US20020002192A1 - Novel cyclohexene derivatives useful as antagonists of the motilin receptor - Google Patents

Novel cyclohexene derivatives useful as antagonists of the motilin receptor Download PDF

Info

Publication number
US20020002192A1
US20020002192A1 US09/803,572 US80357201A US2002002192A1 US 20020002192 A1 US20020002192 A1 US 20020002192A1 US 80357201 A US80357201 A US 80357201A US 2002002192 A1 US2002002192 A1 US 2002002192A1
Authority
US
United States
Prior art keywords
alkyl
substituted
compound
phenylcarbonyl
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/803,572
Other versions
US6423714B2 (en
Inventor
Robert Chen
Min Xiang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Pharmaceuticals Inc
Original Assignee
Ortho McNeil Pharmaceutical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ortho McNeil Pharmaceutical Inc filed Critical Ortho McNeil Pharmaceutical Inc
Priority to US09/803,572 priority Critical patent/US6423714B2/en
Assigned to ORTHO-MCNEIL PHARMACEUTICAL, INC. reassignment ORTHO-MCNEIL PHARMACEUTICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, ROBERT H., XIANG, MIN A.
Publication of US20020002192A1 publication Critical patent/US20020002192A1/en
Application granted granted Critical
Publication of US6423714B2 publication Critical patent/US6423714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/084Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/088Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/06Anti-spasmodics, e.g. drugs for colics, esophagic dyskinesia

Definitions

  • This invention relates to a series of novel cyclohexene derivatives, pharmaceutical compositions containing them and intermediates used in their manufacture.
  • the compounds of the invention are useful as non-peptidyl antagonists of the motilin receptor.
  • Motilin is a peptide of 22 amino acids which is produced in the gastrointestinal system of a number of species. Although the sequence of the peptide varies from species to species, there are a great deal of similarities. For example, human motilin and porcine motilin are identical; while motilin isolated from the dog and the rabbit differ by five and four amino acids, respectively. Motilin induces smooth muscle contractions in the stomach tissue of dogs, rabbits, and humans as well as in the colon of rabbits. Apart from local gastrointestinal intestinal tissues, motilin and its receptors have been found in other tissues.
  • motilin has been found in circulating plasma, where a rise in the concentration of motilin has been associated with gastric effects which occur during fasting in dogs and humans (Itoh, Z. et al., 1976, Scand. J. Gastroenterol. 11:93-110; Vantrappen, G. et al., 1979, Dig. Dis Sci 24, 497-500).
  • motilin when intravenously administered to humans it was found to increase gastric emptying and gut hormone release (Christofides, N. D. et al., 1979, Gastroenterology 76:903-907).
  • motilin and erythromycin are agonists of the motilin receptor, there is a need for antagonists of this receptor as well.
  • the nausea, abdominal cramping, and diarrhea which are associated with motilin agonsits are not always welcome physiological events.
  • the increased gut motility induced by motilin has been implicated in diseases such as Irritable Bowel Syndrome and esophageal reflux. Therefore researchers have been searching for motilin antagonists.
  • OHM-11526 is a peptide derived from porcine motilin which competes with both motilin and erythromycin for the motilin receptor in a number of species, including rabbits and humans.
  • this peptide is an antagonist of the contractile smooth muscle response to both erythromycin and motilin in an in vitro rabbit model (Depoortere, I. et al., 1995, European Journal of Pharmacology, 286, 241-47).
  • R 1 is selected from hydrogen, C 1-5 alkyl optionally substituted with halogen, aminoC 1-5 alkyl, C 1-5 alkylaminoC 1-5 alkyl, di-C 1-5 alkylaminoC 1-5 alkyl, C 1-5 alkylcarbonyl, C 1-5 alkoxycarbonyl, aminocarbonyl, C 1-9 alkylaminocarbonyl, cycloC 3-9 alkylaminocarbonyl, heteroarylaminocarbonyl optionally substituted with one or more C 1-5 alkyl, pyridinylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C 1-5 alkyl, thiophenecarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C 1-5 alkyl, phenyl, phenylC 1-5 alkyl, phenoxycarbonyl, phenylcarbonyl, diphenylmethylcarbonyl
  • R 2 is selected from hydrogen, C 1-5 alkyl, C 1-5 alkoxy, phenyl optionally substituted with one or more substituents selected from the group consisting of halogen and C 1-5 alkyl, and phenylC 1-5 alkyl optionally substituted with one or more substituents selected from the group consisting of halogen, C 1-5 alkyl, C 1-5 alkoxy, halo and di-C 1-5 alkylamino;
  • R 3 is selected from hydrogen, C 1-5 alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C 1-5 alkyl, C 1-5 alkoxy, amino, C 1-5 alkylamino, and di-C 1-5 alkylamino;
  • R 4 is selected from hydrogen, C 1-5 alkyl, C 1-5 alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C 1-5 alkyl, C 1-5 alkoxy, amino, C 1-5 alkylamino, and di-C 1-5 alkylamino;
  • n 0-3;
  • m is 1-5;
  • t is 0-1;
  • X is oxygen, CH 2 , sulfur, hydroxy, thiol, or NR c , wherein
  • R c is selected from hydrogen, C 1-5 alkyl, morpholinoC 1-5 alkyl, piperidinylC 1-5 alkyl, N-phenylmethylpiperidinyl, and piperazinylC 1-5 alkyl,
  • A is C 1-5 alkoxycarbonyl, phenylcarbonyl, or R 7 R 8 N—
  • R 7 and R 8 are independently selected from hydrogen, C 1-5 alkyl, and cycloC 1-9 alkyl, or R 7 and R 8 form a 5- or 6-membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and sulfoxides and N-oxides thereof; and
  • R 6 is selected from hydrogen, halogen, C 1-5 alkoxy, C 1-5 alkylamino, and di-C 1-5 alkylamino;
  • the compounds of Formula I are useful in treating gastrointestinal disorders associated with the motilin receptor.
  • the compounds compete with erythromycin and motilin for the motilin receptor.
  • the compounds are antagonists of the contractile smooth muscle response to those ligands.
  • the present invention also comprises pharmaceutical compositions containing one or more of the compounds of Formula I as well as methods for the treatment of disorders related to the gastrointestinal system which are associated with the motilin receptor.
  • diseases include Irritable Bowel Syndrome, esophageal reflux, and the gastrointestinal side effects of erythromycin.
  • alkyl refers to straight, cyclic and branched-chain alkyl groups and “alkoxy” refers 0-alkyl where alkyl is as defined supra.
  • Halogen or “halo” means F, Cl, Br, and I.
  • Ph refers to phenyl.
  • fused bicyclic aromatic includes fused aromatic rings such as naphthyl and the like.
  • fused bicyclic heterocycle includes benzodioxoles and the like.
  • heteroaryl represents a stable five or six membered monocyclic aromatic ring system which consists of carbon atoms and from one to three heteroatoms selected from N, O, or S.
  • the heteroaryl group may be attached at any heteroatom or carbon atom which results in the creation of a stable structure.
  • heteroaryl groups include, but are not limited to, triazole, thiazole, thiadiazole, oxazole, imidazole, pyrazole, pyrimidine, isothiazole, isoindole, isoxazole and the like.
  • the heteroaryl group may be further substituted with one or more groups such as alkyl, substituted alkyl, and halogen. More particularly, the heteroaryl group may be substituted with methyl.
  • subject refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment.
  • the compounds of the invention may be prepared as a single stereoisomer or in racemic form as a mixture of some possible stereoisomers.
  • the non-racemic forms may be obtained by either synthesis or resolution.
  • the compounds may, for example, be resolved into their components enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation.
  • the compounds may also be resolved by covalent linkage to a chiral auxiliary, followed by chromatographic separation and/or crystallographic separation, and removal of the chiral auxiliary.
  • the compounds may be resolved using chiral chromatography.
  • acid addition salts may be prepared and may be chosen from hydrochloric, hydrobromic, hydroiodic, perchloric, sulfuric, nitric, phosphoric, acetic, propionic, glycolic, lactic, pyruvic, oxalic, malonic, succinic, maleic, fumaric, malic, tartaric, citric, benzoic, cinnamic, mandelic, methanesulfonic, p-toluenesulfonic, cyclohexanesulfamic, salicylic, 2-phenoxybenzoic, 2-acetoxybenzoic, saccharin, and the like.
  • Such salts can be made by reacting the free base of compounds of formula I with the acid and isolating the salt.
  • Compounds of the present invention may be prepared by known methods such as those disclosed in U.S. Pat. No. 5,972,939 to Chen et al., which is hereby incorporated by reference in its entirety.
  • the compounds of the invention may be prepared by the following procedures, where some schemes produce more than one embodiment of the invention. In those cases, the choice of scheme is a matter of discretion which is within the capabilities of those skilled in the art.
  • Scheme 1 assembles two halves of the molecule and couples them.
  • 3-ethoxy-2-cylclohepten-1 -one, 1a (a known compound), may be the starting material.
  • 1a may be treated with a Grignard reagent, 1b such as 4-fluorobenzyl magnesium bromide (a known compound) preferably at room temperature (rt) under an inert atmosphere, using ether as a solvent to give the ⁇ , ⁇ -unsaturated ketone derivative 1c.
  • a reducing agent such as lithium aluminum hydride (LAH) preferably at 0° C. to room temperature will give the alcohol, Id.
  • LAH lithium aluminum hydride
  • This alcohol may be treated with a strong base such as NaH and trichloroacetonitrile preferably from 0° C. to room temperature to give the amide 1e.
  • This seven-membered ring amide may be sequentially treated on dry ice with ozone, dimethylsulfide, and a catalytic amount of acid such as toluene sulfonic acid. Once addition is complete, the mixture can be warmed to room temperature over to give the six membered ring aldehyde, 1f, as a racemic mixture.
  • an aromatic alcohol 1 g such as 3-hydroxyaniline may be treated with a mild base, such as K 2 CO 3 , in a suitable solvent such as ethanol (EtOH) at reflux.
  • a suitable solvent such as ethanol (EtOH) at reflux.
  • This mixture may be subsequently treated with a halide derivative 1h, such as 3-chloropropylmorpholine preferably at room temperature to give the amine 1i.
  • This amine may be treated with the aldehyde 1f and NaCNBH 3 in methanol (MeOH) preferably at room temperature to give a compound of the invention Ic, as a racemic mixture.
  • pure enantiomers may be obtained in any of three stages of the synthesis.
  • the alcohol 1d, the aldehyde 1f, and the product Ic may all be separated via HPLC using chiral columns or methods well known in the art. With respect to all three compounds, they may be further manipulated to give other compounds of the invention without sacrificing their enantiomeric purity.
  • Scheme 1 may be used to produce other compounds of the invention.
  • reagent 1h simply replace reagent 1h with an aromatic thiol, such as 3-aminothiophenol and carry out the remaining steps of the Scheme.
  • the products of Scheme 1 may be used to produce other compounds of the invention as shown in Scheme 3.
  • compound Ic may be treated with a phenyl isocyanate preferably at room temperature.
  • Ic may be treated preferably at room temperature with acid chloride derivatives such as benzoyl chloride.
  • thiols Iq compounds of type Ic may be treated with isothiocyanates, such as phenylisothiocyanate preferably at room temperature.
  • isothiocyanates such as phenylisothiocyanate preferably at room temperature.
  • Scheme 4 makes use of the intermediate of Scheme 1.
  • a nitroaniline derivative 4a (a known compound), and NaCNBH 3 preferably at room temperature gives the coupled intermediate 4b.
  • This intermediate may be acylated with benzoyl chloride and a mild base such as triethylamine to give the N-acyl intermediate 4c.
  • 4c may be treated with a reducing agent such as Pd/C to give the aniline compound Ih.
  • This compound may be coupled with a halogen derivative 4d, such as 3-chloropropylpiperidine, using 1,8.
  • Diazabieyclo (5,4,0) undec-7-ene (DBU) and an alcoholic solvent at reflux to give a mixture of mono- and di-amine products (Ii and Ij).
  • the compounds of the invention were tested for their ability to compete with radiolabeled motilin (porcine) for the motilin receptors located on the colon of mature rabbits.
  • the colon from mature New Zealand rabbits was removed, dissected free from the mucosa and serosa layers, and diced into small pieces.
  • the muscle tissues were homogenized in 10 volumes of buffer (50 mM Tris-Cl, 10 mM MgCl 2 , 0.1 mg/mL bactracin, and 0.25 mM Peflabloc, pH 7.5) in a Polytron (29,000 rpm, 4 ⁇ 15 seconds). The homogenate was centrifuged at 1000 ⁇ g for 15 min. and the supernatant discarded.
  • the binding assay contained the following components added sequentially: buffer (50 mM Tris-Cl, 10 mM MgCl 2 , 1 mM EDTA, 15 mg/mL BSA, 5 ⁇ g/mL leupeptin, aprotinin, and pepstatin, and 0.1 mg/mL, bactracin), I 125 motilin (Amersham, ca 50,000-70,000 cpm, 25-40 pM), the test compound (the initial concentration was 2 mM/100% DMSO, which was diluted with H 2 O to a final concentration of 10 ⁇ M) and membrane protein (100-300 ⁇ g).
  • buffer 50 mM Tris-Cl, 10 mM MgCl 2 , 1 mM EDTA, 15 mg/mL BSA, 5 ⁇ g/mL leupeptin, aprotinin, and pepstatin, and 0.1 mg/mL, bactracin
  • I 125 motilin Amersham, ca
  • the material was cooled on ice and centrifuged at 13,000 ⁇ g for 1 minute.
  • the pellet was washed with 1 mL 0.9% saline and centrifuged at 13,000 ⁇ g for 15 seconds.
  • the pellet was washed again with cold saline and the supernatant was removed.
  • the pellet was counted in the gamma counter to determine the percentage of unbound motilin and thereby the percent inhibition of the test compound.
  • Compounds of the invention may be evaluated for their ability to inhibit motilin and erythromycin induced contractions in the rabbit duodenum smooth muscle. Rabbits may be fasted 24-48 h and euthanized. The venral midline incision may be made approximately 7.5 cm above the umbilicus up to the xyphoid process, exposing the upper peritoneal cavity.
  • the first 8 cm of the duodenum starting at the pyloric valve may be quickly removed and placed in Krebs solution containing NaCl (120 mM), KCl (4.7 mM), MgSO 4 *7 H 2 O (1.2 mM), CaCl 2 *2 H 2 O (2.4 mM), KH 2 PO 4 (1 mM), D-glucose (10 mM), and NaHCO 3 (24 mM).
  • the lumen may be flushed with Krebs solution and excess tissue removed.
  • the tissue may be cut lengthwise, splayed open with the longitudinal muscle layer facing up, and the longitudinal muscle layer released away from the circular muscle and cut into 3 ⁇ 30 mm strips.
  • a pre-tied 4-0 silk ligature with a loop may be placed at the middle of the strip and the strip folded over the loop so the strip is half its original length.
  • the tissues may be mounted in a 10 mL tissue bath (Radnotti Glass Technology, Inc., Monrovia, Calif.) containing Krebs solution gassed with 95% O 2 +5% CO 2 at 37° C.
  • the tissues may be attached to a force displacement transducer (FT03, Grass Instruments, Quincy, Mass.) and resting tension slowly increased to 1 g.
  • the tissues may be allowed to equilibrate for 60-90 min with 2-3 wash cycles.
  • the tissues may be equilibrated with two initial contractions induced by a concentration of acetylcholine (1 ⁇ 10 ⁇ 4 M) that produces a maximal contraction (0.1 mM), with the highest taken as 100% maximal contraction of that tissue.
  • Base line and response levels may be expressed as grams tension developed and as a percent of the response to acetylcholine.
  • the test compounds may be dissolved in DMSO (2 mM/I 100% DMSO) and applied to the prepared strips 5-15 minutes prior to the addition of porcine motilin. After addition, the tension is constantly monitored over 5 min and the maximum tension is recorded. The percent contraction may be measured at four ascending concentrations and where appropriate IC 50 's may be determined.
  • R 1 is selected from phenylaminocarbonyl, substituted phenylaminocarbonyl, phenylcarbonyl, and substituted phenylcarbonyl;
  • R 2 is phenylC 1-5 alkyl, substituted phenylC 1-5 alkyl or phenyl;
  • R 3 is phenylcarbonyl, substituted phenylcarbonyl, or substituted C 1-5 alkylcarbonyl;
  • R 4 is hydrogen or C 1-5 alkyl
  • A is C 1-5 alkoxycarbonyl or R 7 R 8 N— wherein R 7 and R 8 are as described above;
  • n O
  • m is 1.
  • R 1 is phenylaminocarbonyl or substituted phenylcarbonyl
  • R 2 is benzyl, 3-Cl benzyl, or 4-methoxybenzyl
  • R 3 is substituted C 1-5 alkylcarbonyl
  • R 4 is hydrogen
  • R 6 is hydrogen
  • A is R 7 R 8 N— wherein R 7 and R 8 taken together form a 5 or 6 membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and N-oxides thereof;
  • X is oxygen
  • R 1 is phenylaminocarbonyl or halo substituted benzoyl
  • R 3 is halo substituted C 1-5 alkylcarbonyl
  • A is morpolinyl.
  • compositions of this invention one or more compounds or salts thereof, as the active ingredient, is intimately admixed with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques, which carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral.
  • a pharmaceutical carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral.
  • any of the usual pharmaceutical media may be employed.
  • suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like;
  • suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar coated or enteric coated by standard techniques.
  • the carrier will usually comprise sterile water, though other ingredients, for example, for purposes such as aiding solubility or for preservation, may be included.
  • injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.
  • the pharmaceutical compositions herein will preferably contain per dosage unit, e.g., tablet, capsule, powder, injection, teaspoonful and the like, from about 5 to about 500 mg of the active ingredient, although other unit dosages may be employed.
  • the compounds of this invention may be administered in an amount of from about 0.5 to 100 mg/kg 1-2 times per day orally.
  • the compounds may be administered via injection at 0.1-10 mg/kg per day. Determination of optimum dosages for a particular situation is within the capabilities of formulators.
  • NaCNBH 4 (23 mg, 0.61 mM.) was added to a solution of 3-benzyl-3-trichloroacetamido-2-cyclohexenecarboxaldehyde (63 mg, 0.17 mmol), 3-(2-morpholinoethoxy) aniline (130 mg, 0.59 mmol) acetic acid (0.05 mL) in methanol (10 mL) at room temperature under N 2 and stirred for 30 min. Most of methanol was removed in vacuo and the residue was diluted with methylene chloride, washed with 1N. NaOH and dried.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The compounds of formula I are useful in treating gastrointestinal disorders associated with antagonizing the motilin receptor. The compounds compete with erythromycin and motilin for the motilin receptor. In addition the compounds are antagonists of the contractile smooth muscle response to those ligands.

Description

    FIELD OF THE INVENTION
  • This invention relates to a series of novel cyclohexene derivatives, pharmaceutical compositions containing them and intermediates used in their manufacture. The compounds of the invention are useful as non-peptidyl antagonists of the motilin receptor. [0001]
  • BACKGROUND
  • In mammals, the digestion of nutrients and the elimination of waste is controlled by the gastrointestinal system. This system is, to say the least, complicated. There are a number of natural peptides, ligands, enzymes, and receptors which play a vital role in this system and are potential targets for drug discovery. Modifying the production of, or responses to these endogenous substances can have an effect upon the physiological responses such as diarrhea, nausea, and abdominal cramping. One example of an endogenous substance which affects the gastrointestinal system is motilin. [0002]
  • Motilin is a peptide of 22 amino acids which is produced in the gastrointestinal system of a number of species. Although the sequence of the peptide varies from species to species, there are a great deal of similarities. For example, human motilin and porcine motilin are identical; while motilin isolated from the dog and the rabbit differ by five and four amino acids, respectively. Motilin induces smooth muscle contractions in the stomach tissue of dogs, rabbits, and humans as well as in the colon of rabbits. Apart from local gastrointestinal intestinal tissues, motilin and its receptors have been found in other tissues. For example, motilin has been found in circulating plasma, where a rise in the concentration of motilin has been associated with gastric effects which occur during fasting in dogs and humans (Itoh, Z. et al., 1976, [0003] Scand. J. Gastroenterol. 11:93-110; Vantrappen, G. et al., 1979, Dig. Dis Sci 24, 497-500). In addition, when motilin was intravenously administered to humans it was found to increase gastric emptying and gut hormone release (Christofides, N. D. et al., 1979, Gastroenterology 76:903-907).
  • Aside from motilin itself, there are other substances which are agonists of the motilin receptor and which elicit gastrointestinal emptying. One of those agents is the antibiotic erythromycin. Even though erythromycin is a useful drug, a great number of patients are affected by the drug's gastrointestinal side effects. Studies have shown that erythromycin elicits biological responses that are comparable to motilin itself and therefore may be useful in the treatment of diseases such as chronic idiopathic intestinal pseudo-obstruction and gastroparesis (Weber, F. et al., 1993, [0004] The American Journal of Gastroenterology, 88:4, 485-90).
  • Although motilin and erythromycin are agonists of the motilin receptor, there is a need for antagonists of this receptor as well. The nausea, abdominal cramping, and diarrhea which are associated with motilin agonsits are not always welcome physiological events. The increased gut motility induced by motilin has been implicated in diseases such as Irritable Bowel Syndrome and esophageal reflux. Therefore researchers have been searching for motilin antagonists. [0005]
  • One such antagonist is OHM-11526. This is a peptide derived from porcine motilin which competes with both motilin and erythromycin for the motilin receptor in a number of species, including rabbits and humans. In addition, this peptide is an antagonist of the contractile smooth muscle response to both erythromycin and motilin in an in vitro rabbit model (Depoortere, I. et al., 1995, [0006] European Journal of Pharmacology, 286, 241-47).
  • Although this substance is potent in that model, it is a peptide and as such it is susceptible to the enzymes of the digestive tract (Zen Itoh, [0007] Motilin, xvi, 1990). Therefore it is desirable to find other agents which are not peptides as potential motilin antagonists. The compounds of this invention are such agents.
  • U.S. Pat. No. 5,972,939 to Chen et al. describes cyclopentene derivatives which are useful in treating gastrointestinal disorders associated with antagonizing the motilin receptor. [0008]
  • SUMMARY OF THE INVENTION
  • The present invention is directed to compounds of Formula I [0009]
    Figure US20020002192A1-20020103-C00001
  • wherein [0010]
  • R[0011] 1 is selected from hydrogen, C1-5alkyl optionally substituted with halogen, aminoC1-5alkyl, C1-5alkylaminoC1-5alkyl, di-C1-5alkylaminoC1-5alkyl, C1-5alkylcarbonyl, C1-5alkoxycarbonyl, aminocarbonyl, C1-9alkylaminocarbonyl, cycloC3-9alkylaminocarbonyl, heteroarylaminocarbonyl optionally substituted with one or more C1-5alkyl, pyridinylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, thiophenecarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, phenyl, phenylC1-5alkyl, phenoxycarbonyl, phenylcarbonyl, diphenylmethylcarbonyl, phenylaminocarbonyl, phenylthiocarbonyl, phenylaminothiocarbonyl, said phenyl, phenylC1-5alkyl, phenoxycarbonyl, phenylcarbonyl, diphenylmethylcarbonyl, phenylaminocarbonyl, phenylthiocarbonyl, phenylaminothiocarbonyl being optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, trihalomethyl, C1-5alkoxy, amino, nitrile, nitro, C1-5alkylamino, and di-C1-5alkylamino, which substituents may be taken together to form a fused bicyclic aromatic ring or taken together with the phenyl ring to form a fused bicyclic 7-10 membered heterocyclic ring having one or two heteroatoms selected from oxygen, sulfur and nitrogen, and RaRbN-C1-5alkyl wherein Ra and Rb are independently selected from hydrogen and C1-5alkyl, or taken together to form a morpholine, piperazine, piperidine, or N-substituted piperidine wherein the N-substitutent is C1-5alkyl or phenylC1-5alkyl;
  • R[0012] 2 is selected from hydrogen, C1-5alkyl, C1-5alkoxy, phenyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, and phenylC1-5alkyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, halo and di-C1-5alkylamino;
  • R[0013] 3 is selected from hydrogen, C1-5alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, amino, C1-5alkylamino, and di-C1-5alkylamino;
  • R[0014] 4 is selected from hydrogen, C1-5alkyl, C1-5alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, amino, C1-5alkylamino, and di-C1-5alkylamino;
  • n is 0-3; [0015]
  • m is 1-5; [0016]
  • R[0017] 5 is
    Figure US20020002192A1-20020103-C00002
  • wherein: [0018]
  • q is 0-3; [0019]
  • t is 0-1; [0020]
  • X is oxygen, CH[0021] 2, sulfur, hydroxy, thiol, or NRc, wherein
  • R[0022] c is selected from hydrogen, C1-5alkyl, morpholinoC1-5alkyl, piperidinylC1-5alkyl, N-phenylmethylpiperidinyl, and piperazinylC1-5alkyl,
  • with the proviso that if q and t are O, X is hydroxy, thiol, or amino, [0023]
  • A is C[0024] 1-5alkoxycarbonyl, phenylcarbonyl, or R7R8N—
  • wherein R[0025] 7 and R8 are independently selected from hydrogen, C1-5alkyl, and cycloC1-9alkyl, or R7 and R8 form a 5- or 6-membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and sulfoxides and N-oxides thereof; and
  • R[0026] 6 is selected from hydrogen, halogen, C1-5alkoxy, C1-5alkylamino, and di-C1-5alkylamino;
  • or a pharmaceutically acceptable salt thereof. [0027]
  • The compounds of Formula I are useful in treating gastrointestinal disorders associated with the motilin receptor. The compounds compete with erythromycin and motilin for the motilin receptor. In addition, the compounds are antagonists of the contractile smooth muscle response to those ligands. [0028]
  • The present invention also comprises pharmaceutical compositions containing one or more of the compounds of Formula I as well as methods for the treatment of disorders related to the gastrointestinal system which are associated with the motilin receptor. Such diseases include Irritable Bowel Syndrome, esophageal reflux, and the gastrointestinal side effects of erythromycin. [0029]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The terms used in describing the invention are commonly used and known to those skilled in the art. However, the terms that could have other meanings are defined. “Independently” means that when there are more than one substituent, the substituents may be different. The term “alkyl” refers to straight, cyclic and branched-chain alkyl groups and “alkoxy” refers 0-alkyl where alkyl is as defined supra. “Halogen” or “halo” means F, Cl, Br, and I. The symbol “Ph” refers to phenyl. The term “fused bicyclic aromatic” includes fused aromatic rings such as naphthyl and the like. The term “fused bicyclic heterocycle” includes benzodioxoles and the like. The term “heteroaryl” as used herein represents a stable five or six membered monocyclic aromatic ring system which consists of carbon atoms and from one to three heteroatoms selected from N, O, or S. The heteroaryl group may be attached at any heteroatom or carbon atom which results in the creation of a stable structure. Examples of heteroaryl groups include, but are not limited to, triazole, thiazole, thiadiazole, oxazole, imidazole, pyrazole, pyrimidine, isothiazole, isoindole, isoxazole and the like. The heteroaryl group may be further substituted with one or more groups such as alkyl, substituted alkyl, and halogen. More particularly, the heteroaryl group may be substituted with methyl. [0030]
  • The term “subject” as used herein, refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment. [0031]
  • Since the compounds of the invention have a chiral center, they may be prepared as a single stereoisomer or in racemic form as a mixture of some possible stereoisomers. The non-racemic forms may be obtained by either synthesis or resolution. The compounds may, for example, be resolved into their components enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation. The compounds may also be resolved by covalent linkage to a chiral auxiliary, followed by chromatographic separation and/or crystallographic separation, and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using chiral chromatography. [0032]
  • When compounds contain a basic moiety, acid addition salts may be prepared and may be chosen from hydrochloric, hydrobromic, hydroiodic, perchloric, sulfuric, nitric, phosphoric, acetic, propionic, glycolic, lactic, pyruvic, oxalic, malonic, succinic, maleic, fumaric, malic, tartaric, citric, benzoic, cinnamic, mandelic, methanesulfonic, p-toluenesulfonic, cyclohexanesulfamic, salicylic, 2-phenoxybenzoic, 2-acetoxybenzoic, saccharin, and the like. Such salts can be made by reacting the free base of compounds of formula I with the acid and isolating the salt. [0033]
  • Compounds of the present invention may be prepared by known methods such as those disclosed in U.S. Pat. No. 5,972,939 to Chen et al., which is hereby incorporated by reference in its entirety. [0034]
  • The compounds of the invention may be prepared by the following procedures, where some schemes produce more than one embodiment of the invention. In those cases, the choice of scheme is a matter of discretion which is within the capabilities of those skilled in the art. [0035]
  • Essentially, Scheme 1 assembles two halves of the molecule and couples them. For one half, 3-ethoxy-2-cylclohepten-1 -one, 1a (a known compound), may be the starting material. 1a may be treated with a Grignard reagent, 1b such as 4-fluorobenzyl magnesium bromide (a known compound) preferably at room temperature (rt) under an inert atmosphere, using ether as a solvent to give the α,β-unsaturated ketone derivative 1c. Treatment of 1c with a reducing agent such as lithium aluminum hydride (LAH) preferably at 0° C. to room temperature will give the alcohol, Id. This alcohol may be treated with a strong base such as NaH and trichloroacetonitrile preferably from 0° C. to room temperature to give the amide 1e. This seven-membered ring amide may be sequentially treated on dry ice with ozone, dimethylsulfide, and a catalytic amount of acid such as toluene sulfonic acid. Once addition is complete, the mixture can be warmed to room temperature over to give the six membered ring aldehyde, 1f, as a racemic mixture. [0036]
  • To assemble the other half, an aromatic alcohol 1 g, such as 3-hydroxyaniline may be treated with a mild base, such as K[0037] 2CO3, in a suitable solvent such as ethanol (EtOH) at reflux. This mixture may be subsequently treated with a halide derivative 1h, such as 3-chloropropylmorpholine preferably at room temperature to give the amine 1i. This amine may be treated with the aldehyde 1f and NaCNBH3 in methanol (MeOH) preferably at room temperature to give a compound of the invention Ic, as a racemic mixture.
  • If pure enantiomers are desired, they may be obtained in any of three stages of the synthesis. The alcohol 1d, the aldehyde 1f, and the product Ic may all be separated via HPLC using chiral columns or methods well known in the art. With respect to all three compounds, they may be further manipulated to give other compounds of the invention without sacrificing their enantiomeric purity. [0038]
  • Scheme 1 may be used to produce other compounds of the invention. For example, to produce compounds where X is sulfur, simply replace reagent 1h with an aromatic thiol, such as 3-aminothiophenol and carry out the remaining steps of the Scheme. [0039]
    Figure US20020002192A1-20020103-C00003
  • To produce other substitutions at R[0040] 3 or R4, some of the products of Scheme 1 may be used as shown in Scheme 2. For example, to produce a compound where R3 is hydrogen and R4 is CH3C(O)—, the seven-membered ring intermediate 1e may be treated with a base, such as barium hydroxide, at reflux in ethanol (EtOH) to give the free amine 2a. The amine may be subsequently treated with an acid anhydride, such as trifluoroacetic anhydride to give 2b. This intermediate may be carried through the remaining steps of Scheme 1 to produce the desired compound Id.
    Figure US20020002192A1-20020103-C00004
  • The products of Scheme 1 may be used to produce other compounds of the invention as shown in Scheme 3. For example, to produce compounds of type Ie, compound Ic may be treated with a phenyl isocyanate preferably at room temperature. To produce compounds of type If, Ic may be treated preferably at room temperature with acid chloride derivatives such as benzoyl chloride. In order to produce thiols Iq, compounds of type Ic may be treated with isothiocyanates, such as phenylisothiocyanate preferably at room temperature. As discussed earlier, if pure enantiomers are desired, they may be obtained by chromatography of the reactant Ic or the products. [0041]
    Figure US20020002192A1-20020103-C00005
  • Scheme 4 makes use of the intermediate of Scheme 1. Treatment of the aldehyde, 1f, with a nitroaniline derivative 4a (a known compound), and NaCNBH[0042] 3 preferably at room temperature gives the coupled intermediate 4b. This intermediate may be acylated with benzoyl chloride and a mild base such as triethylamine to give the N-acyl intermediate 4c. 4c may be treated with a reducing agent such as Pd/C to give the aniline compound Ih. This compound may be coupled with a halogen derivative 4d, such as 3-chloropropylpiperidine, using 1,8. Diazabieyclo (5,4,0) undec-7-ene (DBU) and an alcoholic solvent at reflux to give a mixture of mono- and di-amine products (Ii and Ij).
    Figure US20020002192A1-20020103-C00006
  • To prepare compounds of the invention where n is 1-3, products of Scheme 1 may be used as shown in Scheme 5. Intermediate 1f may be treated with 3-(m-hydroxyphenyl)propylamine, an aromatic amino alcohol derivative 5a known in the art, and NaCNBH[0043] 3 preferably at room temperature to give the amine Ik. Treatment of Ik with a thiocyanate derivative 5b, and a mild base preferably at room temperature gives the substituted thioamide Im. This compound may be treated with a halide reagent, 5c, and a base such as DBU in an alcoholic solvent at reflux to give the O-substituted compound of the invention In.
    Figure US20020002192A1-20020103-C00007
  • To produce compounds of the invention wherein R[0044] 7 and R8 form sulfoxide or N-oxide, the procedure of Scheme 6 may be followed (MCPBA refers to 3-chloroperoxybenzoic acid).
    Figure US20020002192A1-20020103-C00008
  • Radiolabeled Motilin [0045]
  • The compounds of the invention were tested for their ability to compete with radiolabeled motilin (porcine) for the motilin receptors located on the colon of mature rabbits. The colon from mature New Zealand rabbits was removed, dissected free from the mucosa and serosa layers, and diced into small pieces. The muscle tissues were homogenized in 10 volumes of buffer (50 mM Tris-Cl, 10 mM MgCl[0046] 2, 0.1 mg/mL bactracin, and 0.25 mM Peflabloc, pH 7.5) in a Polytron (29,000 rpm, 4×15 seconds). The homogenate was centrifuged at 1000×g for 15 min. and the supernatant discarded. The pellet was washed twice before being suspended in homogenizing buffer. This crude homogenate was then passed first through a 19 gauge needle then a 23 gauge needle to further suspend the material and stored at −80° C. In a total volume of 0.50 mL, the binding assay contained the following components added sequentially: buffer (50 mM Tris-Cl, 10 mM MgCl2, 1 mM EDTA, 15 mg/mL BSA, 5 μg/mL leupeptin, aprotinin, and pepstatin, and 0.1 mg/mL, bactracin), I125 motilin (Amersham, ca 50,000-70,000 cpm, 25-40 pM), the test compound (the initial concentration was 2 mM/100% DMSO, which was diluted with H2O to a final concentration of 10 μM) and membrane protein (100-300 μg). After 30 min at 30° C., the material was cooled on ice and centrifuged at 13,000×g for 1 minute. The pellet was washed with 1 mL 0.9% saline and centrifuged at 13,000×g for 15 seconds. The pellet was washed again with cold saline and the supernatant was removed. The pellet was counted in the gamma counter to determine the percentage of unbound motilin and thereby the percent inhibition of the test compound.
  • % inhibition was determined for some compounds by standard techniques: [0047]
  • 3-Benzyl-3-trichloroacetamido-1-( N-phenylaminocarbonyl )-N-[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene (Example 6): 62% @ 50 nM; [0048]
  • 3-Benzyl-3-trichloroacetamido-1-N[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene (Example 7): 59% @ 50 nM. [0049]
  • Rabbit duo denum Smooth Muscle [0050]
  • Compounds of the invention may be evaluated for their ability to inhibit motilin and erythromycin induced contractions in the rabbit duodenum smooth muscle. Rabbits may be fasted 24-48 h and euthanized. The venral midline incision may be made approximately 7.5 cm above the umbilicus up to the xyphoid process, exposing the upper peritoneal cavity. The first 8 cm of the duodenum starting at the pyloric valve may be quickly removed and placed in Krebs solution containing NaCl (120 mM), KCl (4.7 mM), MgSO[0051] 4*7 H2O (1.2 mM), CaCl2*2 H2O (2.4 mM), KH2PO4 (1 mM), D-glucose (10 mM), and NaHCO3 (24 mM). The lumen may be flushed with Krebs solution and excess tissue removed. The tissue may be cut lengthwise, splayed open with the longitudinal muscle layer facing up, and the longitudinal muscle layer released away from the circular muscle and cut into 3×30 mm strips. A pre-tied 4-0 silk ligature with a loop may be placed at the middle of the strip and the strip folded over the loop so the strip is half its original length. The tissues may be mounted in a 10 mL tissue bath (Radnotti Glass Technology, Inc., Monrovia, Calif.) containing Krebs solution gassed with 95% O2+5% CO2 at 37° C. The tissues may be attached to a force displacement transducer (FT03, Grass Instruments, Quincy, Mass.) and resting tension slowly increased to 1 g. The tissues may be allowed to equilibrate for 60-90 min with 2-3 wash cycles. The tissues may be equilibrated with two initial contractions induced by a concentration of acetylcholine (1×10−4 M) that produces a maximal contraction (0.1 mM), with the highest taken as 100% maximal contraction of that tissue. Base line and response levels may be expressed as grams tension developed and as a percent of the response to acetylcholine. The test compounds may be dissolved in DMSO (2 mM/I 100% DMSO) and applied to the prepared strips 5-15 minutes prior to the addition of porcine motilin. After addition, the tension is constantly monitored over 5 min and the maximum tension is recorded. The percent contraction may be measured at four ascending concentrations and where appropriate IC50's may be determined.
  • The preferred compounds are those wherein: [0052]
  • R[0053] 1 is selected from phenylaminocarbonyl, substituted phenylaminocarbonyl, phenylcarbonyl, and substituted phenylcarbonyl;
  • R[0054] 2 is phenylC1-5alkyl, substituted phenylC1-5alkyl or phenyl;
  • R[0055] 3 is phenylcarbonyl, substituted phenylcarbonyl, or substituted C1-5alkylcarbonyl;
  • R[0056] 4 is hydrogen or C1-5alkyl;
  • q is2or 3; [0057]
  • A is C[0058] 1-5alkoxycarbonyl or R7R8N— wherein R7 and R8 are as described above;
  • t is1; [0059]
  • n is O; and [0060]
  • m is 1. [0061]
  • In another preferred embodiment of the invention: [0062]
  • R[0063] 1 is phenylaminocarbonyl or substituted phenylcarbonyl;
  • R[0064] 2 is benzyl, 3-Cl benzyl, or 4-methoxybenzyl;
  • R[0065] 3 is substituted C1-5alkylcarbonyl;
  • R[0066] 4 is hydrogen;
  • R[0067] 6 is hydrogen;
  • q is 2; [0068]
  • A is R[0069] 7R8N— wherein R7 and R8 taken together form a 5 or 6 membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and N-oxides thereof; and
  • X is oxygen. [0070]
  • Also illustrative of the present invention is the compound of Formula I wherein: [0071]
  • R[0072] 1 is phenylaminocarbonyl or halo substituted benzoyl;
  • R[0073] 3 is halo substituted C1-5alkylcarbonyl; and
  • A is morpolinyl. [0074]
  • To prepare the pharmaceutical compositions of this invention, one or more compounds or salts thereof, as the active ingredient, is intimately admixed with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques, which carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral. In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed. Thus for liquid oral preparations, such as for example, suspensions, elixirs and solutions, suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like; for solid oral preparations such as, for example, powders, capsules and tablets, suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar coated or enteric coated by standard techniques. For parenterals, the carrier will usually comprise sterile water, though other ingredients, for example, for purposes such as aiding solubility or for preservation, may be included. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed. The pharmaceutical compositions herein will preferably contain per dosage unit, e.g., tablet, capsule, powder, injection, teaspoonful and the like, from about 5 to about 500 mg of the active ingredient, although other unit dosages may be employed. [0075]
  • In therapeutic use for treating disorders of the gastrointestinal system in mammals, the compounds of this invention may be administered in an amount of from about 0.5 to 100 mg/kg 1-2 times per day orally. In addition, the compounds may be administered via injection at 0.1-10 mg/kg per day. Determination of optimum dosages for a particular situation is within the capabilities of formulators.[0076]
  • In order to illustrate the invention, the following examples are included. These examples do not limit the invention. They are meant to illustrate and suggest a method of practicing the invention. Although there are other methods of practicing this invention, those methods are deemed to be within the scope of this invention. [0077]
  • EXAMPLES Example 1 3-Benzyl-2-cyclohepten-1-one
  • A solution of 3-ethoxy-2-cyclohepten-1-one(5 g, 0.89 mol) in THF (70 mL) was added at room temperature to a solution of 2M benzyl magnesium chloride (800 ml) under N[0078] 2 and stirred for 6 h. The resulting mixture was poured into a solution of 30% H2SO4 and stirred for 5 h. The resulting organic layer was separated, and the aqueous layer was extracted with several portions of ether. The combined organic layer was dried (MgSO4), and concentrated in vacuo to give 3-benzyl-2-cyclohepten-1-one (3.1 g, 65%) as a colorless oil. NMR (CDCl3); 3.45(s,2H1benzylic protons), 5.97 (bs, 1H, olefinic proton), 7.22 (m, 5H, aromatic protons).
  • Example 2 3-Benzyl-2-cyclohepten-1-ol
  • A solution of 3-benzyl-2-cyclohepten-1-one (3.1 g, 18 mmol) in either 100 mL) was slowly added to a suspension of lithium aluminum hydride (LAH) (684 mg, 0.87 mol) and ether (100 mL) at 0° C. under N[0079] 2. The resulting mixture was stirred overnight at ambient temperature and cooled to 0° C. Saturated K2CO3 solution was added to quench the excess LAH, the mixture was filtered through Celite and washed with several portions of ether. The combined organic layers were dried (MgSO4) and concentrated in vacuo to give the title compound (3 g, 93%) as a colorless oil. NMR (CDCl3):3.32(ABq,J=6 Hz,2H, benzylic protons), 4.42 (bs, 1H, CHOH), 5.58 (bs, 1H, olefinic proton), 7.22 (m, 5H, aromatic protons).
  • Example 3 3-Benzyl-3-trichloroacetamidocyclopheptene
  • A solution of 3-benzyl-2-cycloheptene-1-ol (1.1 g, 5.45 mmol) in ether (50 mL) was added to a suspension of hexane washed 60% NaH (230 mg, 5.75 mol) in ether (5 mL) at 0° C. under N[0080] 2 and stirred for 1 h. Trichloroacetonitrile (0.8 g, 5.54 mmol) was slowly added and the resulting mixture was allowed to warm to ambient temperature and stirred overnight. The solvent was removed in vacuo, hexane (25 mL) was added and the mixture was cooled to 0° C. Methanol (1 mL) was added and the resulting solid was filtered through Celite. The organic solvent was removed in vacuo to give a crude intermediate. This intermediate was dissolved in xylene (75 mL) and heated to reflux for 3 h under N2. The solvent was removed in vacuo, and the residue was purified by column on silica gel (100 g, ethylacetate (EtOAc)/hexane (1:9)) to give the title compound (207 mg, 11%) as a white crystal. MS (MH+=346).
  • Example 4 3-Benzyl-3-trichloroacetamido-2-cyclohexenecarboxaldehyde
  • A solution of 3-benzyl-3-trichloroacetamidocycloheptene (207 mg, 0.60 mmol) in methylene chloride (80 mL) was treated with ozone at −78° C. until the solution turned blue. The excess of ozone was removed with a stream of N[0081] 2, dimethyl sulfide (0.2 mL) was added and the mixture was allowed to warm to room temperature paratoluene sulfonic acid-monohydrate (TsOH—H2O) (20 mg) was added and the resulting mixture was stirred for three days. The resulting mixture was treated with 1N NaOH (20 mL). The organic layer was separated and the aqueous layer was extracted with methylene chloride (2×15 mL). The combined organic layer was dried and the solvent was removed in vacuo. The residue was purified by column on silica gel. gel (EtOAc/hexane (1:9˜2:9) to give the aldehyde (63 mg, 30%) as a thick brown oil (crude product), which was carried to Example 5 as its starting material.
  • Example 5 3-Benzyl-3-trichloroacetamido-1-N-[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene
  • NaCNBH[0082] 4 (23 mg, 0.61 mM.) was added to a solution of 3-benzyl-3-trichloroacetamido-2-cyclohexenecarboxaldehyde (63 mg, 0.17 mmol), 3-(2-morpholinoethoxy) aniline (130 mg, 0.59 mmol) acetic acid (0.05 mL) in methanol (10 mL) at room temperature under N2 and stirred for 30 min. Most of methanol was removed in vacuo and the residue was diluted with methylene chloride, washed with 1N. NaOH and dried. The solvent was removed in vacuo and residue was purified by column chromatography on silica gel using hexane:ethyl acetate (1:9) to give the title compound (58 mg, 60%) a a light brown oil. MS (MH+=566).
  • Example 6 3-Benzyl-3-trichloroacetamido-1-( N-phenylaminocarbonyl)-N-[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene
  • A solution of 3-benzyl-3-trichloroacetamido-1-N[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene (28 mg, 0.05 mM), phenyl isocyanate (59 mg, 0.49 mM) and triethyl amine (100 mg) in methylene chloride (5 mL) was stirred at room temperature for 16 hours. Most of solvent was removed in vacuo and the residue was purified by preparative TLC to give 3-Benzyl-3-trichloroacetylamino-1-(N-phenylcarbonyl)-N-[(3-(2-morpholinoethyl)phenyl)amino]methylcyclohexene as a thick oil (21 mg). MS (MH[0083] +=685). This was converted to the mono-hydrochloride salt mp 103-105 (dec).
  • Example 7 3-Benzyl-3-trichloroacetamido-1-N[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene
  • 3,4-Difluorobenzoyl chloride (31 mg, 0.18 mM) was added to a solution of 3-benzyl-3-trichloroacetamido-1-N[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene (26 mg, 0.05 mM) and triethylamine (0.2 mL) in methylene chloride (3 mL) at room temperature under N[0084] 2 and stirred for 2 hours. Most of solvent was removed in vacuo and the oily residue was purified by preparative TLC to give the title compound as a thick oil (22 mg, 58%). MS (MH+=706). This was converted to the mono-hydrochloride salt mp 103-105 (dec).

Claims (19)

What is claimed is:
1. A compound of Formula (I):
Figure US20020002192A1-20020103-C00009
wherein
R1 is selected from hydrogen, C1-5alkyl optionally substituted with halogen, aminoC1-5alkyl, C1-5alkylaminoC1-5alkyl, di-C1-5alkylaminoC1-5alkyl, C1-5alkylcarbonyl, C1-5alkoxycarbonyl, aminocarbonyl, C1-9alkylaminocarbonyl, cycloC3-9alkylaminocarbonyl, heteroarylaminocarbonyl optionally substituted with one or more C1-5alkyl, pyridinylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, thiophenecarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, phenyl, phenylC1-5alkyl, phenoxycarbonyl, phenylcarbonyl, diphenylmethylcarbonyl, phenylaminocarbonyl, phenylthiocarbonyl, phenylaminothiocarbonyl, said phenyl, phenylC1-5alkyl, phenoxycarbonyl, phenylcarbonyl, diphenylmethylcarbonyl, phenylaminocarbonyl, phenylthiocarbonyl, phenylaminothiocarbonyl being optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, trihalomethyl, C1-5alkoxy, amino, nitrile, nitro, C1-5alkylamino, and di-C1-5alkylamino, which substituents may be taken together to form a fused bicyclic aromatic ring or taken together with the phenyl ring to form a fused bicyclic 7-10 membered heterocyclic ring having one or two heteroatoms selected from oxygen, sulfur and nitrogen, and RaRbN-C1-5alkyl wherein Ra and Rb are independently selected from hydrogen and C1-5alkyl, or taken together to form a morpholine, piperazine, piperidine, or N-substituted piperidine wherein the N-substitutent is C1-5alkyl or phenylC1-5alkyl;
R2 is selected from hydrogen, C1-5alkyl, C1-5alkoxy, phenyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, and phenylC1-5alkyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, halo and di-C1-5alkylamino;
R3 is selected from hydrogen, C1-5alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, amino, C1-5alkylamino, and di-C1-5alkylamino;
R4 is selected from hydrogen, C1-5alkyl, C1-5alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, amino, C1-5alkylamino, and di-C1-5alkylamino;
n is 0-3;
m is 1-5;
R5 is
Figure US20020002192A1-20020103-C00010
wherein:
q is 0-3;
t is 0-1;
X is oxygen, CH2, sulfur, hydroxy, thiol, or NRC, wherein
Rc is selected from hydrogen, C1-5alkyl, morpholinoC1-5alkyl, piperidinylC1-5alkyl, N-phenylmethylpiperidinyl, and piperazinylC1-5alkyl,
with the proviso that if q and t are 0, X is hydroxy, thiol, or amino,
A is C1-5alkoxycarbonyl, phenylcarbonyl, or R7R8N—
wherein R7 and R8 are independently selected from hydrogen, C1-5alkyl, and cycloC1-9alkyl, or R7 and R8 form a 5- or 6-membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and sulfoxides and N-oxides thereof; and
R6 is selected from hydrogen, halogen, C1-5alkoxy, C1-5alkylamino, and di-C1-5alkylamino;
or a pharmaceutically acceptable salt thereof.
2. A compound of claim 1 wherein
R1 is selected from phenylaminocarbonyl, substituted phenylaminocarbonyl, phenylcarbonyl, and substituted phenylcarbonyl;
R2 is phenylC1-5alkyl, substituted phenylC1-5alkyl or phenyl;
R3 is phenylcarbonyl, substituted phenylcarbonyl, or substituted C1-5alkylcarbonyl;
R4 is hydrogen or C1-5alkyl;
q is 2or 3;
A is C1-5alkoxycarbonyl or R7R8N— wherein R7and R8 are as claimed in claim 1;
t is 1;
n is 0; and
m is 1.
3. A compound of claim 1, wherein
R1 is phenylaminocarbonyl or substituted phenylcarbonyl;
R2 is benzyl, 3-Cl benzyl, or 4-methoxybenzyl;
R3 is substituted C1-5alkylcarbonyl;
R4 is hydrogen;
R6 is hydrogen;
q is 2;
A is R7R8N— wherein R7 and R8 taken together form a 5 or 6 membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and N-oxides thereof; and
X is oxygen.
4. A compound according to claim 1, wherein R1 is phenylaminocarbonyl or halo substituted benzoyl;
R3 is halo substituted C1-5alkylcarbonyl; and
A is morpolinyl.
5. A compound of claim 1 represented by Formula (Ia).
Figure US20020002192A1-20020103-C00011
wherein Ph is phenyl.
6. A compound of claim 1 represented by Formula (Ib)
Figure US20020002192A1-20020103-C00012
wherein Ph is phenyl.
7. A pharmaceutical composition comprising an effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
8. A pharmaceutical composition comprising an effective amount of a compound of claim 2 and a pharmaceutically acceptable carrier.
9. A pharmaceutical composition comprising an effective amount of a compound of Formula (Ia) or (Ib), and a pharmaceutically acceptable carrier.
Figure US20020002192A1-20020103-C00013
10. A method of treating a condition associated with motilin receptor activity comprising administering to a subject an effective amount of a compound of claim 1.
11. A method of claim 10, wherein the condition is irritable bowel syndrome or esophageal reflux.
12. A method of claim 10, wherein the compound is a compound of Formula (I)
Figure US20020002192A1-20020103-C00014
wherein
R1 is selected from phenylaminocarbonyl, substituted phenylaminocarbonyl, phenylcarbonyl, and substituted phenylcarbonyl;
R2 is phenylC1-5alkyl, substituted phenylC1-5alkyl or phenyl;
R3 is phenylcarbonyl, substituted phenylcarbonyl, or substituted C1-5alkylcarbonyl;
R4 is hydrogen or C1-5alkyl;
q is2or 3;
A is C1-5alkoxycarbonyl or R7R8N— wherein R7 and R8 are as claimed in claim 1;
t is 1;
n is 0; and
m is 1.
13. A method of claim 10, wherein the compound is a compound of Formula (I)
Figure US20020002192A1-20020103-C00015
wherein
R1 is phenylaminocarbonyl or substituted phenylcarbonyl;
R2 is benzyl, 3-Cl benzyl, or 4-methoxybenzyl;
R3 is substituted C1-5alkylcarbonyl;
R4 is hydrogen;
R6 is hydrogen;
q is 2;
A is R7R8N— wherein R7 and R8 taken together form a 5 or 6 membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and N-oxides thereof; and
X is oxygen.
14. A method of claim 10, wherein the compound is a compound of Formula (Ia) or (Ib).
Figure US20020002192A1-20020103-C00016
15. A method of treating a gastrointestinal side effect resulting from administration of erythromycin, which comprises administering to a subject an effective amount of a compound of claim 1.
16. A method of claim 15, wherein the condition is irritable bowel syndrome or esophageal reflux.
17. A method of claim 15, wherein the compound is a compound of Formula (I)
Figure US20020002192A1-20020103-C00017
wherein
R1 is selected from phenylaminocarbonyl, substituted phenylaminocarbonyl, phenylcarbonyl, and substituted phenylcarbonyl;
R2 is phenylC1-5alkyl, substituted phenylC1-5alkyl or phenyl;
R3 is phenylcarbonyl, substituted phenylcarbonyl, or substituted C1-5alkylcarbonyl;
R4 is hydrogen or C1-5alkyl;
q is 2 or 3;
A is C1-5alkoxycarbonyl or R7R8N— wherein R7 and R8 are as claimed in claim 1;
t is 1;
n is 0; and
m is 1.
18. A method of claim 15, wherein the compound is a compound of Formula (I)
Figure US20020002192A1-20020103-C00018
wherein
R1 is phenylaminocarbonyl or substituted phenylcarbonyl;
R2 is benzyl, 3-Cl benzyl, or 4-methoxybenzyl;
R3 is substituted C1-5alkylcarbonyl;
R4 is hydrogen;
R6 is hydrogen;
q is 2;
A is R7R8N— wherein R7 and R8 taken together form a 5 or 6 membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and N-oxides thereof; and
X is oxygen.
19. A method of claim 15, wherein the compound is a compound of Formula (Ia) or (Ib).
Figure US20020002192A1-20020103-C00019
US09/803,572 2000-03-13 2001-03-09 Cyclohexene derivatives useful as antagonists of the motilin receptor Expired - Lifetime US6423714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/803,572 US6423714B2 (en) 2000-03-13 2001-03-09 Cyclohexene derivatives useful as antagonists of the motilin receptor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18873200P 2000-03-13 2000-03-13
US09/803,572 US6423714B2 (en) 2000-03-13 2001-03-09 Cyclohexene derivatives useful as antagonists of the motilin receptor

Publications (2)

Publication Number Publication Date
US20020002192A1 true US20020002192A1 (en) 2002-01-03
US6423714B2 US6423714B2 (en) 2002-07-23

Family

ID=22694307

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/803,572 Expired - Lifetime US6423714B2 (en) 2000-03-13 2001-03-09 Cyclohexene derivatives useful as antagonists of the motilin receptor

Country Status (4)

Country Link
US (1) US6423714B2 (en)
AR (1) AR029896A1 (en)
AU (1) AU2001250820A1 (en)
WO (1) WO2001068621A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050054562A1 (en) * 2003-06-18 2005-03-10 Tranzyme Pharma Inc. Macrocyclic antagonists of the motilin receptor
US20080214625A1 (en) * 2005-03-07 2008-09-04 Koninklijke Hilips Electronics, N.V. Roflumilast for the Treatment of Diabetes Mellitus
US20080287371A1 (en) * 2007-05-17 2008-11-20 Tranzyme Pharma Inc. Macrocyclic antagonists of the motilin receptor for modulation of the migrating motor complex
US20090192160A1 (en) * 2006-06-28 2009-07-30 Glaxo Group Limited Compounds
EP2431380A2 (en) 2006-09-11 2012-03-21 Tranzyme Pharma, Inc. Macrocyclic antagonist of the motilin receptor for treatment of gastrointestinal dysmotility disorders

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100502722C (en) * 2004-01-29 2009-06-24 应用材料公司 Methods and apparatus for installing a scrubber brush on a mandrel
US7596395B2 (en) * 2004-10-21 2009-09-29 Nokia Corporation Depressible hinge and mobile stations using same
GB0611907D0 (en) 2006-06-15 2006-07-26 Glaxo Group Ltd Compounds
JP2009501199A (en) 2005-07-12 2009-01-15 グラクソ グループ リミテッド Piperazine heteroaryl derivatives as GPR38 agonists
JP4938777B2 (en) * 2005-07-26 2012-05-23 グラクソ グループ リミテッド Benzylpiperazine derivatives and their pharmaceutical use
US8407846B2 (en) * 2006-03-07 2013-04-02 Applied Materials, Inc. Scrubber brush with sleeve and brush mandrel for use with the scrubber brush
CA2750699C (en) 2009-02-27 2015-12-29 Raqualia Pharma Inc. Oxyindole derivatives with motilin receptor agonistic activity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU202195B (en) * 1987-12-31 1991-02-28 Egyt Gyogyszervegyeszeti Gyar Process for producing new substituted styrene derivatives and medical compositions comprising such compounds
FR2636628B1 (en) 1988-08-25 1990-12-28 Sanofi Sa THIADIAZOLE-1,3,4 DERIVATIVES, PROCESS FOR OBTAINING SAME AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAME
JP2002502351A (en) 1994-08-15 2002-01-22 メルク シヤープ エンド ドーム リミテツド Morpholine derivatives and their use as therapeutics
US5972939A (en) * 1997-10-28 1999-10-26 Ortho-Mcneil Pharmaceutical, Inc. Cyclopentene derivatives useful as antagonists of the motilin receptor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497242B2 (en) 2003-06-18 2013-07-30 Tranzyme Pharma Inc. Processes for intermediates for macrocyclic compounds
US9181298B2 (en) 2003-06-18 2015-11-10 Ocera Therapeutics, Inc. Intermediates for macrocyclic compounds
US10040751B2 (en) 2003-06-18 2018-08-07 Ocera Therapeutics, Inc. Intermediates for macrocyclic compounds
US7521420B2 (en) 2003-06-18 2009-04-21 Tranzyme Pharma, Inc. Macrocyclic antagonists of the motilin receptor
US8129561B2 (en) 2003-06-18 2012-03-06 Tranzyme Pharma Inc. Processes for intermediates for macrocyclic compounds
EP2210612A2 (en) 2003-06-18 2010-07-28 Tranzyme Pharma Inc. Macrocyclic antagonists of the motilin receptor
US20050054562A1 (en) * 2003-06-18 2005-03-10 Tranzyme Pharma Inc. Macrocyclic antagonists of the motilin receptor
US20080214625A1 (en) * 2005-03-07 2008-09-04 Koninklijke Hilips Electronics, N.V. Roflumilast for the Treatment of Diabetes Mellitus
US8017633B2 (en) 2005-03-08 2011-09-13 Nycomed Gmbh Roflumilast for the treatment of diabetes mellitus
US8541456B2 (en) 2005-03-08 2013-09-24 Takeda Gmbh Roflumilast for the treatment of diabetes mellitus type 2
US20090192160A1 (en) * 2006-06-28 2009-07-30 Glaxo Group Limited Compounds
US8853218B2 (en) 2006-06-28 2014-10-07 Glaxo Group Limited Compounds
EP2431380A2 (en) 2006-09-11 2012-03-21 Tranzyme Pharma, Inc. Macrocyclic antagonist of the motilin receptor for treatment of gastrointestinal dysmotility disorders
US20080287371A1 (en) * 2007-05-17 2008-11-20 Tranzyme Pharma Inc. Macrocyclic antagonists of the motilin receptor for modulation of the migrating motor complex

Also Published As

Publication number Publication date
WO2001068621A1 (en) 2001-09-20
US6423714B2 (en) 2002-07-23
AU2001250820A1 (en) 2001-09-24
AR029896A1 (en) 2003-07-23

Similar Documents

Publication Publication Date Title
US6291476B1 (en) Pyrazole carboxamides useful for the treatment of obesity and other disorders
US6117882A (en) 5-HT4 agonists and antagonists
US5972939A (en) Cyclopentene derivatives useful as antagonists of the motilin receptor
CZ20032696A3 (en) Thiohydantoins and their use when treating diabetes mellitus
US6423714B2 (en) Cyclohexene derivatives useful as antagonists of the motilin receptor
CA2244879A1 (en) Compositions and kits comprising alpha-adrenergic receptor antagonists and nitric oxide donors and methods of use
PT90001B (en) METHOD FOR PREPARING HETEROCYCLIC DERIVATIVES OF ETHYLENODIAMINE
US6667309B2 (en) Cyclobutene derivatives useful as antagonists of the motilin receptor
FR2871463A1 (en) AROYL-O-PIPERIDINE-STRUCTURED DERIVATIVES, PROCESSES FOR THEIR PREPARATION, PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND THERAPEUTIC APPLICATIONS THEREOF
US6624165B2 (en) Cyclopentene derivatives useful as antagonists of the motilin receptor
TW200946118A (en) Soluble epoxide hydrolase inhibitors
PT89805B (en) PROCESS FOR THE PREPARATION OF DIHYDROPYRIDINES
US5643917A (en) 4-aminomethyl-1-azaadamantane derived benzamides
JP3496061B2 (en) Arginine analogs active as inhibitors of NO synthase
IE46928B1 (en) -halomethyl derivatives of amino acids
US4100349A (en) α-Acetylenic derivatives of histamine and related compounds
NO166788B (en) PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE TETRAHYDROBENZOFURO (2,3-C) PYRIDINES.
MXPA00004133A (en) Cyclopentene derivatives useful as antagonists of the motilin receptor
CZ20001447A3 (en) Cyclopentene derivatives usable as antagonists of receptors for motilin
JPS63227579A (en) Novel n-substituted derivatives of alpha- mercaptomethylbenzenepropaneamide, manufacture, use as drug and composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORTHO-MCNEIL PHARMACEUTICAL, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, ROBERT H.;XIANG, MIN A.;REEL/FRAME:011826/0533

Effective date: 20010507

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12