US20010052314A1 - Method of controlling the attitude of a boat at high speed through boat hull design and a boat hull - Google Patents

Method of controlling the attitude of a boat at high speed through boat hull design and a boat hull Download PDF

Info

Publication number
US20010052314A1
US20010052314A1 US09/871,098 US87109801A US2001052314A1 US 20010052314 A1 US20010052314 A1 US 20010052314A1 US 87109801 A US87109801 A US 87109801A US 2001052314 A1 US2001052314 A1 US 2001052314A1
Authority
US
United States
Prior art keywords
hull
chine
pair
high speed
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/871,098
Other versions
US6415731B2 (en
Inventor
Rob Chrunyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20010052314A1 publication Critical patent/US20010052314A1/en
Application granted granted Critical
Publication of US6415731B2 publication Critical patent/US6415731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/18Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type
    • B63B1/20Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type having more than one planing surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/042Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull the underpart of which being partly provided with channels or the like, e.g. catamaran shaped

Definitions

  • the present invention relates to a method of controlling the attitude of a boat at high speed through boat hull design, and a boat hull constructed in accordance with the teachings of the method.
  • a first step involves forming a pair of high speed steps in the hull of the boat adjacent to the stern on opposite sides of the keel between the chines to control the attitude of the boat at high speed.
  • the length of the pair of high speed steps must be not less than 10% and not more than 30% of the length of the hull.
  • the width of the each of the pair of high speed steps must be not less than 20% and not more than 40% of the chine to chine width of the hull.
  • the depth of the each of the pair of high speed steps must be not less than 1% and not more than 5% of the chine to chine width of the hull.
  • a second step involves forming at least one pair of transition steps in the hull of the boat adjacent to the pair of high speed steps on opposite sides of the keel and between the chines to provide a transition to the pair of high speed steps.
  • the length of the pair of transition steps is not less than 10% and not more than 30% of the length of the hull.
  • the width of the each of the pair of transition steps is not less than 20% and not more than 40% of the chine to chine width of the hull.
  • the depth of the each of the at least one pair of transition steps being not less than 0.5% and not more than 2.5% of the chine to chine width of the hull.
  • FIG. 1 is a bottom plan view of a boat hull constructed in accordance with the teachings of the present method.
  • FIG. 2 is a side elevation view of the boat hull illustrated in FIG. 1.
  • FIG. 3 is an end elevation view of the boat hull illustrated in FIG. 1.
  • FIG. 4 is an bottom plan view of the boat hull illustrated in FIG. 1, showing wetted surface area at low speed.
  • FIG. 5 is an bottom plan view of the boat hull illustrated in FIG. 1, showing wetted surface area at high speed.
  • FIGS. 1 through 5 The preferred embodiment, a boat hull generally identified by reference numeral 10 , will now be described with reference to FIGS. 1 through 5.
  • This boat hull has been constructed in accordance with the teachings of the present method of controlling the attitude of a boat at high speed through boat hull design.
  • a boat hull 10 of boat 12 with a bow 14 and a stern 16 , chines 18 , and a keel 20 .
  • Boat hull 10 is characterized by a pair of high speed steps 22 in hull 10 of boat 12 adjacent to stern 16 on opposed sides 24 of keel 20 and between chines 18 to control the attitude of boat 12 at high speed.
  • the length 26 of pair of high speed steps 22 is not less than 10% and not more than 30% of the length 28 of hull 10 .
  • the width 30 of each of pair of high speed steps 22 is not less than 20% and not more than 40% of chine to chine width 32 of hull 10 .
  • depth 34 of each of pair of high speed steps 22 is not less than 1% and not more than 5% of chine to chine width 32 of hull 10 .
  • this chine to chine width is identified as “X”.
  • the depth is indicated as a percentage of “X”.
  • At least one pair of transition steps 36 are provided for in hull 10 of boat 12 adjacent to pair of high speed steps 22 on opposite sides 24 of keel 20 and between chines 18 to provide a transition to pair of high speed steps 22 .
  • Length 38 of pair of transition steps 36 is not less than 10% and not more than 30% of length 28 of hull 10 .
  • width 40 of each of pair of transition steps 36 is not less than 20% and not more than 40% of chine to chine width 32 of hull 10 .
  • depth 42 of each of pair of transition steps 36 is not less than 0.5% and not more than 2.5% of chine to chine width 32 of hull 10 .
  • each of pair of high speed steps 22 has a bow end 44 and a stern end 46 .
  • each of pair of high speed steps 22 increases in depth 34 from bow end 44 toward stern end 46 .
  • the angle is preferably between 0.5 and 2 degrees. A change in the angle has the effect of altering the amount of lift exerted upon boat 12 . Beneficial results have been obtained with an angle of 0.75 of a degree.
  • high speed steps 22 will not have enough surface area 48 to control the attitude of hull 10 if length 26 of high speed steps 22 is less than 10% of chine to chine width 32 of hull 10 .
  • Widths 30 of high speed steps 22 that are less than 20% of chine to chine width 32 of hull 10 are too narrow to effectively control the attitude of hull 10 .
  • Widths 30 of more than 40% of chine to chine width 32 of hull 10 leave keel 20 too narrow to support the weight of hull 10 which results in high drag.
  • depth 34 of high speed steps 22 is less than 1% of chine to chine width 32 of hull 10 , it results in hull 10 having a high drag.
  • High speed steps 22 of depth 34 of more than 5% of chine to chine width 32 of hull 10 make it difficult to for high speed steps 22 to maintain contact with the water surface resulting in a loss of attitude control.
  • transition steps 36 will not have enough surface area 48 to control the attitude of hull 10 if length 38 of transition steps 36 is less than 10% of chine to chine width 32 of hull 10 .
  • Widths 40 of transition steps 36 that are less than 20% of chine to chine width 32 of hull 10 are too narrow to effectively control the attitude of hull 10 .
  • Widths 40 of more than 40% of chine to chine width 32 of hull 10 leave keel 20 too narrow to support the weight of hull 10 which results in high drag.
  • FIG. 2 if depth 42 of transition steps 36 is less than 0.5% of chine to chine width 32 of hull 10 , it results in hull 10 having a high drag. Transition steps 36 of depth 42 of more than 2.5% of chine to chine width 32 of hull 10 make it difficult to for transition steps 36 to maintain contact with the water surface resulting in a loss of attitude control.
  • the length 26 of each of pair of high speed steps 22 is not less than 14% and not more than 22% of length 28 of hull 10 .
  • width 30 of each of pair of high speed steps 22 is not less than 26% and not more than 34% of chine to chine width 32 of hull 10 .
  • depth 34 of each of pair of high speed steps 22 is not less than 2% and not more than 4% of chine to chine width 32 of the hull 10 .
  • length 38 of each of pair of transition steps 36 is not less than 14% and not more than 22% of length 28 of the hull 10 .
  • width 40 of each of pair of transition steps 36 is not less than 26% and not more than 34% of chine to chine width 32 of hull 10 .
  • Depth 42 of each of pair of transition steps 36 is not less than 1% and not more than 1.5% of chine to chine width 32 of hull 10 .

Abstract

A method of controlling the attitude of a boat at high speed through boat hull design involves a first step of forming a pair of high speed steps in the hull of the boat. The pair of high speed steps provide enough surface area to control ride attitude, while reducing the wetted area of the hull to decrease drag. A second step involves forming transition steps to provide a transition to the high speed steps as the boat accelerates. In addition to reducing drag, the method aids in turning and lifting of the hull by trapping air and water in the steps.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a method of controlling the attitude of a boat at high speed through boat hull design, and a boat hull constructed in accordance with the teachings of the method. [0001]
  • BACKGROUND OF THE INVENTION
  • The North American Space Agency (NASA) conducted a study as to the optimum attack angle for a motor boat. NASA found that the optimum attack angle was approximately 2 to 3 degrees. It has been found, however, that it is difficult to maintain an attack angle of between 2 and 3 degrees as a motor boat accelerates. This is particularly the case with motor boats powered by inboard jets, as the thrust line is higher than with motor boats powered by outboard motors. A lower thrust line allows greater leverage on the hull when trimming the drive to achieve the desired ride angle of the boat. The high thrust line of the jet is not nearly as effective in this regard because as the speed of a jet boat increases, hydrodynamic pressure builds near the stern making it difficult to maintain an effective planing attitude. This results in the hull running flat which creates a greater wetted surface area. The greater the wetted surface area of the hull, the more frictional water drag occurs resulting in poor handling and a loss of control of the boat. [0002]
  • SUMMARY OF THE INVENTION
  • What is required is a method of controlling the attitude of a boat at high speed through boat hull design, and a boat hull constructed in accordance with the teachings of the method. [0003]
  • According to one aspect of the present invention there is provided a method of controlling the attitude of a boat at high speed through boat hull design. A first step involves forming a pair of high speed steps in the hull of the boat adjacent to the stern on opposite sides of the keel between the chines to control the attitude of the boat at high speed. The length of the pair of high speed steps must be not less than 10% and not more than 30% of the length of the hull. The width of the each of the pair of high speed steps must be not less than 20% and not more than 40% of the chine to chine width of the hull. The depth of the each of the pair of high speed steps must be not less than 1% and not more than 5% of the chine to chine width of the hull. A second step involves forming at least one pair of transition steps in the hull of the boat adjacent to the pair of high speed steps on opposite sides of the keel and between the chines to provide a transition to the pair of high speed steps. The length of the pair of transition steps is not less than 10% and not more than 30% of the length of the hull. The width of the each of the pair of transition steps is not less than 20% and not more than 40% of the chine to chine width of the hull. The depth of the each of the at least one pair of transition steps being not less than 0.5% and not more than 2.5% of the chine to chine width of the hull. [0004]
  • According to another aspect of the present invention there is provided a boat hull that is constructed in accordance with the teachings of the present method. [0005]
  • With a boat hull constructed in accordance with the teachings of the above method, the wetted surface area of the boat is less at high speed, as will hereinafter be further described. This method also aids in turning and lifting of the hull by trapping air and water in the steps.[0006]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings, wherein: [0007]
  • FIG. 1 is a bottom plan view of a boat hull constructed in accordance with the teachings of the present method. [0008]
  • FIG. 2 is a side elevation view of the boat hull illustrated in FIG. 1. [0009]
  • FIG. 3 is an end elevation view of the boat hull illustrated in FIG. 1. [0010]
  • FIG. 4 is an bottom plan view of the boat hull illustrated in FIG. 1, showing wetted surface area at low speed. [0011]
  • FIG. 5 is an bottom plan view of the boat hull illustrated in FIG. 1, showing wetted surface area at high speed.[0012]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The preferred embodiment, a boat hull generally identified by [0013] reference numeral 10, will now be described with reference to FIGS. 1 through 5.
  • This boat hull has been constructed in accordance with the teachings of the present method of controlling the attitude of a boat at high speed through boat hull design. [0014]
  • Referring to FIG. 1, there is provided a [0015] boat hull 10 of boat 12 with a bow 14 and a stern 16, chines 18, and a keel 20. Boat hull 10 is characterized by a pair of high speed steps 22 in hull 10 of boat 12 adjacent to stern 16 on opposed sides 24 of keel 20 and between chines 18 to control the attitude of boat 12 at high speed.
  • The [0016] length 26 of pair of high speed steps 22 is not less than 10% and not more than 30% of the length 28 of hull 10. Referring to FIG. 3, the width 30 of each of pair of high speed steps 22 is not less than 20% and not more than 40% of chine to chine width 32 of hull 10. Referring to FIG. 2, depth 34 of each of pair of high speed steps 22 is not less than 1% and not more than 5% of chine to chine width 32 of hull 10. In FIGS. 1 and 3, this chine to chine width is identified as “X”. In FIG. 2, the depth is indicated as a percentage of “X”.
  • Referring to FIG. 1, at least one pair of [0017] transition steps 36 are provided for in hull 10 of boat 12 adjacent to pair of high speed steps 22 on opposite sides 24 of keel 20 and between chines 18 to provide a transition to pair of high speed steps 22. Length 38 of pair of transition steps 36 is not less than 10% and not more than 30% of length 28 of hull 10. Referring to FIG. 3, width 40 of each of pair of transition steps 36 is not less than 20% and not more than 40% of chine to chine width 32 of hull 10. Referring to FIG. 2, depth 42 of each of pair of transition steps 36 is not less than 0.5% and not more than 2.5% of chine to chine width 32 of hull 10.
  • Referring to FIG. 1, each of pair of [0018] high speed steps 22 has a bow end 44 and a stern end 46. Referring to FIG. 2, each of pair of high speed steps 22 increases in depth 34 from bow end 44 toward stern end 46. The angle is preferably between 0.5 and 2 degrees. A change in the angle has the effect of altering the amount of lift exerted upon boat 12. Beneficial results have been obtained with an angle of 0.75 of a degree.
  • Referring to FIG. 5, [0019] high speed steps 22 will not have enough surface area 48 to control the attitude of hull 10 if length 26 of high speed steps 22 is less than 10% of chine to chine width 32 of hull 10. Referring to FIG. 4, alternatively, there will be too much wetted surface area 48 which causes hull 10 to run flat and results in high frictional drag if length 26 of high speed steps 22 is more than 30% of chine to chine width 32 of hull 10. Widths 30 of high speed steps 22 that are less than 20% of chine to chine width 32 of hull 10 are too narrow to effectively control the attitude of hull 10. Widths 30 of more than 40% of chine to chine width 32 of hull 10 leave keel 20 too narrow to support the weight of hull 10 which results in high drag. Referring to FIG. 2, if depth 34 of high speed steps 22 is less than 1% of chine to chine width 32 of hull 10, it results in hull 10 having a high drag. High speed steps 22 of depth 34 of more than 5% of chine to chine width 32 of hull 10 make it difficult to for high speed steps 22 to maintain contact with the water surface resulting in a loss of attitude control.
  • Referring to FIG. 5, [0020] transition steps 36 will not have enough surface area 48 to control the attitude of hull 10 if length 38 of transition steps 36 is less than 10% of chine to chine width 32 of hull 10. Referring to FIG. 4, alternatively, there will be too much wetted surface area 48 which causes hull 10 to run flat and results in high frictional drag if length 38 of transition steps 36 is more than 30% of chine to chine width 32 of hull 10. Widths 40 of transition steps 36 that are less than 20% of chine to chine width 32 of hull 10 are too narrow to effectively control the attitude of hull 10. Widths 40 of more than 40% of chine to chine width 32 of hull 10 leave keel 20 too narrow to support the weight of hull 10 which results in high drag. FIG. 2, if depth 42 of transition steps 36 is less than 0.5% of chine to chine width 32 of hull 10, it results in hull 10 having a high drag. Transition steps 36 of depth 42 of more than 2.5% of chine to chine width 32 of hull 10 make it difficult to for transition steps 36 to maintain contact with the water surface resulting in a loss of attitude control.
  • While using the percentage range described above provides an improved ability to control the attitude of [0021] boat 12 at high speeds, more beneficial results are obtained by applying a narrower range of percentages. The benefit of the narrow range of percentages is that improved handling and control of the attitude of boat 12 at high speeds can be obtained. Using the narrower range of percentages results in less wetted surface area 48 on hull 10 of boat 12 resulting in less frictional drag yet allows for enough wetted surface area 48 for effective control of attitude of boat at high speeds. The narrower range of percentages will now be discussed with reference to FIGS. 1 through 5.
  • Referring to FIG. 1, the [0022] length 26 of each of pair of high speed steps 22 is not less than 14% and not more than 22% of length 28 of hull 10. Referring to FIG. 3, width 30 of each of pair of high speed steps 22 is not less than 26% and not more than 34% of chine to chine width 32 of hull 10. Referring to FIG. 2, depth 34 of each of pair of high speed steps 22 is not less than 2% and not more than 4% of chine to chine width 32 of the hull 10. Referring to FIG. 1, length 38 of each of pair of transition steps 36 is not less than 14% and not more than 22% of length 28 of the hull 10. Referring to FIG. 3, width 40 of each of pair of transition steps 36 is not less than 26% and not more than 34% of chine to chine width 32 of hull 10. Depth 42 of each of pair of transition steps 36 is not less than 1% and not more than 1.5% of chine to chine width 32 of hull 10.
  • With a boat hull constructed, as described, the wetted surface area of the boat is less at high speed. This results in less drag. However, the steps also aid in turning and lifting of the hull by trapping air and water in the steps. [0023]
  • Examples will now be describe to assist in the successful application of the teachings of the method. [0024]
  • EXAMPLE #1
  • Recommended dimensions for [0025] boat 12 having:
  • a [0026] hull length 28 of 228 inches (19 feet)
  • a chine to chine [0027] hull width 32 of 63 inches Length 26 of each high speed step 22 is not less than 10% of hull length 28 of 228 inches=22.8 inches and not more than 30% of hull length 28 of 228 inches−68.4 inches. Preferred is a narrower range of 14% of hull length 28 of 228 inches=31.92 and 22% of hull length 28 of 228 inches=50.16 inches. What is illustrated is 40 inches which is approximately 18%. Width 30 of each high speed step 22 is not less than 20% of hull width 32 of 63 inches=12.6 inches and not more than 40% of hull width 32 of 63 inches=25.2 inches. Preferred is a narrower range of 26% of hull width 32 of 63 inches=16.38 and 34% of hull width 32 of 63 inches=21.42 inches. What is illustrated is 18.9 inches which is approximately 30% depth 34 of each high speed step 22 is not less than 1% of hull width 32 of 63 inches=0.63 inches and not more than 5% of hull width 32 of 63 inches=3.15 inches. Preferred is a narrower range of 2% of hull width 32 of 63 inches=1.26 and 4% of hull width 32 of 63 inches=2.52 inches. What is illustrated is a slope which starts at bow end 44 at 1.5 inches which is approximately 2.4% and gradually increases in depth from bow end 44 toward stern end 46 to 2 inches which is approximately 3.2%.
  • [0028] Length 38 of each transition step 36 is not less than 10% of hull length 28 of 228 inches=22.8 inches and not more than 30% of hull length 28 of 228 inches=68.4 inches. The Preferred range is a narrower range of 14% of hull length 28 of 228 inches=31.92 and 22% of hull length 28 of 228 inches=50.16 inches. What is actually illustrated is 41 inches which is approximately 18% width 40 of each transition step 36 is not less than 20% of hull width 32 of 63 inches=12.6 inches and not more than 40% of hull width 32 of 63 inches=25.2 inches. Preferred is a narrower range of 26% of hull width 32 of 63 inches=16.38 and 34% of hull width 32 of 63 inches=21.42 inches. What is illustrated is 18.9 inches which is approximately 30% depth 42 of each transition step 36 is not less than 0.5% of hull width 32 of 63 inches=0.32 inches and not more than 2.5% of hull width 32 of 63 inches=1.58 inches. Preferred is a narrower range of 1% of hull width 32 of 63 inches=0.63 and 1.5% of hull width 32 of 63 inches=0.95 inches. What is illustrated is a 0.75 inches which is approximately 1.2%.
  • EXAMPLE #2
  • Recommended dimensions for a [0029] boat 12 having:
  • a [0030] hull length 28 of 342 inches (28.5 feet)
  • a chine to chine [0031] hull width 32 of 94.5 inches Length 26 of each high speed step 22 is not less than 10% of hull length 28 of 342 inches=34.2 inches and not more than 30% of hull length 28 of 342 inches=102.6 inches. Preferred is a narrower range of 14% of hull length 28 of 342 inches=47.88 and 22% of hull length 28 of 342 inches=75.24 inches. What is illustrated is 61.5 inches which is approximately 18% width 30 of each high speed step 22 is not less than 20% of hull width 32 of 94.5 inches=18.9 inches and not more than 40% of hull width 32 of 94.5 inches=37.8 inches. Preferred is a narrower range of 26% of hull width 32 of 94.5 inches=24.57 and 34% of hull width 32 of 94.5 inches=32.13 inches. What is illustrated is 28.35 inches which is approximately 30% depth 34 of each high speed step 22 is not less than 1% of hull width 32 of 94.5 inches−0.95 inches and not more than 5% of hull width 32 of 94.5 inches=4.73 inches. Preferred is a narrower range of 2% of hull width 32 of 94.5 inches=1.89 and 4% of hull width 32 of 63 inches=3.78 inches. What is illustrated is a slope which starts at bow end 44 at 2.25 inches which is approximately 2.4% and gradually increases in depth 42 from bow end 44 toward stern end 46 to 3 inches which is approximately 3.2%.
  • [0032] Length 38 of each transition step 36 is not less than 10% of hull length 28 of 342 inches−34.2 inches and not more than 30% of hull length 28 of 342 inches=102.6 inches. The preferred range is a narrower range of 14% of hull length 28 of 342 inches=47.88 and 22% of hull length 28 of 342 inches=75.24 inches. What is actually illustrated is 60 inches which is approximately 18% width 40 of each transition step 36 is not less than 20% of hull width 32 of 94.5 inches=18.9 inches and not more than 40% of hull width 32 of 94.5 inches=37.8 inches. Preferred is a narrower range of 26% of hull width 32 of 94.5 inches=24.57 and 34% of hull width 32 of 94.5 inches=32.13 inches. What is illustrated is 28.35 inches which is approximately 30% depth 42 of each transition step 36 is not less than 0.5% of hull width 32 of 94.5 inches=0.47 inches and not more than 2.5% of hull width 32 of 94.5 inches=2.36 inches. Preferred is a narrower range of 1% of hull width 32 of 94.5 inches=0.95 and 1.5% of hull width 32 of 94.5 inches=1.42 inches. What is illustrated is a 1.13 inches which is approximately 1.2%.
  • Where relative dimensions of the length of the hull have been provided above, it will be understood that trim tab, drives, swim platforms, etc. are not to be included in such calculations. [0033]
  • It will be apparent to one skilled in the art that modifications may be made to the illustrated embodiment without departing from the spirit and scope of the invention as hereinafter defined in the claims. [0034]

Claims (6)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A method of controlling the attitude of a boat at high speed through boat hull design, comprising the steps of:
forming a pair of high speed steps in the hull of the boat adjacent to the stern on opposite sides of the keel between the chines to control the attitude of the boat at high speed, the length of the pair of high speed steps being not less than 10% and not more than 30% of the length of the hull, the width of the each of the pair of high speed steps being not less than 20% and not more than 40% of the chine to chine width of the hull, the depth of the each of the pair of high speed steps being not less than 1% and not more than 5% of the chine to chine width of the hull; and
forming at least one pair of transition steps in the hull of the boat adjacent to the pair of high speed steps on opposite sides of the keel and between the chines to provide a transition to the pair of high speed steps, the length of the at least one pair of transition steps being not less than 10% and not more than 30% of the length of the hull, the width of the each of the at least one pair of transition steps being not less than 20% and not more than 40% of the chine to chine width of the hull, the depth of the each of the at least one pair of transition steps being not less than 0.5% and not more than 2.5% of the chine to chine width of the hull.
2. The method as defined in
claim 1
, each of the pair of high speed steps having a bow end and a stern end, each of the pair of high speed steps increasing in depth from the bow end toward the stern end.
3. The method as defined in
claim 1
, the length pair of high speed steps being not less than 14% and not more than 22% of the length of the hull, the width of the each of the pair of high speed steps being not less than 26% and not more than 34% of the chine to chine width of the hull, the depth of the each of the pair of high speed steps being not less than 2% and not more than 4% of the chine to chine width of the hull; and
the length of the at least one pair of transition steps being not less than 14% and not more than 22% of the length of the hull, the width of the each of the at least one pair of transition steps being not less than 26% and not more than 34% of the chine to chine width of the hull, the depth of the each of the at least one pair of transition steps being not less than 1% and not more than 1.5% of the chine to chine width of the hull.
4. A boat hull, characterized by:
a pair of high speed steps in the hull of the boat adjacent to the stern on opposed sides of the keel and between the chines to control the attitude of the boat at high speed, the length of the pair of high speed steps being not less than 10% and not more than 30% of the length of the hull, the width of the each of the pair of high speed steps being not less than 20% and not more than 40% of the chine to chine width of the hull, the depth of the each of the pair of high speed steps being not less than 1% and not more than 5% of the chine to chine width of the hull; and
at least one pair of transition steps in the hull of the boat adjacent to the pair of high speed steps on opposite sides of the keel and between the chines to provide a transition to the pair of high speed steps, the length of the at least one pair of transition steps being not less than 10% and not more than 30% of the length of the hull, the width of the each of the at least one pair of transition steps being not less than 20% and not more than 40% of the chine to chine width of the hull, the depth of the each of the at least one pair of transition steps being not less than 0.5% and not more than 2.5% of the chine to chine width of the hull.
5. The boat hull as defined in
claim 4
, wherein each of the pair of high speed steps has a bow end and a stern end, each of the pair of high speed steps increasing in depth from the bow end toward the stern end.
6. The boat hull as defined in
claim 4
, wherein the length pair of high speed steps being not less than 14% and not more than 22% of the length of the hull, the width of the each of the pair of high speed steps being not less than 26% and not more than 34% of the chine to chine width of the hull, the depth of the each of the pair of high speed steps being not less than 2% and not more than 4% of the chine to chine width of the hull; and
the length of the at least one pair of transition steps being not less than 14% and not more than 22% of the length of the hull, the width of the each of the at least one pair of transition steps being not less than 26% and not more than 34% of the chine to chine width of the hull, the depth of the each of the at least one pair of transition steps being not less than 1% and not more than 1.5% of the chine to chine width of the hull.
US09/871,098 2000-06-01 2001-05-31 Method of controlling the attitude of a boat at high speed through boat hull design and a boat hull Expired - Fee Related US6415731B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA2,310,554 2000-06-01
CA002310554A CA2310554C (en) 2000-06-01 2000-06-01 Method of controlling the attitude of a boat at high speed through boat hull design and a boat hull
CA2310554 2000-06-01

Publications (2)

Publication Number Publication Date
US20010052314A1 true US20010052314A1 (en) 2001-12-20
US6415731B2 US6415731B2 (en) 2002-07-09

Family

ID=4166375

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/871,098 Expired - Fee Related US6415731B2 (en) 2000-06-01 2001-05-31 Method of controlling the attitude of a boat at high speed through boat hull design and a boat hull

Country Status (2)

Country Link
US (1) US6415731B2 (en)
CA (1) CA2310554C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154659A3 (en) * 2012-04-12 2015-05-14 Navatek, Ltd. Planing hull for rough seas
US9038561B2 (en) 2011-02-03 2015-05-26 Navatek, Ltd. Planing hull for rough seas

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006007054A2 (en) * 2004-05-06 2006-01-19 Errecalde George A Transportation vehicle and method operable with improved drag and lift
US20070012234A1 (en) * 2005-07-18 2007-01-18 Askew Robert A Boat hull with roll stability at low or high speeds
US8216007B2 (en) * 2006-02-27 2012-07-10 Steven Clay Moore Methods and arrangements for rapid trim adjustment
US7549385B2 (en) * 2007-08-17 2009-06-23 Hansen John F Stepped boat hull with flat pad portions
WO2016073874A1 (en) 2014-11-07 2016-05-12 Ocean Design Group, Llc Marine vessel hull with a longitudinally vented transverse step
US9365262B1 (en) 2015-06-10 2016-06-14 The United States Of America As Represented By The Secretary Of The Navy Wiggle hull design having a concave and convex planing hull
US10435120B2 (en) 2017-12-20 2019-10-08 Alverno Management Company Wave riding boards
US11319025B2 (en) * 2019-04-18 2022-05-03 Cross Step Llc Marine vessel hull with a longitudinally-vented, partial-beam transverse step

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452676A (en) * 1994-07-05 1995-09-26 Global Marine Performance, Inc. Hull configuration for high speed boat
US5819677A (en) * 1996-07-17 1998-10-13 Livingston; David T. Hull with laminar flow interrupters
US5986823A (en) * 1997-03-31 1999-11-16 Yang, Jr.; Peter S. Fresnel magnifying lens for forming a hand-held pocket-sized hybrid assembly and method therefor of providing the hybrid assembly
US6000357A (en) * 1998-04-08 1999-12-14 Allison; Darris E. Boat planing tabs
US6138601A (en) * 1999-02-26 2000-10-31 Brunswick Corporation Boat hull with configurable planing surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038561B2 (en) 2011-02-03 2015-05-26 Navatek, Ltd. Planing hull for rough seas
WO2013154659A3 (en) * 2012-04-12 2015-05-14 Navatek, Ltd. Planing hull for rough seas

Also Published As

Publication number Publication date
US6415731B2 (en) 2002-07-09
CA2310554C (en) 2007-05-01
CA2310554A1 (en) 2001-12-01

Similar Documents

Publication Publication Date Title
US4903626A (en) Planing motor boat hull
US6415731B2 (en) Method of controlling the attitude of a boat at high speed through boat hull design and a boat hull
US4609360A (en) Boat hull with flow chamber
EP2038167A1 (en) Ship
CA2763076C (en) Watercraft with stepped hull and outboard fins
US6595151B2 (en) Planing sailboard
US6138602A (en) Catamaran--V boat hull
US6675736B1 (en) Boat having channels formed in its hull
US5063868A (en) Boat hull for V-bottom powerboats
US9162732B2 (en) Stepped hull
JPS61184193A (en) Bottom section structure of boat
US6923137B2 (en) Water sports performance boat hull
US7549385B2 (en) Stepped boat hull with flat pad portions
KR910000633B1 (en) Fast boat
JP3111184B2 (en) Planing boat bottom structure
USRE33165E (en) Boat hull with flow chamber
JPH0238434B2 (en)
JP3319788B2 (en) Ship with hydrofoil
NZ337957A (en) Tri-hulled catamarans with side hulls configuration decreasing dives or lifts at speed which also decreases drag coefficient
US7594835B2 (en) Surface piercing propeller tunnel
EP0667282A1 (en) High-speed boat
JP2003285790A (en) Hull structure for reducing propulsion resistance
JPH0685188U (en) Stern structure
JP2728625B2 (en) Take-off assist device for high-speed ship
US9783265B2 (en) Foil-assisted catamaran marine craft

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20060709