannular seat surface 44, outwardly curved flare forming thecurved face 48, axially inwardly projecting turn back 50 which turns radially inwardly to form thebearing ring 52 having a bearing surface facing axially inboard to be spaced axially from suchbead seat shoulder 42 to secure the outboard tire bead (not shown). - The radially outwardly
curving flare portion 48 is about 6 mm thick and possesses an axially outwardly facing surface having a radius of curvature of substantially 8 mm. A bearingring 52 is turned radially inwardly to cause the radiallyinner edge 53 to contact the radially outwardly facing bead seat surface to afford a bracing structure providing structural support for such outboard flange. In the preferred embodiment, theedge 53 is tapered radially and axially inwardly to complement the shape of the back sides of theflare 48 at its root. As will be appreciated by those skilled in the art, this arrangement provides for the appearance of a clean, stepless, radially outwardly curving outboard flange and serves to duplicate in a cold formed rim a design feature previously found only in cast alloy wheels. - The
rim body 18 is manufactured by a process known as cold working. Cold working is a manufacturing process whereby metal blanks, such as rim blank 70 (FIG. 6), are forced to assume a new shape through plastic flow. In cold working metal, the grain of the metal is compressed resulting in an effect known as strain hardening. Strain hardening increases the strength of parts in the direction in which plastic flow has occurred with a concurrent loss in ductility. Cold working introduces biaxial strength characteristics into a part. Essentially, cold worked metal is stronger in the direction it has been forced to plastically flow an, depending on the degree of plastic flow, may suffer a loss of strength in the transverse direction. Cold working is readily distinguishable from hot working in that cold working takes place at room temperature. Hot working takes place at a temperature above the metals plastic temperature which is that temperature in which metal can be plastically formed without the occurrence of strain hardening. - The improved rim of the present invention is produced from a 5000 series aluminum alloy at sub-plastic temperatures. Alloys of this type are formed in the TO (soft condition) and gain their high strength purely through the strain hardening created by cold working the metal. It is to be stressed, however, that the novel manufacturing process is not limited to strain hardening aluminum alloys but is equally applicable to heat treatable aluminum alloys as well as magnesium or steel and other ferrous or non-ferrous metal alloys which can be procured in plate, bar, sheet, or tube form.
- Manufacture of the rim involves two discrete types of cold working processes, cold rolling and spinning. In a cold rolling process ductile metal of bar, plate or sheet stock, is formed by passing the stock between a pair of rollers at low speed. Cold rolling is typically used to strain harden plate and sheet stock by reducing its thickness, also the rollers may be in the form of mandrels which form features into the stock. Spinning is a cold working process similar to cold rolling. Spinning differs from cold rolling in that a metal blank of circular configuration is mounted in a rotary machine and spun at relatively low speeds about its axis. The blank may be of formed plate or sheet stock or of cut tube stock. The blank is forced to deform plastically by engaging the blank with a pair of radially inner and outer mandrels. Features are formed in the blank by moving the mandrels radially inward or outward according to a predetermined pattern. Multiple passes are usually required to create a finished product. The pattern for each pass is typically programmed into a special purpose computer which controls the sequence of forming operations.
- A method for making the improved automotive wheel rim of the present invention to by a combination of cold rolling and spinning manufacturing techniques includes selecting a metal sheet of aluminum about 6 mm thick and cutting it to predetermined dimensions for facing.
- The sheet is cold rolled into a circular configuration by
rollers - The cylindrical rim blank70 is clamped in a hydraulic press equipped with respective radially outer and radially inner dies 86 and 88 of predetermined radii of curvature. These dies are pressed radially together to cold form flares in the axial opposite ends of the rim blank respective initial radially outwardly turned outboard and
inboard flare beads 72 and 77 (FIG. 7). - The initially flared rim blank is removed from the press and clamped in a four-axis-spinning-machine to be spun about its axis. A pair of inner and outer radially opposed
mandrels 90 and 92 (FIG. 8) are pressed against the rotating blank and are guided across the width of the blank by a special purpose computer program to form the radially inwardly recessed drop well 30, the respective inboard and outboard bead seat shoulders 40 and 42, the inboard andoutboard bead seats center barrel 38, and to further cold form the annular surfaces of the axially outer and inner extent of such blank to form an intermediate annularoutboard flange disk 105 projecting radially outwardly and an intermediateinboard flange configuration 107 having a dog leg shaped cross section. - Referring to FIG. 9, a cylinder die80 is telescoped over the cylindrical blank with the radially outer surface of the dog
leg flange element 107 acting as a guide surface until contacting radiallyoutward flare element 105 such die being advanced in the outboard direction. 72. aradial mandrel 96 is then advanced to as the blank is spun to cold form the distal extremity of theflange element 105 over from the broken line radial position to the solid line axially inwardly projectingposition 109. Cylinder die 80 is then removed axially inwardly off the rim blank andradial mandrel 96 advanced further to contact the distal edge offlare element 109 and press it radially inwardly causing the distal extent thereof to roll further inwardly thus forming in the intermediate portion of the flange blank the turn back 50 and in the distal portion thereof the bearingring 52. It will be appreciated that such distal extent is rolled radially inwardly until the distal edge contacts the radially outwardly facingbead seat surface 28 to form theannular bearing ring 52 shown in broken line. By this novel procedure a clean, step less, upwardly curving exterior flange, a design feature appreciated by “automotive enthusiasts” and formerly only available on cast rims is duplicated on a spun rim. - The formed rim blank is then removed from the four-axis-spinning-machine and clamped into a single axis spinning machine where
mandrels - The now fully formed rim is inspected by checking the height of the bead seat shoulders42 and 44 and the width of the bead seat flanges with go/no-go type gauges.
- The now fully formed and inspected rim is completed by finish machining and polishing the exterior surfaces to achieve the desired aesthetic effects of a clean outward surface.
- In use the rim is attached to a wheel center60 (FIGS. 4 and 5), which can be of various ornamental designs. This is accomplished by heating the rim and then press fitting the wheel center to the rim. Upon cooling, a ten to fifteen thousandths on inch press fit is achieved. The wheel center is then seam welded 62 to the rim.
- In operation, it will be appreciated that the rim of the present invention may be mounted on a vehicle via the lug bores in the wheel center (FIG. 4) and the load of the vehicle will be transmitted through such center to the outboard side of the drop well30 and downwardly through the tire having its bead seats mounted on the respective bead seat surfaces 28 and 44. It will be appreciated by those skilled in the art that the outboard bead sets on the
bead seat surface 44 centered between the outboardbead seat shoulder 42 and bearingsurface 52. As loads are encountered and shock transmitted to the wheel, the outboard bead will be held firmly in position on thebead seat surface 44 and supported against axial shifting. Theoutboard flange 46 will serve to support such beads from axially outwardly shifting by means of the inwardly facing bearingsurface 52. Axially outwardly acting loads applied tosuch bearing ring 52 will be resisted by the configuration of the cold formedflange 46 itself. That is, any such axially outwardly acting forces applied to such bearing ring will tend to force such ring axially outwardly but such axial outward movement will be resisted by the fact that the mediallyinward edge 53 is in intimate contact with the axially inwardly facing wall of theflare segment 48 such that outwardly shifting thereof is resisted. Consequently, the cold formed rim of the present invention serves to, not only provide an aesthetically pleasing appearance and extremely advantageous load carry capability but, provides an outboard flange configuration which provides effective support against loads applied thereto by the tire bead. - It will be appreciated that a new and improved form of cold rolled rim has been provided. While only the present preferred embodiment has been described in detail, as will be apparent to those skilled in the art, certain changes and modifications can be made without departing from the scope of the invention as described in the following claims.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/827,659 US6450583B2 (en) | 1998-10-30 | 2001-04-06 | Method of manufacturing cold formed light alloy automotive wheel rim |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/183,571 US6244668B1 (en) | 1998-10-30 | 1998-10-30 | Cold formed light alloy automotive wheel rim |
US09/827,659 US6450583B2 (en) | 1998-10-30 | 2001-04-06 | Method of manufacturing cold formed light alloy automotive wheel rim |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/183,571 Division US6244668B1 (en) | 1998-10-30 | 1998-10-30 | Cold formed light alloy automotive wheel rim |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020003373A1 true US20020003373A1 (en) | 2002-01-10 |
US6450583B2 US6450583B2 (en) | 2002-09-17 |
Family
ID=22673384
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/183,571 Expired - Lifetime US6244668B1 (en) | 1998-10-30 | 1998-10-30 | Cold formed light alloy automotive wheel rim |
US09/827,659 Expired - Fee Related US6450583B2 (en) | 1998-10-30 | 2001-04-06 | Method of manufacturing cold formed light alloy automotive wheel rim |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/183,571 Expired - Lifetime US6244668B1 (en) | 1998-10-30 | 1998-10-30 | Cold formed light alloy automotive wheel rim |
Country Status (1)
Country | Link |
---|---|
US (2) | US6244668B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005102737A1 (en) * | 2004-04-23 | 2005-11-03 | Hayes Lemmerz S.R.L. | Process for manufacturing a light alloy wheel rim and wheel rim resulting therefrom |
US20060000094A1 (en) * | 2004-07-01 | 2006-01-05 | Garesche Carl E | Forged aluminum vehicle wheel and associated method of manufacture and alloy |
US20080048490A1 (en) * | 2006-08-22 | 2008-02-28 | Hodges Frank J | Wheels that have the appearance of multi-piece wheels |
US8570071B2 (en) | 2011-08-16 | 2013-10-29 | Mstar Semiconductor, Inc. | Phase adjustment apparatus and clock generator thereof and method for phase adjustment |
WO2016027209A1 (en) | 2014-08-18 | 2016-02-25 | Bharat Forge Limited | A forging process for manufacture of aluminium alloy wheel disc |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2816532B1 (en) * | 2000-11-13 | 2003-01-24 | Michelin Soc Tech | METHOD FOR MANUFACTURING A VEHICLE WHEEL RIM |
JP2003002001A (en) * | 2001-06-19 | 2003-01-08 | Honda Motor Co Ltd | Wheel structure |
US20040244197A1 (en) * | 2002-02-15 | 2004-12-09 | Kenzo Takeda | Two-piece wheel and method of producing the same |
TWI232140B (en) * | 2002-11-21 | 2005-05-11 | Ting-Fang Wang | Method for shaping a seamless aluminum alloy wheel rim |
US7228629B2 (en) * | 2003-11-10 | 2007-06-12 | Beyer Michael J | Method of spin forming an automotive wheel rim |
EP1708837B1 (en) * | 2004-01-07 | 2011-03-16 | Wheels India Limited | Wheels of unitary construction and method of making same |
CA2552936A1 (en) * | 2004-01-07 | 2005-07-21 | Wheels India Limited | Wheels of single component construction and method of making same |
US7658007B2 (en) * | 2004-03-03 | 2010-02-09 | Donald Melbinger | Method for making wheel rim |
US20050262693A1 (en) * | 2004-05-10 | 2005-12-01 | Zhang Xinying | Cast forging process for aluminum wheels |
US20060090341A1 (en) * | 2004-10-30 | 2006-05-04 | Schroepfer David J | Method of manufacturing solid ring wheel rims |
US7291237B2 (en) * | 2005-03-24 | 2007-11-06 | O'brien John Michael | Method of making tire having wear indicators |
US20070169346A1 (en) * | 2006-01-11 | 2007-07-26 | David Hui | Process for making seamless alloy wheel rim with reinforced outboard flange |
US9168647B2 (en) * | 2008-10-21 | 2015-10-27 | Michael A. Logan | Automobile rim hammer |
JP5463162B2 (en) * | 2010-02-24 | 2014-04-09 | 中央精機株式会社 | Manufacturing method for vehicle wheel |
CN103168110A (en) | 2010-09-08 | 2013-06-19 | 美铝公司 | Improved aluminum-lithium alloys, and methods for producing the same |
WO2013172910A2 (en) | 2012-03-07 | 2013-11-21 | Alcoa Inc. | Improved 2xxx aluminum alloys, and methods for producing the same |
IN2015KN00677A (en) | 2012-09-20 | 2015-07-17 | Gkn Armstrong Wheels Inc | |
JP5903367B2 (en) * | 2012-11-06 | 2016-04-13 | 本田技研工業株式会社 | Motorcycle wheel |
US9587298B2 (en) | 2013-02-19 | 2017-03-07 | Arconic Inc. | Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same |
CN104175076B (en) * | 2014-08-19 | 2016-08-31 | 马钢(集团)控股有限公司 | A kind of manufacture method of major diameter folding platform web wheel |
DE102014112755B4 (en) * | 2014-09-04 | 2018-04-05 | Thyssenkrupp Ag | Method for forming a workpiece, in particular a blank, from sheet steel |
CN113857362B (en) * | 2021-10-21 | 2023-08-18 | 浙江今跃机械科技开发有限公司 | Local cooling device before spinning hub blank |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE342898A (en) * | 1926-09-02 | |||
US1809605A (en) | 1929-04-08 | 1931-06-09 | Sauzedde Claude | Method of making wheel rims |
US2028536A (en) | 1932-07-09 | 1936-01-21 | Budd Wheel Co | Wheel rim |
US2155667A (en) * | 1932-08-15 | 1939-04-25 | Kelsey Hayes Wheel Co | Wheel |
US2029132A (en) | 1932-12-13 | 1936-01-28 | Chrysler Corp | Wheel balance |
US2057565A (en) | 1934-10-08 | 1936-10-13 | Budd Wheel Co | Vehicle wheel |
US2083327A (en) * | 1934-10-08 | 1937-06-08 | Budd Wheel Co | Tubular vehicle wheel |
US2143950A (en) | 1935-03-29 | 1939-01-17 | Internat Engineering Corp | Wheel |
US2126223A (en) | 1937-12-22 | 1938-08-09 | Frank W Schwinn | Metal wheel rim |
US3228097A (en) * | 1964-04-02 | 1966-01-11 | H P Snyder Mfg Company Inc | Method for making rims |
US3784260A (en) | 1971-03-27 | 1974-01-08 | K Araya | Wheel rim |
US4054168A (en) * | 1976-04-15 | 1977-10-18 | The Goodyear Tire & Rubber Company | Fluid dispensing apparatus for tire wheel assembly |
DE2634515A1 (en) * | 1976-07-31 | 1978-02-23 | Bohner & Koehle | METHOD FOR MANUFACTURING E.G. UNDIVIDED WHEELS |
PT68279A (en) * | 1977-08-15 | 1978-08-01 | Goodyear Tire & Rubber | Pneumatic tire and pneumatic tire mounted on a rim |
US4185370A (en) * | 1978-02-10 | 1980-01-29 | Kelsey Hayes Co. | Method of making a wheel rim |
US4286825A (en) | 1980-01-07 | 1981-09-01 | Caterpillar Tractor Co. | Fabricated heavy-duty industrial wheel |
US4624038A (en) | 1983-09-16 | 1986-11-25 | Walther William D | Method of producing motor vehicle wheels |
US5292182A (en) | 1990-09-13 | 1994-03-08 | Topy Kogyo Kabushiki Kaisha | Light alloy cast wheel |
US5446962A (en) | 1992-11-04 | 1995-09-05 | Norris Industries, Inc. | Process of manufacturing one-piece forged wheels |
US5380071A (en) * | 1993-03-15 | 1995-01-10 | Motor Wheel Corporation | Vehicle wheel and method of manufacture of the same |
US5433511A (en) | 1993-10-07 | 1995-07-18 | Hayes Wheels International, Inc. | Cast wheel reinforced with a metal matrix composite |
US5927167A (en) * | 1994-05-30 | 1999-07-27 | Niles Simmons Industrieanlagen Gmbh | Apparatus for truing wheelsets |
US5526977A (en) * | 1994-12-15 | 1996-06-18 | Hayes Wheels International, Inc. | Method for fabricating a bimetal vehicle wheel |
US5533261A (en) * | 1994-12-30 | 1996-07-09 | Hayes Wheels International, Inc. | Method for producing a vehicle wheel |
JP3669751B2 (en) * | 1996-01-25 | 2005-07-13 | トピー工業株式会社 | Manufacturing method and apparatus for one-side flangeless wheel rim |
USD389446S (en) | 1996-03-29 | 1998-01-20 | Ultra Wheel Co. | Rim for vehicle wheel |
-
1998
- 1998-10-30 US US09/183,571 patent/US6244668B1/en not_active Expired - Lifetime
-
2001
- 2001-04-06 US US09/827,659 patent/US6450583B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005102737A1 (en) * | 2004-04-23 | 2005-11-03 | Hayes Lemmerz S.R.L. | Process for manufacturing a light alloy wheel rim and wheel rim resulting therefrom |
US20070278849A1 (en) * | 2004-04-23 | 2007-12-06 | Umberto Afeltra | Process for Manufacturing a Light Alloy Wheel Rim and Wheel Rim Resulting Therefrom |
US8046900B2 (en) | 2004-04-23 | 2011-11-01 | Hayes Lemmerz S.R.L. | Process for manufacturing a light alloy wheel rim and wheel rim resulting therefrom |
US20060000094A1 (en) * | 2004-07-01 | 2006-01-05 | Garesche Carl E | Forged aluminum vehicle wheel and associated method of manufacture and alloy |
US20080048490A1 (en) * | 2006-08-22 | 2008-02-28 | Hodges Frank J | Wheels that have the appearance of multi-piece wheels |
US7530644B2 (en) * | 2006-08-22 | 2009-05-12 | Hodges Frank J | Wheels that have the appearance of multi-piece wheels |
US8570071B2 (en) | 2011-08-16 | 2013-10-29 | Mstar Semiconductor, Inc. | Phase adjustment apparatus and clock generator thereof and method for phase adjustment |
WO2016027209A1 (en) | 2014-08-18 | 2016-02-25 | Bharat Forge Limited | A forging process for manufacture of aluminium alloy wheel disc |
Also Published As
Publication number | Publication date |
---|---|
US6450583B2 (en) | 2002-09-17 |
US6244668B1 (en) | 2001-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6450583B2 (en) | Method of manufacturing cold formed light alloy automotive wheel rim | |
US5740609A (en) | Method of making one-piece vehicle wheels and the like | |
US5551151A (en) | Method of making a variable off-set full face wheel | |
US5579578A (en) | Method for producing a rim for a vechicle wheel | |
US5345676A (en) | Method for producing a full face fabricated vehicle wheel | |
US5295304A (en) | Method for producing a full face fabricated wheel | |
US5533261A (en) | Method for producing a vehicle wheel | |
US6029351A (en) | Method of making a vehicle wheel | |
WO1999033593A1 (en) | Vehicle wheel and method for producing same | |
US6189357B1 (en) | Apparatus and process for forming vehicle wheel rims | |
US5634271A (en) | Method of forming an automotive wheel | |
WO1999033594A1 (en) | Wheel rim and method for producing same | |
JP2000079801A (en) | Manufacture of light-metal alloy wheel for automobible | |
US6536111B1 (en) | Process for spin forming a vehicle wheel | |
US6052901A (en) | Process for production of lightweight sheet-steel wheel for vehicles | |
JP4699639B2 (en) | Full face vehicle wheel and its manufacturing method | |
US4345360A (en) | Method of forming a metal wheel | |
US3453720A (en) | Method of making axles | |
US6318143B1 (en) | Apparatus for producing a vehicle wheel rim | |
KR19990067197A (en) | Manufacturing method of light alloy wheel | |
US6298702B1 (en) | Method for making seamless wheel rims | |
JP4499922B2 (en) | Full face vehicle wheel and its manufacturing method | |
JPS63215328A (en) | Wheel for automobile | |
US5832609A (en) | Method for producing a variable thickness rim for a vehicle wheel | |
US6584824B1 (en) | Apparatus for producing a vehicle wheel rim |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ORMET PRIMARY ALUMINUM CORPORATION, VIRGINIA Free format text: TERMINATION AND RELEASE;ASSIGNOR:REGIMENT CAPITAL II, L.P.;REEL/FRAME:013211/0942 Effective date: 20020522 |
|
AS | Assignment |
Owner name: SPECIALTY BLANKS, INC., INDIANA Free format text: TERMINATION AND RELEASE;ASSIGNOR:REGIMENT CAPITAL II, L.P.;REEL/FRAME:013532/0627 Effective date: 20020522 Owner name: FLEET CAPITAL CORPORATION, AS ADMINISTRATIVE AGENT Free format text: COLLATERAL ASSIGNMENT;ASSIGNOR:ORMET PRIMARY ALUMINUM CORPORATION;REEL/FRAME:013532/0652 Effective date: 20020524 |
|
AS | Assignment |
Owner name: ORMET PRIMARY ALUMINUM CORPORATION, WEST VIRGINIA Free format text: TERMINATION AND RELEASE;ASSIGNOR:FLEET CAPITAL CORPORATION;REEL/FRAME:014499/0667 Effective date: 20040207 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, MINNESOTA Free format text: SECURITY AGREEMENT;ASSIGNOR:SPECIALTY BLANKS, INC.;REEL/FRAME:014506/0256 Effective date: 20040205 |
|
AS | Assignment |
Owner name: SPECIALTY BLANKS, INC., INDIANA Free format text: TERMINATION AND RELEASE;ASSIGNOR:FLEET CAPITAL CORPORATION;REEL/FRAME:014564/0264 Effective date: 20040207 |
|
AS | Assignment |
Owner name: ORMET CORPORATION, WEST VIRGINIA Free format text: TERMINATION AND RELEASE;ASSIGNOR:FLEET CAPITAL CORPORATION;REEL/FRAME:014608/0226 Effective date: 20040207 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A. AS AGENT, CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:SPECIALTY BLANKS, INC.;REEL/FRAME:015931/0249 Effective date: 20050330 |
|
AS | Assignment |
Owner name: U.S. BANK, NATIONAL ASSOCIATION, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:SPECIALTY BLANKS, INC.;REEL/FRAME:016489/0684 Effective date: 20050401 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SPECIALTY BLANKS, INC., WEST VIRGINIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:US BANK NATIONAL ASSOCIATION;REEL/FRAME:018047/0159 Effective date: 20060731 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140917 |