US20020002201A1 - Non-arrhythmogenic metabolite of oxybutynin - Google Patents
Non-arrhythmogenic metabolite of oxybutynin Download PDFInfo
- Publication number
- US20020002201A1 US20020002201A1 US09/775,060 US77506001A US2002002201A1 US 20020002201 A1 US20020002201 A1 US 20020002201A1 US 77506001 A US77506001 A US 77506001A US 2002002201 A1 US2002002201 A1 US 2002002201A1
- Authority
- US
- United States
- Prior art keywords
- oxybutynin
- optically active
- butynyl
- ethylamino
- pharmaceutically acceptable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XIQVNETUBQGFHX-UHFFFAOYSA-N Ditropan Chemical class C=1C=CC=CC=1C(O)(C(=O)OCC#CCN(CC)CC)C1CCCCC1 XIQVNETUBQGFHX-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims abstract description 10
- SNIBJKHIKIIGPR-UHFFFAOYSA-N N-desethyloxybutynin Chemical compound C=1C=CC=CC=1C(O)(C(=O)OCC#CCNCC)C1CCCCC1 SNIBJKHIKIIGPR-UHFFFAOYSA-N 0.000 claims description 19
- 150000003839 salts Chemical class 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 10
- 206010046543 Urinary incontinence Diseases 0.000 claims description 7
- 206010003119 arrhythmia Diseases 0.000 claims description 4
- 238000013270 controlled release Methods 0.000 claims description 4
- 238000009472 formulation Methods 0.000 claims description 3
- 241000124008 Mammalia Species 0.000 claims description 2
- SNIBJKHIKIIGPR-FQEVSTJZSA-N 4-(ethylamino)but-2-ynyl (2r)-2-cyclohexyl-2-hydroxy-2-phenylacetate Chemical group C1([C@](O)(C(=O)OCC#CCNCC)C=2C=CC=CC=2)CCCCC1 SNIBJKHIKIIGPR-FQEVSTJZSA-N 0.000 claims 1
- 238000013265 extended release Methods 0.000 claims 1
- 229960005434 oxybutynin Drugs 0.000 abstract description 33
- 230000000747 cardiac effect Effects 0.000 abstract description 4
- 230000001225 therapeutic effect Effects 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 description 19
- 239000003814 drug Substances 0.000 description 16
- 229940079593 drug Drugs 0.000 description 14
- 239000003826 tablet Substances 0.000 description 14
- 230000004044 response Effects 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- -1 compound 4-diethylamino-2-butynyl cyclohexylphenylglycolate Chemical class 0.000 description 6
- 239000002207 metabolite Substances 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 206010052402 Gastrointestinal hypermotility Diseases 0.000 description 5
- 230000008602 contraction Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 210000002460 smooth muscle Anatomy 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 208000002551 irritable bowel syndrome Diseases 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000144 pharmacologic effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 229960004754 astemizole Drugs 0.000 description 3
- GXDALQBWZGODGZ-UHFFFAOYSA-N astemizole Chemical compound C1=CC(OC)=CC=C1CCN1CCC(NC=2N(C3=CC=CC=C3N=2)CC=2C=CC(F)=CC=2)CC1 GXDALQBWZGODGZ-UHFFFAOYSA-N 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000000968 intestinal effect Effects 0.000 description 3
- 208000018936 intestinal hypermotility Diseases 0.000 description 3
- 230000037036 intestinal hypermotility Effects 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002048 spasmolytic effect Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 229960000351 terfenadine Drugs 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QYTUXGLKXAEVCT-UHFFFAOYSA-N 4-chloro-n-ethylbut-2-yn-1-amine Chemical compound CCNCC#CCCl QYTUXGLKXAEVCT-UHFFFAOYSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 102000014415 Muscarinic acetylcholine receptor Human genes 0.000 description 2
- 108050003473 Muscarinic acetylcholine receptor Proteins 0.000 description 2
- 208000007101 Muscle Cramp Diseases 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 208000005392 Spasm Diseases 0.000 description 2
- 208000018452 Torsade de pointes Diseases 0.000 description 2
- 208000002363 Torsades de Pointes Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- YTRNSQPXEDGWMR-UHFFFAOYSA-N alpha-Cyclohexylmandelic acid Chemical compound C=1C=CC=CC=1C(O)(C(=O)O)C1CCCCC1 YTRNSQPXEDGWMR-UHFFFAOYSA-N 0.000 description 2
- 230000001078 anti-cholinergic effect Effects 0.000 description 2
- 230000001022 anti-muscarinic effect Effects 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- AIXAANGOTKPUOY-UHFFFAOYSA-N carbachol Chemical compound [Cl-].C[N+](C)(C)CCOC(N)=O AIXAANGOTKPUOY-UHFFFAOYSA-N 0.000 description 2
- 229960004484 carbachol Drugs 0.000 description 2
- 230000001713 cholinergic effect Effects 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- XIQVNETUBQGFHX-JOCHJYFZSA-N esoxybutynin Chemical compound C1([C@@](O)(C(=O)OCC#CCN(CC)CC)C=2C=CC=CC=2)CCCCC1 XIQVNETUBQGFHX-JOCHJYFZSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 208000013403 hyperactivity Diseases 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000002287 radioligand Substances 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 208000003663 ventricular fibrillation Diseases 0.000 description 2
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- XIQVNETUBQGFHX-QFIPXVFZSA-N (R)-oxybutynin Chemical compound C1([C@](O)(C(=O)OCC#CCN(CC)CC)C=2C=CC=CC=2)CCCCC1 XIQVNETUBQGFHX-QFIPXVFZSA-N 0.000 description 1
- ZKNJEOBYOLUGKJ-ALCCZGGFSA-N (z)-2-propylpent-2-enoic acid Chemical compound CCC\C(C(O)=O)=C\CC ZKNJEOBYOLUGKJ-ALCCZGGFSA-N 0.000 description 1
- HKKHMRAUYJLSMA-UHFFFAOYSA-N 3,3-dichlorobut-1-yne Chemical compound CC(Cl)(Cl)C#C HKKHMRAUYJLSMA-UHFFFAOYSA-N 0.000 description 1
- ALKYHXVLJMQRLQ-UHFFFAOYSA-M 3-carboxynaphthalen-2-olate Chemical compound C1=CC=C2C=C(C([O-])=O)C(O)=CC2=C1 ALKYHXVLJMQRLQ-UHFFFAOYSA-M 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- RYIGNEOBDRVTHA-UHFFFAOYSA-N 8-chlorotheophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC(Cl)=N2 RYIGNEOBDRVTHA-UHFFFAOYSA-N 0.000 description 1
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 102000013975 Delayed Rectifier Potassium Channels Human genes 0.000 description 1
- 108010050556 Delayed Rectifier Potassium Channels Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M Methanesulfonate Chemical compound CS([O-])(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RNGHAJVBYQPLAZ-UHFFFAOYSA-N Terodiline hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(CC(C)NC(C)(C)C)C1=CC=CC=C1 RNGHAJVBYQPLAZ-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002921 anti-spasmodic effect Effects 0.000 description 1
- 230000003126 arrythmogenic effect Effects 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 108010084854 benzothiazepine receptor Proteins 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 235000012745 brilliant blue FCF Nutrition 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000002213 calciumantagonistic effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940068190 chlorotheophylline Drugs 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000030499 combat disease Diseases 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940099170 ditropan Drugs 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 238000011597 hartley guinea pig Methods 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000030214 innervation Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000027939 micturition Effects 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 239000003149 muscarinic antagonist Substances 0.000 description 1
- 230000003551 muscarinic effect Effects 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229960002016 oxybutynin chloride Drugs 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000012066 statistical methodology Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229960005383 terodiline Drugs 0.000 description 1
- UISARWKNNNHPGI-UHFFFAOYSA-N terodiline Chemical compound C=1C=CC=CC=1C(CC(C)NC(C)(C)C)C1=CC=CC=C1 UISARWKNNNHPGI-UHFFFAOYSA-N 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
- A61K31/24—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/02—Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
Definitions
- the invention relates to the desmethyl metabolite of 4-diethylamino-2-butynyl cyclohexylphenylglycolate and optical isomers thereof.
- the compound 4-diethylamino-2-butynyl cyclohexylphenylglycolate has the generic name oxybutynin (OXY) and is an approved drug for the management of urinary incontinence.
- OXY oxybutynin
- the drug may also be used in patients suffering from gastrointestinal hypermotility disorders.
- the compound 4-ethylamino-2-butynyl cyclohexyl-phenylglycolate also called desethyloxybutynin (DEO)
- DEO desethyloxybutynin
- Racemic oxybutynin is used therapeutically in the treatment of urinary incontinence due to detrusor muscle instability.
- the drug may also be used in patients suffering from gastrointestinal hypermotility disorders such as for example irritable bowel syndrome (IBS).
- IBS irritable bowel syndrome
- OXY exerts a spasmolytic effect by inhibiting the contractions of smooth muscle with cholinergic innervation.
- OXY increases bladder capacity, diminishes the frequency of involuntary contractions of the detrusor muscle, and delays the initial desire to void. OXY is therefore useful in the treatment and prevention of both incontinence and frequent voluntary urination.
- Racemic oxybutynin consists of a 50/50 mixture of R( ⁇ )-oxybutynin and S(+)-oxybutynin. It has been shown that practically all of the anticholinergic activity of OXY resides in the R( ⁇ )-isomer, while the activity of the S(+)-isomer is due to its direct spasmolytic activity (Aberg et al. U.S. Pat. No. 5,532,278.)
- the present invention is directed to a method of treating disorders involving the urethrogentical tract by administering to pateints in need thereof therapeutically effective amounts of the desethyl metabolite of oxybutynin and/or the optically active isomers thereof, which are free from said cardiac side effect of oxybutynin, while maintaining the therapeutic activities of oxybutynin or the optically active isomers thereof.
- oxybutynin causes a prolongation of the QTc-interval of the EKG.
- Such prolongation of the QTc-interval is known to be caused by inhibition of the delayed rectifier potassium current in cardiac cells.
- a prolongation of the QTc-interval is indicative of and strongly correlated to a fatal form of cardiac arrhythmias (ventricular fibrillation) called torsades de pointes.
- the desethyl metabolite of oxybutynin and the optically active isomers thereof are free from said cardiac side effect of oxybutynin, while maintaining the therapeutic activities of oxybutynin or the optically active isomers thereof.
- racemic oxybutynin is used at a dose of 5 mg several times daily for very long time periods and the risk for prolongation of QTc by such doses is very substantial.
- examples of drugs that have been found to cause prolongation of QTc and consequently might cause torsades des pointes arrhythmias are terfenadine (Seldane®), astemizole (Hismanal®) and terodiline (Micturin®); all these drugs have been withdrawn from the market because of this side effect.
- Racemic oxybutynin is 4-diethylamino-2-butynyl ⁇ -cyclohexyl- ⁇ -hydroxybenzeneacetate, also known as 4-diethylamino-2-butynyl cyclohexylphenylglycolate and herein also referred to as OXY.
- the generic name given to the hydrochloride salt of racemic oxybutynin by the USAN Council is oxybutynin chloride; it is sold under the name of Ditropan®.
- Racemic desethyloxybutynin is 4-ethylamino-2-butynyl cyclohexyl-phenylglycolate and is a known metabolite of oxybutynin (Hughes K. M. et al. Measurement of oxybutynin and its N-desethyl metabolite in plasma . . . Xenobiotica, 1992, 7: 859-869). This compound is herein referred to as DEO. No generic name is known for this compound or any of its salts.
- An alternative process for preparing the compound of the invention involves the preparation of a hydroxylated side chain in stead of the above mentioned halogenated side chain.
- Racemic cyclohexylphenylglycolic acid is commercially available from SIPSY Chem Corp., 2137 Route 33, Suite 2, Hamilton Square, N.J. 08690.
- the magnitude of a prophylactic or therapeutic dose of the compound of this invention in the acute or chronic management of disease will vary with the severity and nature of the condition to be treated and the route of administration.
- the dose and the frequency of the dosing will also vary according to the age, body weight and response of the individual patient.
- the total daily dose range for the compound of this invention for the conditions described herein is from about 1 mg to about 100 mg in single or divided doses, preferably in divided doses.
- the therapy should be initiated at a lower dose, perhaps at about 0.5 mg to about 25 mg, and may be increased up to about 200 mg depending on the patient's global response.
- any suitable route of administration may be employed for providing the patient with an effective dosage of the compounds of this invention.
- oral, sublingual, rectal, parental (subcutaneous, intramuscular, intravenous), intraocular, transdermal, aerosol and like forms of administration may be employed.
- Dosage forms include tablets, controlled-release tablets, troches, dispersions, suspensions, solutions, capsules, microencapsulated systems, sprays, transdermal delivery systems, and the like.
- compositions of the present invention comprise a compound of the present invention as the active ingredient, or a pharmaceutically acceptable salt thereof, and may also contain a pharmaceutically acceptable carrier, and optionally, other therapeutic ingredients.
- Suitable pharmaceutically acceptable acid addition salts for the compound of the present invention include acetic, benzenesulfonic (besylate), benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pathothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic, and the like.
- the hydrochloride is particularly preferred.
- compositions of the present invention include suspensions, solutions, elixirs or solid dosage forms.
- Carriers such as starches, sugars, and microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like are suitable in the case of oral solid preparations (such as powders, capsules, and tablets), and oral solid preparations are preferred over the oral liquid preparations.
- tablets and capsules represent one of the more advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are employed. If desired, tablets may be coated by standard aqueous or nonaqueous techniques. Since the compound of the invention has a relatively short duration of action in the body, it may be advantageous to administer the drug in a controlled-released or slow-release formulation, thereby decreasing the frequency of drug administrations to the patient.
- the compounds of the present invention may also be administered by controlled release means and delivery devices such as those described in U.S. Pat. Nos.: 3,845,770; 3,916,899; 3,536,809; 3,598,123; and 4,008,719, and PCT application WO92/20377, the disclosures of which are hereby incorporated by reference.
- Various forms of controlled release or slow release transdermal administration forms and devices can also be used to improve the convenience of dosage for the patient and are hereby incorporated by reference.
- compositions of the present invention suitable for oral administration may be presented as discrete unit dosage forms such as capsules, cachets, or tablets, each containing a predetermined amount of the active ingredient, as a powder or granules, or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil liquid emulsion.
- Such compositions may be prepared by any of the methods of pharmacy, but all methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more necessary ingredients.
- the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation, just as is known for the racemic mixture.
- a tablet may be prepared by compression or molding, optionally, with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active agent or dispersing agent.
- Molded tablets may be made by molding, in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent. All of the foregoing techniques are well know to persons of skill in the pharmaceutical art.
- Each tablet may contain from about 0.5 mg to about 25 mg of the active ingredient.
- ORAL UNIT DOSAGE FORMULATION Tablets per batch of Ingredients per tablet 10,000 tablets Desethyloxybutynin 5 mg 50 g Microcrystalline cellulose 30 mg 300 g Lactose 70 mg 700 g Calcium stearate 2 mg 20 g FD&C Blue #1 Lake 0.03 mg 300 mg
- the selected compound of the present invention is blended with the lactose and cellulose until a uniform blend is formed.
- the lake is added and further blended.
- the calcium stearate is blended in, and the resulting mixture is compressed into tablets using a ⁇ fraction (9/32) ⁇ inch (7 mm) shallow concave punch. Tablets of other strengths may be prepared by altering the ration of active ingredient to the excipients or to the final weight of the tablet.
- Strips of intestinal smooth muscle tissue are removed from the body of male Hartley guinea pigs weighing 400-600 g.
- the strips are suspended in an oxygenated buffer of the following composition, in mM: NaCl, 133; KCl, 4.7; CaCl 2 , 2.5; MgSO 4 , 0.6; NaH 2 PO 4 , 1.3; NaHCO 3 , 16.3; and glucose, 7.7, or a similar balanced physiological solution. They are maintained at constant temperature. Contractions are recorded with isometric transducers (Model FT-10) on an ink-writing polygraph.
- each strip of tissue contractions of each strip of tissue are recorded initially in response to exposure to a tissue medium in which the NaCl was replaced by KCl to yield a concentration of 137.7 mM KCl in the medium. This is followed by return to the standard medium, and then by exposures to progressively creasing concentrations of carbachol, with separate exposures to each concentration only until the peak response has been recorded. Then, leaving one strip untreated and/or one strip exposed to the test solution to serve as control tissue(s), the remaining strips each are exposed for one hour to one concentration of an antagonist.
- the responses to increasing concentrations of carbachol followed by exposure to 137.7 mM KCl are recorded a second time.
- the peak tension developed by each strip during the second set of determinations is expressed as a percent of the peak tension developed during the first concentration-effect determination. Then, for each antagonist the resultant data are analyzed using standard statistical methodology.
- mice Male guinea pigs (450-600 g) are anesthetized with freshly prepared dialurethane sodium. The jugular vein is catheterized for iv administration of test drugs and the trachea is exposed and cannulated. Subdermal electrodes are positioned for Lead II electrocardiogram recording, monitored on a Grass Polygraph recorder, set at a paper speed of 50 mm/sec. The animals are allowed to stabilize for 30 minute after completion of surgery, and three baseline EKG recordings are then made at 10-minute intervals. The animals are then given a dose of the test compound or vehicle as an intravenous infusion over 30 min. EKG recordings are used to determine QT intervals and heart rates.
- QTc intervals are calculated from QT- and RR-intervals as known to those skilled in the art.
- Prolongation of QTc is indicative of a prolonged action potential, caused by an inhibition of the delayed rectifier potassium channel.
- Prolongation of QTc is the known cause of Torsades de Pointes ventricular fibrillation by drugs such as terfenadine and astemizole (now withdrawn from the market).
- the optically active isomers of the des-ethyl metabolite of oxybutynin do not cause a prolongation of the QTc interval of the ECG are therefore not arrhythmogenic and are intended to be included in this present invention.
- the R-isomer of the des-ethyl metabolite of oxybutynin is a potent antimuscarinic agent and is useful in patients suffering from cholinergic and other forms of urinary incontinence and other smooth muscle spasms, including intestinal hypermotility disorders.
- the S-isomer of the des-ethyl metabolite of oxybutynin is a spasmolytic agent with weak anticholinergic activity and is useful in patients suffering from various forms of urinary incontinence and smooth muscle spasms, including intestinal hypermotility disorders.
- the pharmaceutically acceptable salts of the isomers of the des-ethyl metabolite of oxybutynin are also intended to be included in this present invention.
- the didesethyl metabolite of oxybutynin has pharmacological activities that are similar to those of des-ethyl oxybutynin, although the didesethyl metabolite has somewhat lower affinity for muscarinic and the benzothiazepine receptors than the des-ethyl metabolite. Since the didesethyl metabolite does not prolong the QTc interval of the ECG, this metabolite and its optically active isomers and the salt forms thereof are intended to be included into the present invention.
- intestinal hyperactivity disorders and intestinal hypermotility disorders include irritable bowel syndromes (IBS).
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Emergency Medicine (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Urology & Nephrology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
A method of treating disorders involving the urethrogentical tract by administering to pateints in need thereof therapeutically effective amounts of the desethyl metabolite of oxybutynin and/or the optically active isomers thereof, which are free from said cardiac side effect of oxybutynin, while maintaining the therapeutic activities of oxybutynin or the optically active isomers thereof.
Description
- The invention relates to the desmethyl metabolite of 4-diethylamino-2-butynyl cyclohexylphenylglycolate and optical isomers thereof. The compound 4-diethylamino-2-butynyl cyclohexylphenylglycolate has the generic name oxybutynin (OXY) and is an approved drug for the management of urinary incontinence. The drug may also be used in patients suffering from gastrointestinal hypermotility disorders.
-
- Racemic oxybutynin (OXY) is used therapeutically in the treatment of urinary incontinence due to detrusor muscle instability. The drug may also be used in patients suffering from gastrointestinal hypermotility disorders such as for example irritable bowel syndrome (IBS). OXY exerts a spasmolytic effect by inhibiting the contractions of smooth muscle with cholinergic innervation.
- In patients with conditions characterized by involuntary bladder contractions, clinical studies have demonstrated that OXY increases bladder capacity, diminishes the frequency of involuntary contractions of the detrusor muscle, and delays the initial desire to void. OXY is therefore useful in the treatment and prevention of both incontinence and frequent voluntary urination.
- Racemic oxybutynin consists of a 50/50 mixture of R(−)-oxybutynin and S(+)-oxybutynin. It has been shown that practically all of the anticholinergic activity of OXY resides in the R(−)-isomer, while the activity of the S(+)-isomer is due to its direct spasmolytic activity (Aberg et al. U.S. Pat. No. 5,532,278.)
- One clinically important metabolite of OXY has been identified in humans after administration of OXY and is called desethyloxybutynin (DEO) (Westlin, L., 1985. Internal report, Smith & Nephew Pharmaceuticals Ltd.). A second metabolite, didesethyloxybutynin (DIDEO) has been synthesized and found to have low pharmacological activity and short duration of action (Aberg et al. to be published.) A third metabolite, called N-oxide-oxybutynin, has been suggested but may not be chemically stable (Lindeke B. et al., 1981 Metabolism of Oxybutynin . . . Biomed Mass Spectrometry. 1981, 8:506-513).
- The problems of the prior art have been overcome by the present invention, which is directed to a method of treating disorders involving the urethrogentical tract by administering to pateints in need thereof therapeutically effective amounts of the desethyl metabolite of oxybutynin and/or the optically active isomers thereof, which are free from said cardiac side effect of oxybutynin, while maintaining the therapeutic activities of oxybutynin or the optically active isomers thereof.
- It has now unexpectedly been found that oxybutynin causes a prolongation of the QTc-interval of the EKG. Such prolongation of the QTc-interval is known to be caused by inhibition of the delayed rectifier potassium current in cardiac cells. Furthermore, it is known that a prolongation of the QTc-interval is indicative of and strongly correlated to a fatal form of cardiac arrhythmias (ventricular fibrillation) called torsades de pointes. It has now unexpectedly been found that the desethyl metabolite of oxybutynin and the optically active isomers thereof are free from said cardiac side effect of oxybutynin, while maintaining the therapeutic activities of oxybutynin or the optically active isomers thereof.
- It has also been found that certain types of drugs that utilize the same or similar metabolic enzymes as oxybutynin, will further increase the risk for torsades des pointes when combined with oxybutynin. Examples of such drugs are ketoconazole and erythromycin.
- This most unwanted side effect of oxybutynin is of concern in all patients given racemic oxybutynin and particularly in patients that are of age or patients that have pre-existing cardiovascular conditions for example long basal QTc interval.
- It was found that both the R(−)-isomer and the S(+)-isomer of oxybutynin cause a prolongation of the QTc-interval of the EKG, while the corresponding isomers of DEO did not cause a prolongation of the QTc-interval. Since the duration of the QTc-interval is dose-dependently prolonged by these compounds, the risk for torsades des pointes arrhythmias is exceptionally high when S(+)-oxybutynin is given to the patients, since the S-isomer is administered in higher doses than the racemate. However, racemic oxybutynin is used at a dose of 5 mg several times daily for very long time periods and the risk for prolongation of QTc by such doses is very substantial. Examples of drugs that have been found to cause prolongation of QTc and consequently might cause torsades des pointes arrhythmias are terfenadine (Seldane®), astemizole (Hismanal®) and terodiline (Micturin®); all these drugs have been withdrawn from the market because of this side effect.
- Racemic oxybutynin is 4-diethylamino-2-butynyl α-cyclohexyl-α-hydroxybenzeneacetate, also known as 4-diethylamino-2-butynyl cyclohexylphenylglycolate and herein also referred to as OXY. The generic name given to the hydrochloride salt of racemic oxybutynin by the USAN Council is oxybutynin chloride; it is sold under the name of Ditropan®.
- Racemic desethyloxybutynin is 4-ethylamino-2-butynyl cyclohexyl-phenylglycolate and is a known metabolite of oxybutynin (Hughes K. M. et al. Measurement of oxybutynin and its N-desethyl metabolite in plasma . . . Xenobiotica, 1992, 7: 859-869). This compound is herein referred to as DEO. No generic name is known for this compound or any of its salts.
- The overall process for preparing DEO involves:
- (a) the preparation of the side chain 4-ethylamino-2-butynyl chloride from dichlorobutyne
- (b) by standard esterification technique, reacting cyclohexylphenyl glycolic acid with 4-ethylamino-2-butynyl chloride to produce 4-ethylamino-2-butynyl cyclohexylphenyl-glycolate (DEO).
- An alternative process for preparing the compound of the invention involves the preparation of a hydroxylated side chain in stead of the above mentioned halogenated side chain.
- Racemic cyclohexylphenylglycolic acid is commercially available from SIPSY Chem Corp., 2137 Route 33, Suite 2, Hamilton Square, N.J. 08690.
- The process for preparing R-DEO is described in U.S. Pat. No. 6,123,961 and a process for preparing S-DEO is described in U.S. Pat. No. 5,532,278, the disclosures of which are hereby incorporated by reference.
- The magnitude of a prophylactic or therapeutic dose of the compound of this invention in the acute or chronic management of disease will vary with the severity and nature of the condition to be treated and the route of administration. The dose and the frequency of the dosing will also vary according to the age, body weight and response of the individual patient. In general, the total daily dose range for the compound of this invention for the conditions described herein is from about 1 mg to about 100 mg in single or divided doses, preferably in divided doses. In managing the patient, the therapy should be initiated at a lower dose, perhaps at about 0.5 mg to about 25 mg, and may be increased up to about 200 mg depending on the patient's global response. It is further recommended that patients over 65 years and those with impaired renal or hepatic function initially receive low doses and that they be titrated based on individual response(s) and plasma drug level(s). It may be necessary to use dosages outside these ranges, as will be apparent to those skilled in the art. Further, it is noted that the clinician or treating physician will know how and when to interrupt, adjust, or terminate therapy in conjunction with individual patient response. The terms “a therapeutically effective amount” and “an amount sufficient to treat urinary incontinence but insufficient to cause adverse effects” are encompassed by the above-described dosage amounts and dose frequency schedule.
- Any suitable route of administration may be employed for providing the patient with an effective dosage of the compounds of this invention. For example, oral, sublingual, rectal, parental (subcutaneous, intramuscular, intravenous), intraocular, transdermal, aerosol and like forms of administration may be employed. Dosage forms include tablets, controlled-release tablets, troches, dispersions, suspensions, solutions, capsules, microencapsulated systems, sprays, transdermal delivery systems, and the like.
- The pharmaceutical compositions of the present invention comprise a compound of the present invention as the active ingredient, or a pharmaceutically acceptable salt thereof, and may also contain a pharmaceutically acceptable carrier, and optionally, other therapeutic ingredients.
- The terms “pharmaceutically acceptable salts” or “a pharmaceuti-cally acceptable salt thereof” refer to salts prepared from pharmaceutically acceptable non-toxic acids. Suitable pharmaceutically acceptable acid addition salts for the compound of the present invention include acetic, benzenesulfonic (besylate), benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pathothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic, and the like. The hydrochloride is particularly preferred.
- The compositions of the present invention include suspensions, solutions, elixirs or solid dosage forms. Carriers such as starches, sugars, and microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like are suitable in the case of oral solid preparations (such as powders, capsules, and tablets), and oral solid preparations are preferred over the oral liquid preparations.
- Because of their ease of administration, tablets and capsules represent one of the more advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are employed. If desired, tablets may be coated by standard aqueous or nonaqueous techniques. Since the compound of the invention has a relatively short duration of action in the body, it may be advantageous to administer the drug in a controlled-released or slow-release formulation, thereby decreasing the frequency of drug administrations to the patient. The compounds of the present invention may also be administered by controlled release means and delivery devices such as those described in U.S. Pat. Nos.: 3,845,770; 3,916,899; 3,536,809; 3,598,123; and 4,008,719, and PCT application WO92/20377, the disclosures of which are hereby incorporated by reference. Various forms of controlled release or slow release transdermal administration forms and devices can also be used to improve the convenience of dosage for the patient and are hereby incorporated by reference.
- Pharmaceutical compositions of the present invention suitable for oral administration may be presented as discrete unit dosage forms such as capsules, cachets, or tablets, each containing a predetermined amount of the active ingredient, as a powder or granules, or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil liquid emulsion. Such compositions may be prepared by any of the methods of pharmacy, but all methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation, just as is known for the racemic mixture.
- For example, a tablet may be prepared by compression or molding, optionally, with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active agent or dispersing agent. Molded tablets may be made by molding, in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent. All of the foregoing techniques are well know to persons of skill in the pharmaceutical art. Each tablet may contain from about 0.5 mg to about 25 mg of the active ingredient.
-
ORAL UNIT DOSAGE FORMULATION Tablets: per batch of Ingredients per tablet 10,000 tablets Desethyloxybutynin 5 mg 50 g Microcrystalline cellulose 30 mg 300 g Lactose 70 mg 700 g Calcium stearate 2 mg 20 g FD&C Blue #1 Lake 0.03 mg 300 mg - The selected compound of the present invention is blended with the lactose and cellulose until a uniform blend is formed. The lake is added and further blended. Finally, the calcium stearate is blended in, and the resulting mixture is compressed into tablets using a {fraction (9/32)} inch (7 mm) shallow concave punch. Tablets of other strengths may be prepared by altering the ration of active ingredient to the excipients or to the final weight of the tablet.
- The surprising utility of the compounds of the present invention have been established by the following studies.
- 1. Ligand Binding Studies: Muscarinic Receptors.
- The experiments are carried out on membranes prepared from SF9 cells infected with baculovirus to express human recombinant muscarinic receptor subtypes. After incubation with the test article and the proper radioligand and washing, bound radioactivity is determined with a liquid scintillation counter, using a commercial scintillation cocktail. The specific radioligand binding to each receptor is defined as the difference between total binding and nonspecific binding determined in the presence of an excess of unlabelled ligand. IC 50 values (concentrations required to inhibit 50% of specific binding) are determined by non linear regression analysis of the competition curves. These parameters are obtained by curve fitting using Sigmaplot™ software.
- 2. Functional Characterization of Antimuscarinic/Antispasmodic Activity.
- Strips of intestinal smooth muscle tissue are removed from the body of male Hartley guinea pigs weighing 400-600 g. The strips are suspended in an oxygenated buffer of the following composition, in mM: NaCl, 133; KCl, 4.7; CaCl 2, 2.5; MgSO4, 0.6; NaH2PO4, 1.3; NaHCO3, 16.3; and glucose, 7.7, or a similar balanced physiological solution. They are maintained at constant temperature. Contractions are recorded with isometric transducers (Model FT-10) on an ink-writing polygraph.
- In each experiment up to seven strips are removed from a single animal, suspended in individual tissue chambers and allowed to equilibrate with the bathing solution for one hour before proceeding with the experiment.
- In order to assess the viability of each tissue and to serve as a frame of reference, contractions of each strip of tissue are recorded initially in response to exposure to a tissue medium in which the NaCl was replaced by KCl to yield a concentration of 137.7 mM KCl in the medium. This is followed by return to the standard medium, and then by exposures to progressively creasing concentrations of carbachol, with separate exposures to each concentration only until the peak response has been recorded. Then, leaving one strip untreated and/or one strip exposed to the test solution to serve as control tissue(s), the remaining strips each are exposed for one hour to one concentration of an antagonist. Finally, the responses to increasing concentrations of carbachol followed by exposure to 137.7 mM KCl are recorded a second time. To determine whether antagonists decrease the peak response to agonists, the peak tension developed by each strip during the second set of determinations is expressed as a percent of the peak tension developed during the first concentration-effect determination. Then, for each antagonist the resultant data are analyzed using standard statistical methodology.
- 3. Cardiac side effects.
- Male guinea pigs (450-600 g) are anesthetized with freshly prepared dialurethane sodium. The jugular vein is catheterized for iv administration of test drugs and the trachea is exposed and cannulated. Subdermal electrodes are positioned for Lead II electrocardiogram recording, monitored on a Grass Polygraph recorder, set at a paper speed of 50 mm/sec. The animals are allowed to stabilize for 30 minute after completion of surgery, and three baseline EKG recordings are then made at 10-minute intervals. The animals are then given a dose of the test compound or vehicle as an intravenous infusion over 30 min. EKG recordings are used to determine QT intervals and heart rates. To compensate for variations in heart rates, QTc intervals are calculated from QT- and RR-intervals as known to those skilled in the art. Prolongation of QTc is indicative of a prolonged action potential, caused by an inhibition of the delayed rectifier potassium channel. Prolongation of QTc is the known cause of Torsades de Pointes ventricular fibrillation by drugs such as terfenadine and astemizole (now withdrawn from the market).
- Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents include salt forms e.g. sulfate, fumarate, hydrobromide, hydrochloride, dihydrochloride, methanesulphonate, hydroxynaphthoate, chlorotheophylline or where appropriate one or other of the hydrate forms thereof, see Merck Index 11th edition (1989) items 9089, 209, 3927, 4628, 8223, 5053, 5836, 8142, 2347, 7765, 1840, 9720, 7461, 1317,4159, and 963 and references cited therein and Am. Rev. Resp. Dis. 1988, 137: (4;2/2) 32. Such equivalents also include the co-administration of at least one compound of the present invention with any other drug that is used to combat diseases in mammals, mentioned in this document. Such equivalents also include the co-administration of at least one compound of the present invention with any other compound or drug that may be used in combination with medication for urinary incontinence or intestinal hyperactivity. Those skilled in the art of medicine will also realize that higher or lower doses than those indicated here may be preferred and the doses may be given more or less frequently than suggested here.
- The optically active isomers of the des-ethyl metabolite of oxybutynin do not cause a prolongation of the QTc interval of the ECG are therefore not arrhythmogenic and are intended to be included in this present invention. The R-isomer of the des-ethyl metabolite of oxybutynin is a potent antimuscarinic agent and is useful in patients suffering from cholinergic and other forms of urinary incontinence and other smooth muscle spasms, including intestinal hypermotility disorders. The S-isomer of the des-ethyl metabolite of oxybutynin is a spasmolytic agent with weak anticholinergic activity and is useful in patients suffering from various forms of urinary incontinence and smooth muscle spasms, including intestinal hypermotility disorders. The pharmaceutically acceptable salts of the isomers of the des-ethyl metabolite of oxybutynin are also intended to be included in this present invention.
- The didesethyl metabolite of oxybutynin has pharmacological activities that are similar to those of des-ethyl oxybutynin, although the didesethyl metabolite has somewhat lower affinity for muscarinic and the benzothiazepine receptors than the des-ethyl metabolite. Since the didesethyl metabolite does not prolong the QTc interval of the ECG, this metabolite and its optically active isomers and the salt forms thereof are intended to be included into the present invention.
- Those skilled in the art, will realize that the terms intestinal hyperactivity disorders and intestinal hypermotility disorders include irritable bowel syndromes (IBS).
- Those skilled in the art of pharmacology, will realize that the compounds of the invention, having certain pharmacological properties (such as antimuscarinic activity on various receptor types, calcium antagonistic activity, spasmolytic activity on various types of smooth muscle etc.) may be useful for other indications than those listed here. Such indications are equivalents to the specific embodiments of the invention described herein.
- All equivalents are intended to be included in this present invention.
Claims (8)
1. A method for treating or preventing disorders involving the urethrogenital tract, which method comprises administering to a mammal in need of such treatment a therapeutically effective amount of 4-ethylamino-2-butynyl cyclohexyl-phenylglycolate and/or one or more optically active isomers thereof, and pharmaceutically acceptable salts thereof.
2. The method of claim 1 , wherein said disorder involving the urethrogenital tract is urinary incontinence.
3. The method of claim 1 , wherein said 4-ethylamino-2-butynyl cyclohexyl-phenylglycolate and/or one or more optically active isomers thereof, and pharmaceutically acceptable salts thereof, is administered while avoiding the side effects of racemic 4-diethylamino-2-butynyl cyclohexyl-phenylglycolate.
4. The method of claim 3 , wherein said side effect is cardiac arrhythmia.
5. The method of claim 1 , wherein said 4-ethylamino-2-butynyl cyclohexylphenylglycolate and/or one or more optically active isomers thereof, or a pharmaceutically acceptable salt thereof, is administered by inhalation or by parenteral, transdermal, rectal, sublingual or oral administration.
6. The method of claim 1 , wherein said 4-ethylamino-2-butynyl cyclohexylphenylglycolate and/or one or more optically active isomers thereof, or a pharmaceutically acceptable salt thereof, is administered by oral administration as an extended release or controlled release formulation.
7. The method of claim 1 , wherein said 4-ethylamino-2-butynyl cyclohexylphenylglycolate and/or one or more optically active isomers thereof, or a pharmaceutically acceptable salt thereof, is administered in a dose of from about 0.5 mg to about 200 mg per day.
8. The method of claim 1 , wherein said optically active isomer is R-4-ethylamino-2-butynyl cyclohexylphenylglycolate.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/775,060 US6432446B2 (en) | 2000-02-03 | 2001-02-01 | Non-arrhythmogenic metabolite of oxybutynin |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17996000P | 2000-02-03 | 2000-02-03 | |
| US09/775,060 US6432446B2 (en) | 2000-02-03 | 2001-02-01 | Non-arrhythmogenic metabolite of oxybutynin |
| PCT/US2001/050567 WO2003066042A1 (en) | 2000-02-03 | 2001-12-21 | A non-arrhythmogenic metabolite of oxybutynin |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20020002201A1 true US20020002201A1 (en) | 2002-01-03 |
| US6432446B2 US6432446B2 (en) | 2002-08-13 |
Family
ID=29272490
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/775,060 Expired - Fee Related US6432446B2 (en) | 2000-02-03 | 2001-02-01 | Non-arrhythmogenic metabolite of oxybutynin |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US6432446B2 (en) |
| CA (1) | CA2334066A1 (en) |
| WO (1) | WO2003066042A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070148195A1 (en) * | 2000-04-26 | 2007-06-28 | Ebert Charles D | Compositions and methods for transdermal oxybutynin therapy |
| US10610507B2 (en) | 2012-11-13 | 2020-04-07 | NeuRx Pharmaceuticals LLC | Methods for the treatment of sialorrhea |
| US11473095B2 (en) | 2016-10-11 | 2022-10-18 | Corteva Agriscience Llc | Modulation of transgene expression in plants |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8980290B2 (en) | 2000-08-03 | 2015-03-17 | Antares Pharma Ipl Ag | Transdermal compositions for anticholinergic agents |
| US20070225379A1 (en) * | 2001-08-03 | 2007-09-27 | Carrara Dario Norberto R | Transdermal delivery of systemically active central nervous system drugs |
| US7198801B2 (en) * | 2000-08-03 | 2007-04-03 | Antares Pharma Ipl Ag | Formulations for transdermal or transmucosal application |
| ATE355854T1 (en) * | 2000-08-03 | 2007-03-15 | Antares Pharma Ipl Ag | NEW COMPOSITION FOR TRANSDERMAL AND/OR TRANSMUCOSAL APPLICATION OF ACTIVE INGREDIENTS WITH A SUITABLE THERAPEUTIC MIRROR |
| ES2377932T3 (en) | 2003-10-10 | 2012-04-03 | Ferring Bv | Transdermal pharmaceutical formulation to minimize waste on the skin |
| US7425340B2 (en) * | 2004-05-07 | 2008-09-16 | Antares Pharma Ipl Ag | Permeation enhancing compositions for anticholinergic agents |
| WO2007124250A2 (en) * | 2006-04-21 | 2007-11-01 | Antares Pharma Ipl Ag | Methods of treating hot flashes with formulations for transdermal or transmucosal application |
| US8067399B2 (en) * | 2005-05-27 | 2011-11-29 | Antares Pharma Ipl Ag | Method and apparatus for transdermal or transmucosal application of testosterone |
| WO2008067991A2 (en) * | 2006-12-08 | 2008-06-12 | Antares Pharma Ipl Ag | Skin-friendly drug complexes for transdermal administration |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3536809A (en) | 1969-02-17 | 1970-10-27 | Alza Corp | Medication method |
| US3598123A (en) | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
| US3845770A (en) | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
| US3916899A (en) | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
| US4008719A (en) | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
| MX9202350A (en) | 1991-05-20 | 1992-11-01 | Alza Corp | SKIN PENETRATION INCREMENTING COMPOSITIONS USING GLYCEROL MONOLINOLEATE. |
| US5677346A (en) * | 1995-01-31 | 1997-10-14 | Sepracor, Inc. | Treating urinary incontinence using (S)-desethyloxybutynin |
| US5532278A (en) | 1995-01-31 | 1996-07-02 | Sepracor, Inc. | Methods and compositions for treating urinary incontinence using optically pure (S)-oxybutynin |
| US6123961A (en) * | 1996-09-25 | 2000-09-26 | Bridge Pharma, Inc. | Treating urinary incontinence with (R)-desethyloxybutynin and (R)-oxybutynin |
| US5973182A (en) * | 1998-10-22 | 1999-10-26 | Sepracor Inc. | Carbonate Intermediates useful in the preparation of optically active cyclohexylphenylglycolate esters |
-
2001
- 2001-02-01 US US09/775,060 patent/US6432446B2/en not_active Expired - Fee Related
- 2001-02-02 CA CA002334066A patent/CA2334066A1/en not_active Abandoned
- 2001-12-21 WO PCT/US2001/050567 patent/WO2003066042A1/en not_active Application Discontinuation
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070148195A1 (en) * | 2000-04-26 | 2007-06-28 | Ebert Charles D | Compositions and methods for transdermal oxybutynin therapy |
| US8241662B2 (en) | 2000-04-26 | 2012-08-14 | Watson Laboratories, Inc. | Unoccluded topical oxybutynin gel composition and methods for transdermal oxybutynin therapy |
| US10610507B2 (en) | 2012-11-13 | 2020-04-07 | NeuRx Pharmaceuticals LLC | Methods for the treatment of sialorrhea |
| US11473095B2 (en) | 2016-10-11 | 2022-10-18 | Corteva Agriscience Llc | Modulation of transgene expression in plants |
| US12421522B2 (en) | 2016-10-11 | 2025-09-23 | Corteva Agriscience, Llc | Modulation of transgene expression in plants |
Also Published As
| Publication number | Publication date |
|---|---|
| US6432446B2 (en) | 2002-08-13 |
| WO2003066042A1 (en) | 2003-08-14 |
| CA2334066A1 (en) | 2001-08-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6310103B1 (en) | S(−)-tolterodine in the treatment of urinary and gastrointestinal disorders | |
| US6123961A (en) | Treating urinary incontinence with (R)-desethyloxybutynin and (R)-oxybutynin | |
| EP0806948B1 (en) | Treating urinary incontinence using (s)-oxybutynin and (s)-desethyloxybutynin | |
| EP1286591B1 (en) | Treating smooth muscle hyperactivity with (r)-oxybutynin and (r)- desethyloxybutynin | |
| CA2257121C (en) | Methods and compositions for treating urinary incontinence using optically pure (s)-oxybutynin | |
| US5532278A (en) | Methods and compositions for treating urinary incontinence using optically pure (S)-oxybutynin | |
| US6432446B2 (en) | Non-arrhythmogenic metabolite of oxybutynin | |
| US20200246292A1 (en) | Pharmaceutical compositions and the treatment of overactive bladder | |
| AU779696B2 (en) | Methods for treating apnea and apnea disorders using optically pure R(+)ondansetron | |
| US6974820B2 (en) | Methods for treating urinary incontinence and other disorders using trospium | |
| US6207852B1 (en) | Smooth muscle spasmolytic agents, compositions and methods of use thereof | |
| US20030027856A1 (en) | Tolterodine metabolites | |
| JP2012176958A (en) | Treatment of smooth muscle hyperactivity by (r)-oxybutynin and (r)-desethyloxybutynin | |
| EP1455776A1 (en) | A non-arrhythmogenic metabolite of oxybutynin | |
| JP2005516992A6 (en) | Non-cardiac rhythm-inducing metabolite of oxybutynin | |
| HK1113909A (en) | Treating smooth muscle hyperactivity with (r)-oxybutynin and (r)-desethyloxybutynin | |
| WO1998001125A2 (en) | Dextrorotatory isomers of oxybutynin and desethyloxybutynin in the treatment of gastrointestinal hyperactivity | |
| CA2503746A1 (en) | Methods for treating urinary incontinence and other disorders using trospium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BRIDGE PHARMA, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABERG, A.K. GUNNAR;REEL/FRAME:011723/0012 Effective date: 20010326 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100813 |

