US20010048217A1 - Linear ultrasound transducer array for an automotive occupancy sensor system - Google Patents

Linear ultrasound transducer array for an automotive occupancy sensor system Download PDF

Info

Publication number
US20010048217A1
US20010048217A1 US09/292,170 US29217099A US2001048217A1 US 20010048217 A1 US20010048217 A1 US 20010048217A1 US 29217099 A US29217099 A US 29217099A US 2001048217 A1 US2001048217 A1 US 2001048217A1
Authority
US
United States
Prior art keywords
aos
seat
vehicle
zone
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/292,170
Other versions
US6431592B2 (en
Inventor
Ralf Seip
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/292,170 priority Critical patent/US6431592B2/en
Assigned to ROBERT BOSCH CORPORATION reassignment ROBERT BOSCH CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEIP, RALF
Priority to DE10018699A priority patent/DE10018699B4/en
Priority to JP2000113842A priority patent/JP3880771B2/en
Priority to GB0009386A priority patent/GB2348955B/en
Publication of US20010048217A1 publication Critical patent/US20010048217A1/en
Application granted granted Critical
Publication of US6431592B2 publication Critical patent/US6431592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/0153Passenger detection systems using field detection presence sensors
    • B60R21/01536Passenger detection systems using field detection presence sensors using ultrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01516Passenger detection systems using force or pressure sensing means
    • B60R21/01526Passenger detection systems using force or pressure sensing means using piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01542Passenger detection systems detecting passenger motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target

Definitions

  • the invention relates to automotive occupancy sensor (AOS) systems for sensing the occupancy state of a vehicle including the location and/or nature of the occupant with respect to the vehicle interior, and more particularly to a linear or spaced array of ultrasound (US) transducers, used alone or with other sensors, mounted adjacent or in the headliner of a vehicle as part of an AOS system.
  • AOS automotive occupancy sensor
  • US ultrasound
  • array permits the occupancy state of one or more seats in the vehicle to be determined by a AOS classification algorithm using only US echo range data, thereby reducing the cost and complexity of the system, improving speed and simplifying calibration.
  • AOS Automotive occupancy sensor
  • ADS cooperating airbag deployment systems
  • AOS occupancy determination is used by the ADS to cause airbag deployment to be aborted, deferred, modified as to rate, timing or amount of inflation, selecting which of several airbags to deploy, or otherwise to regulate airbag deployment in response to the occupancy state of the adjacent vehicle interior as classified or determined by the AOS.
  • smart airbag systems may likewise include AOS for deployment regulation of side airbag systems.
  • AOS for deployment regulation of side airbag systems.
  • AOS systems may utilize various types of sensors which produce signals which provide information relating to occupancy state. These include pressure sensors, contact sensors, infra-red sensors, capacitance sensors, visible light sensors and the like. Ultrasound (US) transducers also may be included in AOS systems as active sensors; echoes of US signals transmitted by the transducer are detected by the transducer when reflected back from the vehicle interior and occupants.
  • sensors which produce signals which provide information relating to occupancy state. These include pressure sensors, contact sensors, infra-red sensors, capacitance sensors, visible light sensors and the like.
  • Ultrasound (US) transducers also may be included in AOS systems as active sensors; echoes of US signals transmitted by the transducer are detected by the transducer when reflected back from the vehicle interior and occupants.
  • AOS systems typically employ sensor systems and relatively complex classification and probability-based decision algorithms which require analysis of a number of different shape, timing and amplitude related aspects of the reflected US signals, in addition to the range of the principal US echo source.
  • such analysis requires relatively expensive, high-sensitivity US transducers and relatively complex algorithms which process data gathered over relatively large time intervals to classify the occupancy state of the vehicle interior, increasing the amount of time required to arrive at a reliable classification determination.
  • Environmental factors can induce distortions and noise in the US signal, complicating the task of reliable occupancy classification and/or state determination.
  • the task of constructing a comparative database and designing the microprocessors and associated circuitry to handle the complex algorithm logic is reflected in the overall system development cost and per unit price.
  • the linear AOS transducer array consists of a plurality of transducers, typically 2 to 8, preferably from about 4 to 6 per seat, in a spaced array, preferably mounted within the headliner adjacent the vehicle roof.
  • the array is an ordered array, generally spanning front to back in the passenger compartment.
  • One preferred embodiment of the array comprises a linear strip of transducers generally parallel to the vehicle centerline mounted recessed into the headliner either generally above or to one side of the aft centerline normal seat position.
  • the array is preferably located slightly to the outboard side of the normal head position, i.e. the fore/aft centerline of the seat.
  • the array preferably extends from near the rear edge of the sunvisor in front of the seat to about the longitudinal position of the seat headrest when the seat is adjusted to its most rearward position.
  • the term “occupant” and the term “object” are used herein to refer to a person(s) or object(s) occupying the seat and/or the volume above a seat (e.g., a driver, passenger, child or infant seat, passenger sitting on another passenger's lap, as parcels, animals or objects resting on a seat, and the like) the presence, motion and/or position of which are relevant to the safety criteria used to determine whether a particular airbag system in a vehicle should be deployed, enabled, disabled, aborted or deployed in a modified manner.
  • a seat e.g., a driver, passenger, child or infant seat, passenger sitting on another passenger's lap, as parcels, animals or objects resting on a seat, and the like
  • AOS array There may be a second AOS array symmetrically mounted on the opposite side of the vehicle centerline to provide occupancy determination for the driver and/or other front seat occupants.
  • Arrays may be provided for occupant seats behind the driver/front passengers, i.e. in the middle or rear seating areas as desired. While the arrays are described herein in the present best mode as linear and generally parallel to the centerline, they also may be transverse or diagonal, as in a patterned array, e.g. at the vertices of a triangle, diamond or other polygon.
  • the transducers of the array are directed generally downward to transmit a generally parallel spaced set of US pulses.
  • the downwardly directed set of pulses cover (“bathe” or “paint”) a volume of the vehicle interior denoted as the head zone (generally referred to herein as “H-zone”), which is a pre-selected occupancy zone.
  • the H-zone is preferably defined by the volume in which the head and/or shoulders of an occupant will be present under circumstances under which the AOS classification algorithm determines that the airbag is to be enabled for deployment, or conversely, is to be aborted or disabled.
  • the specific bounds of the H-zone are ordinarily preselected, based, e.g., on airbag characteristics for deployment safety and injury criteria.
  • the AOS classification algorithm determines that the airbag is to be disabled or not enabled, as the case may be, enabled with modified inflation rate, level or timing; or otherwise modified for deployment or nondeployment.
  • An example of an out-of-position state (OOPS) is a seated child whose head is below the H-zone boundary, or an adult passenger leaning forward towards the dashboard or reclining backward, with head below and/or forward or back of the H-zone boundary.
  • the AOS electronic circuitry maybe conventional.
  • the US pulse is reflected from the surfaces lying below the transducer and the reflected echo is received by each respective transducer to produce an input signal to the AOS electronics.
  • Range data is determined from the input signal by the AOS electronics to determine the distance of the object or surface producing the primary echo, such as an occupant's head or body, an infant seat, a seat cushion, parcels resting on the seat, etc.
  • the range data for the transducer array permits the AOS classification algorithm to determine if an object, such as the head, is within the H-zone, and to determine the object's fore-to-aft position within the H-zone.
  • the time history of the range data for each transducer can be used to determine whether an occupant (i.e., occupant's head and/or shoulders) is moving with respect to the vehicle and seat, such as when a passenger is moving or leaning forward, and this may used as an input in determining whether the airbag deployment is to be enabled, disabled or modified.
  • the AOS transducer array of the invention permits occupancy classification based on US range information
  • transducers of lower sensitivity may be used, as compared to systems which require more complex qualitative and amplitude sensitive information to be extracted from the input signal.
  • inexpensive, lower sensitivity lead zirconate/titanate (PZT) type transducers may be employed, offering a number of important advantages over the higher sensitivity transducers conventionally required for AOS systems.
  • PZT sensors are robust, inexpensive, do not require protective grills, may be produced as very thin disks, and can be flush-mounted in the headliner with no projections. Because the PZT sensors are generally directed perpendicularly downward in the arrays of the invention, they may be, if desired, be comparatively larger without projecting from the headliner surface, the larger size compensating for and permitting reduced sensitivity.
  • All the sensors, electronics, and detection logic are preferably housed inside a single, self-contained unit.
  • the transducers are typically mounted on a thin, elongated mounting board, which optionally also integrally mounts the AOS electronic circuitry, processors, interconnecting leads and an exterior trim surface or cover. Due to the thin profile of the PZT transducers (about 2 to 5 mm thick), an integral transducer array/AOS unit may be mounted entirely between the roof and the headliner, an area typically with a depth on the order of 20 ⁇ mm, and generally unused for other functions.
  • the sensor surface, as well as the surface of the array unit can be painted in any desired color that matches the interior so as to “blend in” with the headliner.
  • a decoratively textured coating may be applied to the trim or/and the transducers.
  • the length of the H-zone and the transducer array may be selected to take into account the range of occupant head position based on the range of seat fore/aft adjustment.
  • the H-zone extent may be defined differently for a driver seat and a passenger seat, taking into account, among other things, the typically different positions of the airbag installation.
  • the spacing and number of the transducers of the array may be selected to provide adequate discrimination between the occupant's head and other fixed objects, such as a seat headrest.
  • the spacing and number of transducers is selected so that the headrest, if present, will give a US echo range return on at least one transducer.
  • the transducers spacing and number is preferably selected so that the occupant's head will give a range return on more than one transducer, more preferably at least three.
  • the position of the occupant within H-zone is determined by an AOS algorithm based on the H-zone definition (configuration and location in the compartment) and the pattern of range returns from the transducers of the array.
  • the algorithm is implemented by code written in conventional computer or device languages, or is implemented by logic circuitry comprising conventional devices.
  • the method and algorithm of determining occupant position of the present invention as described herein can be executed by the AOS electronics which includes suitable hardware and/or software and/or firmware running on a suitable processor.
  • the firmware or software is accessed by a processor using any suitable reading device which can read the medium on which the software or firmware is stored, such as any suitable processor-readable storage medium.
  • the storage medium includes, for example, magnetic storage media, or solid state electronic storage devices such as random access memory (RAM) or read only memory (ROM); or any other physical device or medium employed to store a computer program.
  • RAM random access memory
  • ROM read only memory
  • the software or firmware carries program code which, when read by the processor, causes the computer to execute any or all of the steps of the methods disclosed in this application.
  • the linear AOS array of this invention has the following advantages in comparison to existing console type AOS systems:
  • the preferred PZT transducers have a exterior surface that can be cleaned, is tough, and is unaffected by condensation and mass-loading (i.e., may be cleaned like the rest of the interior).
  • Sensor self-test (which optionally may be included) is more robust, since all sensors are pointed down and will by default hit a flat surface (vehicle seat or floor) in the absence of an occupant, which will return an echo, as compared to angled sensors that might not receive an echo during self-test routines due to non-perpendicular surfaces, such as a seat surface at an angle with respect to the sensor direction.
  • the AOS installation is simplified, as no center console modifications are needed.
  • the installation comprises simply cutting out a slot in the headliner, flush mounting the integral AOS/transducer array unit by fasteners, adhesives, or other fastening means, and connecting wiring to power source and airbag deployment system.
  • the AOS system includes sensors (such as a low-G sensor, pre-crash braking sensor, etc.) to determine the existence of a crash-imminent state (i.e., a high probability of the imminent occurrence of a collision or other high-deceleration event).
  • a crash-imminent state i.e., a high probability of the imminent occurrence of a collision or other high-deceleration event.
  • the AOS electronics only pings a single ultrasound transducer (or sub-set of the such sensors) which define a front keep-out-zone (KOZ), e.g., the forward sensor(s) can be aimed ahead of the defined H-zone, and be used to define a KOZ.
  • the use of a single sensor or transducer (or a subset) permits a faster AOS update rate during a crash imminent state.
  • forward occupant movement motion tracking (e.g., for example into the KOZ) is simple due to the linear arrangement and centerline parallel location of the sensors.
  • the time history of range data can be used by the AOS to determine occupant motion (both motion history and instantaneous velocity), and predict occupant position over future time-increments, which predictions optionally may then be used for ADS control.
  • the overhead linear AOS design concept of the invention is applicable to vehicles with a sunroof, as the sunroof can be fit between both driver and passenger units.
  • the unit would be cheaper than current designs, mainly because a less powerful processor is needed, less memory is needed, no grill is needed, no bezel is needed, but only a single-piece sensor mounting piece that holds the sensors and a single circuit board. Cost savings can also be realized due to the elimination of a Faraday cage for the sensors.
  • the range feature is amplitude independent, and works well under low SNR (Signal-to-Noise Ratio) conditions; sensor deterioration over time would not affect performance.
  • the linear array AOS system optionally functions as an intrusion/anti-theft system, on both driver and passenger sides, the AOS system including an algorithm to use the US range data to determine an intrusion (presence of an occupant when system is armed in an anti-theft mode) into the vehicle.
  • the array of the present invention outputs a signal to an anti-theft device, such as an audible alarm.
  • the linear AOS array can be extended to cover the back seats with conventional modifications. Additional sensors (such as IR, mass sensor, etc.), even where not needed for classification, may optionally be included in the AOS for temperature control, for example.
  • FIGS. 1A, B, C and D show schematic views of the front seat occupant area of a vehicle interior including the linear AOS transducer array of the invention, in which FIG. 1A is a rear view and FIG. 1B is a side view of the passenger side, FIG. 1C is a top view, and FIG. 1D is a side view of the drivers side.;
  • FIG. 2 shows a schematic cross section of the linear AOS transducer array mounted in the space between the headliner and roof of a vehicle;
  • FIG. 3 shows a top view of a first alternative mounting of the AOS array shown in FIG. 1C;
  • FIG. 4 shows a top view of a second alternative mounting of the AOS array shown in FIG. 1C;
  • FIG. 5 shows a schematic top view of an occupant seat showing examples of target points for transducers of the AOS array
  • FIGS. 6A and 6B show schematic views of the front seat occupant area of a vehicle interior in the same configuration as in FIGS. 1A and 1C, and show an additional embodiment of the transducer array of the invention for a side airbag AOS which defines a side keep-out zone.
  • FIGS. 1A to D show a schematic rear view, passenger's side view, top view, and driver's side view respectively of the front seat occupant area of a passenger P in vehicle V seated in seat 12 , 14 with the head H projecting in the H-zone 20 .
  • the linear AOS transducer array of the invention 1 is mounted between the roof 2 and the headliner 4 .
  • the AOS array 1 extends longitudinally generally parallel to the vehicle centerline from about the rear margin of the sunvisor 6 adjacent windshield 8 , rearwardly to about the position of the headrest 10 of seatback 12 of seat 14 and is located laterally about over the seat centerline or axis.
  • the passenger airbag assembly 7 is mounted in dashboard 9 and may reflect off windshield 8 .
  • the exemplary AOS embodiment shown includes 6 PZT transducers 16 spaced longitudinally, preferably in a substantially straight line along the AOS unit 1 .
  • a second, mirror-image AOS installation 1 ′ is shown in FIGS. 1A and 1D mounted over the left-hand driver seat 14 ′ in the same manner and orientation as the passenger side AOS 1 .
  • the driver's airbag assembly 7 ′ is typically mounted in steering wheel 15 .
  • the transducers 16 are flush mounted at the level of the headliner 4 and are directed generally vertically downward to produce an array of ultrasound (US) beams 18 (dashed lines) directed towards the seat area.
  • the beams 18 i.e. path of main US pulse strength
  • the beams 18 spread laterally as they propagate downward, and are preferably shaped in cross-section to be generally elliptical with the major axis aligned laterally (transversely) with respect to the vehicle fore/aft axis, in order to spread to cover the seat area side-to-side.
  • Collectively, the beams 18 spread to cover the longitudinal and lateral extent of the H-zone 20 (thick dashed line) in which the head H of the passenger P is shown as projecting.
  • the lower extent of the H-zone is determined by airbag deployment safety criteria and may range from about the vertical level of the middle of the seatback 12 to the top of the seat back.
  • transducers emitting generally circular cross-section beams may be used, with additional transducers being included where necessary in an appropriately spaced configuration to produce beams to cover the extent of the H-zone 20 .
  • FIG. 2 is a schematic detailed cross-section of the installation of AOS unit 1 showing one of the transducers 16 and integral AOS cover or edge bezel 22 flush mounted at the level of headliner 4 .
  • the transducers are mounted to a mounting board 24 , which optionally includes electronics/circuitry, which board is in turn mounted to the roof 2 by a plurality of fasteners or adhesive pads 26 .
  • Power supply wiring 28 and AOS output signal wiring 30 are shown extending from the AOS unit 1 to the vehicle electrical system and airbag deployment system (not shown), respectively.
  • FIGS. 3 and 4 show a first and a second alternative mounting of the AOS unit 1 .
  • the AOS unit 1 is mounted in a lateral position offset somewhat outboard of the driver's seat centerline or fore/aft central axis, and the opposite side AOS unit 1 ′ is similarly mounted somewhat outboard of the passenger's side seat central axis (for a typical automobile, the seat axis is generally parallel to the vehicle centerline).
  • the US beams 18 are angled slightly inward to compensate for the outboard mounting of the AOS 1 .
  • the array offset permits the headliner directly above the seat center to be padded and free of hard AOS elements.
  • the spacing between the two units is enough to permit installation of a sun/moon roof unit between them.
  • the transducers of the invention may be integrated into one or more marginal edge trim strips of the sun/moon roof unit.
  • FIG. 4 the AOS unit 1 is mounted in a lateral position offset somewhat inboard of the driver's side seat centerline, and there is a similar inboard offset on the passenger side AOS 1 ′.
  • the inboard/outboard offset mounting shown in FIGS. 3 and 4 permits the headliner area above the occupant's head to comprise padded material to comply with possible head injury regulatory requirements.
  • FIG. 5 shows schematically a top view of a front seat with examples of center points at which the transducer beams are aimed.
  • Four points (a)-(d) are shown, although the AOS array may have more or fewer transducers: (a) the seatback 12 with the seat 14 adjusted fully to its rearward (back) position; (b) the rear portion of the seat cushion 14 with the seat fully back; (c) the front portion of the seat cushion 14 with the seat fully back; and (d) the front portion of the seat cushion 14 with the seat adjusted fully forward.
  • Additional transducers and aiming points may be included if desired to further subdivide the H-zone, such as multiple transducers aimed at sections of the seat back when it is in a reclined configuration.
  • the linear AOS transducer array may optionally also be employed in AOS systems which regulate side-deploying airbags to protect occupants in accidents involving high sideward accelerations, such as in side-impact collisions.
  • the range data from the H-zone transducers may be used for this purpose, or a separate array defining a side “keep-out zone” (KOZ) may be used.
  • FIGS. 6A and 6B show the front seats and occupants of a vehicle in the same configuration as in FIGS. 1A and 1C, and show a side airbag AOS array 32 in addition to the front airbag AOS array 1 .
  • the side array 32 is preferably located outboard of the front airbag array in the headliner adjacent the side window area, and emits US beams 34 aimed at a volume adjacent the side window area.
  • the side array 32 can be integrated into the same circuit board package as front array 1 , with the respective individual transducers of each array aligned or aimed to define a corresponding US beam of the H-zone 20 and side keep-out zone 36 respectively.
  • a Side Keep-Out-Zone (SKOZ) 36 is pre-defined by the US beams, the extent of the SKOZ depending on the specific deployment characteristics and associated injury criteria of the particular type of side airbag system or other side protection system employed (such as a downward, forward, rearward, upward or diagonal deploying side airbag system or an extensible inflating/padded webbing system).
  • the side airbag deployment system Upon receipt of an AOS state or classification output indicating occupant head and/or shoulder intrusion into the SKOZ 36 , the side airbag deployment system disables or modifies the enablement of the side airbag.
  • linear AOS transducer array of the invention has wide industrial applicability to AOS systems for automotive airbag systems.
  • the AOS transducer array and its associated classification and calibration algorithms can readily be adapted to alternative transducer arrays which are not linearly spaced, but which are geometrically spaced adjacent the headliner to provide a comparable array of US beams to define the H-zone.
  • the AOS transducer array of the invention is also useful for regulation of the deployment of side airbag systems (airbags and/or other protective elements deploying generally to the side of an occupant, particularly to protect the occupant in a side-impact collision).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Air Bags (AREA)
  • Seats For Vehicles (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

An improved automotive occupancy sensor (AOS) system comprising a linear or spaced array of ultrasound (US) transducers mounted adjacent the headliner of a vehicle to direct an array of US beams to define a preselected occupancy zone adjacent a seat of the vehicle. The AOS electronics may be integrally packaged with the transducer array and flush mounted within the headliner. The array permits occupancy state to be determined by a AOS classification algorithm and method using only or US echo range data, thereby reducing the cost and complexity of the system, improving speed and simplifying calibration.

Description

    DESCRIPTION
  • 1. Technical Field [0001]
  • The invention relates to automotive occupancy sensor (AOS) systems for sensing the occupancy state of a vehicle including the location and/or nature of the occupant with respect to the vehicle interior, and more particularly to a linear or spaced array of ultrasound (US) transducers, used alone or with other sensors, mounted adjacent or in the headliner of a vehicle as part of an AOS system. In the preferred embodiment array permits the occupancy state of one or more seats in the vehicle to be determined by a AOS classification algorithm using only US echo range data, thereby reducing the cost and complexity of the system, improving speed and simplifying calibration. [0002]
  • 2. Background Art [0003]
  • Studies have revealed that there is a class of automotive accidents causing injuries associated with airbag deployment and with the nature and position of the vehicle occupant, particularly with respect to airbags deployed toward seats occupied by children or infants in car seats. Automotive occupancy sensor (AOS) systems used in conjunction with cooperating airbag deployment systems (ADS) have been developed to regulate the deployment of the airbag. AOS occupancy determination is used by the ADS to cause airbag deployment to be aborted, deferred, modified as to rate, timing or amount of inflation, selecting which of several airbags to deploy, or otherwise to regulate airbag deployment in response to the occupancy state of the adjacent vehicle interior as classified or determined by the AOS. These are also known as “Smart Airbag Systems”. Originally proposed for front airbag systems, smart airbag systems may likewise include AOS for deployment regulation of side airbag systems. For background on AOS systems see Corrado, et al., U.S. Pat. No. 5,482,314 issued Jan. 9, 1996, and also Corrado, et al., U.S. Pat. No. 5,890,085, issued Mar. 30, 1999, and references cited therein, which patents are hereby incorporated by reference. [0004]
  • AOS systems may utilize various types of sensors which produce signals which provide information relating to occupancy state. These include pressure sensors, contact sensors, infra-red sensors, capacitance sensors, visible light sensors and the like. Ultrasound (US) transducers also may be included in AOS systems as active sensors; echoes of US signals transmitted by the transducer are detected by the transducer when reflected back from the vehicle interior and occupants. [0005]
  • AOS systems typically employ sensor systems and relatively complex classification and probability-based decision algorithms which require analysis of a number of different shape, timing and amplitude related aspects of the reflected US signals, in addition to the range of the principal US echo source. In some systems such analysis requires relatively expensive, high-sensitivity US transducers and relatively complex algorithms which process data gathered over relatively large time intervals to classify the occupancy state of the vehicle interior, increasing the amount of time required to arrive at a reliable classification determination. Environmental factors can induce distortions and noise in the US signal, complicating the task of reliable occupancy classification and/or state determination. In addition, the task of constructing a comparative database and designing the microprocessors and associated circuitry to handle the complex algorithm logic is reflected in the overall system development cost and per unit price. [0006]
  • There is a need for an inexpensive, reliable AOS system which can be widely and promptly implemented in production automobiles, especially in light of currently proposed advanced airbag control requirements, such as NHTSA 98-4405, [0007] Notice 1 RIN 2127-AG70. There is a need for an AOS sensor system which is inexpensive, reliable, robust (including against environmental disturbances) and which permits simplified, rapid classification based on quantitative US echo range data.
  • DISCLOSURE OF THE INVENTION Summary Objects and Adventages of the Invention
  • It is a principal object and advantage of the invention to provide an array of ultrasound (US) transducers mounted adjacent or in the headliner of the passenger compartment of a vehicle which can provide signals for AOS occupancy classification and/or state determination based principally on simple echo range data. It is another object and advantage of the invention to provide an inexpensive durable sensor system which is easy to install, calibrate and maintain, and which is robust to environmental disturbances. It is another object and advantage of the invention to provide a sensor system which permits simplified and accelerated signal and classification, and/or state determination processing. Other objects and advantages will be evident from the descriptions, drawings and claims of this invention. [0008]
  • The linear AOS transducer array consists of a plurality of transducers, typically 2 to 8, preferably from about 4 to 6 per seat, in a spaced array, preferably mounted within the headliner adjacent the vehicle roof. In principal embodiments the array is an ordered array, generally spanning front to back in the passenger compartment. One preferred embodiment of the array comprises a linear strip of transducers generally parallel to the vehicle centerline mounted recessed into the headliner either generally above or to one side of the aft centerline normal seat position. The array is preferably located slightly to the outboard side of the normal head position, i.e. the fore/aft centerline of the seat. For a front seat occupant, such as the front seat passenger, the array preferably extends from near the rear edge of the sunvisor in front of the seat to about the longitudinal position of the seat headrest when the seat is adjusted to its most rearward position. [0009]
  • Unless the context implies a more restricted meaning, the term “occupant” and the term “object” are used herein to refer to a person(s) or object(s) occupying the seat and/or the volume above a seat (e.g., a driver, passenger, child or infant seat, passenger sitting on another passenger's lap, as parcels, animals or objects resting on a seat, and the like) the presence, motion and/or position of which are relevant to the safety criteria used to determine whether a particular airbag system in a vehicle should be deployed, enabled, disabled, aborted or deployed in a modified manner. [0010]
  • There may be a second AOS array symmetrically mounted on the opposite side of the vehicle centerline to provide occupancy determination for the driver and/or other front seat occupants. Arrays may be provided for occupant seats behind the driver/front passengers, i.e. in the middle or rear seating areas as desired. While the arrays are described herein in the present best mode as linear and generally parallel to the centerline, they also may be transverse or diagonal, as in a patterned array, e.g. at the vertices of a triangle, diamond or other polygon. [0011]
  • The transducers of the array are directed generally downward to transmit a generally parallel spaced set of US pulses. The downwardly directed set of pulses cover (“bathe” or “paint”) a volume of the vehicle interior denoted as the head zone (generally referred to herein as “H-zone”), which is a pre-selected occupancy zone. The H-zone is preferably defined by the volume in which the head and/or shoulders of an occupant will be present under circumstances under which the AOS classification algorithm determines that the airbag is to be enabled for deployment, or conversely, is to be aborted or disabled. The specific bounds of the H-zone are ordinarily preselected, based, e.g., on airbag characteristics for deployment safety and injury criteria. Likewise, if there is no occupant, or the occupant is out-of-position with respect to the H-zone so that the head and/or shoulders of the occupant do not intrude into the H-zone, the AOS classification algorithm determines that the airbag is to be disabled or not enabled, as the case may be, enabled with modified inflation rate, level or timing; or otherwise modified for deployment or nondeployment. An example of an out-of-position state (OOPS) is a seated child whose head is below the H-zone boundary, or an adult passenger leaning forward towards the dashboard or reclining backward, with head below and/or forward or back of the H-zone boundary. [0012]
  • The AOS electronic circuitry maybe conventional. The US pulse is reflected from the surfaces lying below the transducer and the reflected echo is received by each respective transducer to produce an input signal to the AOS electronics. Range data is determined from the input signal by the AOS electronics to determine the distance of the object or surface producing the primary echo, such as an occupant's head or body, an infant seat, a seat cushion, parcels resting on the seat, etc. Collectively, the range data for the transducer array permits the AOS classification algorithm to determine if an object, such as the head, is within the H-zone, and to determine the object's fore-to-aft position within the H-zone. [0013]
  • Optionally the time history of the range data for each transducer can be used to determine whether an occupant (i.e., occupant's head and/or shoulders) is moving with respect to the vehicle and seat, such as when a passenger is moving or leaning forward, and this may used as an input in determining whether the airbag deployment is to be enabled, disabled or modified. [0014]
  • Because the AOS transducer array of the invention permits occupancy classification based on US range information, transducers of lower sensitivity may be used, as compared to systems which require more complex qualitative and amplitude sensitive information to be extracted from the input signal. Thus, inexpensive, lower sensitivity lead zirconate/titanate (PZT) type transducers may be employed, offering a number of important advantages over the higher sensitivity transducers conventionally required for AOS systems. PZT sensors are robust, inexpensive, do not require protective grills, may be produced as very thin disks, and can be flush-mounted in the headliner with no projections. Because the PZT sensors are generally directed perpendicularly downward in the arrays of the invention, they may be, if desired, be comparatively larger without projecting from the headliner surface, the larger size compensating for and permitting reduced sensitivity. [0015]
  • All the sensors, electronics, and detection logic are preferably housed inside a single, self-contained unit. The transducers are typically mounted on a thin, elongated mounting board, which optionally also integrally mounts the AOS electronic circuitry, processors, interconnecting leads and an exterior trim surface or cover. Due to the thin profile of the PZT transducers (about 2 to 5 mm thick), an integral transducer array/AOS unit may be mounted entirely between the roof and the headliner, an area typically with a depth on the order of 20± mm, and generally unused for other functions. For the preferred PZT sensors, no grill is needed, and the sensor surface, as well as the surface of the array unit, can be painted in any desired color that matches the interior so as to “blend in” with the headliner. Optionally a decoratively textured coating may be applied to the trim or/and the transducers. [0016]
  • The length of the H-zone and the transducer array may be selected to take into account the range of occupant head position based on the range of seat fore/aft adjustment. The H-zone extent may be defined differently for a driver seat and a passenger seat, taking into account, among other things, the typically different positions of the airbag installation. The spacing and number of the transducers of the array may be selected to provide adequate discrimination between the occupant's head and other fixed objects, such as a seat headrest. Preferably, the spacing and number of transducers is selected so that the headrest, if present, will give a US echo range return on at least one transducer. Also the transducers spacing and number is preferably selected so that the occupant's head will give a range return on more than one transducer, more preferably at least three. [0017]
  • The position of the occupant within H-zone is determined by an AOS algorithm based on the H-zone definition (configuration and location in the compartment) and the pattern of range returns from the transducers of the array. Typically, the algorithm is implemented by code written in conventional computer or device languages, or is implemented by logic circuitry comprising conventional devices. The method and algorithm of determining occupant position of the present invention as described herein can be executed by the AOS electronics which includes suitable hardware and/or software and/or firmware running on a suitable processor. Typically, the firmware or software is accessed by a processor using any suitable reading device which can read the medium on which the software or firmware is stored, such as any suitable processor-readable storage medium. The storage medium includes, for example, magnetic storage media, or solid state electronic storage devices such as random access memory (RAM) or read only memory (ROM); or any other physical device or medium employed to store a computer program. The software or firmware carries program code which, when read by the processor, causes the computer to execute any or all of the steps of the methods disclosed in this application. [0018]
  • The linear AOS array of this invention has the following advantages in comparison to existing console type AOS systems: [0019]
  • 1. The preferred PZT transducers are inexpensive and robust. [0020]
  • 2. The preferred PZT transducers have a exterior surface that can be cleaned, is tough, and is unaffected by condensation and mass-loading (i.e., may be cleaned like the rest of the interior). [0021]
  • 3. Calibration is simplified since only range is used for classification. [0022]
  • 4. System testing is simple, since there is no need to test many occupant scenarios, the classification being based on simple H-zone presence/absence criteria and the location of the seatback with respect to the person's head. [0023]
  • 5. A simpler processor with less memory can be used to evaluate the signals. [0024]
  • 6. Sensor self-test (which optionally may be included) is more robust, since all sensors are pointed down and will by default hit a flat surface (vehicle seat or floor) in the absence of an occupant, which will return an echo, as compared to angled sensors that might not receive an echo during self-test routines due to non-perpendicular surfaces, such as a seat surface at an angle with respect to the sensor direction. [0025]
  • 7. The AOS installation is simplified, as no center console modifications are needed. In a retrofit case, for example, the installation comprises simply cutting out a slot in the headliner, flush mounting the integral AOS/transducer array unit by fasteners, adhesives, or other fastening means, and connecting wiring to power source and airbag deployment system. [0026]
  • 8. Installation is further simplified since tolerances on angles and displacements can be relaxed (again, only range is computed, which is amplitude independent, and robust to alignment variation). The preferred use of two mirror-image AOS arrays units, one for passenger seat coverage and one for driver seat coverage, would maintain a symmetrical appearance of the vehicle interior. [0027]
  • 9. Faster AOS occupancy classification update rate is possible due to simplified processing. The following example case shows typical AOS update rate time ranges with the AOS transducer array of the invention: Given about a 1 meter distance between the sensor and the seat surface, the US echo signal is acquired in approximately 6 ms. The signal is processed within about 4 ms., and the update rate, per sensor, is approximately 10 ms. In a system with 6 sensors, for example, a update rate of 60 ms or less is achievable over the whole zone, without complex processing circuitry or algorithms. [0028]
  • Still faster speeds are possible with the addition of a dynamic-mode switchover in which the AOS system includes sensors (such as a low-G sensor, pre-crash braking sensor, etc.) to determine the existence of a crash-imminent state (i.e., a high probability of the imminent occurrence of a collision or other high-deceleration event). During the existence of a crash-imminent state, the AOS electronics only pings a single ultrasound transducer (or sub-set of the such sensors) which define a front keep-out-zone (KOZ), e.g., the forward sensor(s) can be aimed ahead of the defined H-zone, and be used to define a KOZ. The use of a single sensor or transducer (or a subset) permits a faster AOS update rate during a crash imminent state. [0029]
  • In addition, forward occupant movement motion tracking (e.g., for example into the KOZ) is simple due to the linear arrangement and centerline parallel location of the sensors. The time history of range data can be used by the AOS to determine occupant motion (both motion history and instantaneous velocity), and predict occupant position over future time-increments, which predictions optionally may then be used for ADS control. [0030]
  • 10. Ultrasonic interference from entertainment system speakers is minimal, since all sensors point vertically down into the cabin, and speakers are typically positioned on the doors and walls, pointing into the cabin horizontally. There are no rear-view mirror interference issues, as well as no sunvisor interference issues, since the typical H-zone boundary starts some distance rearward of the sunvisor and rear-view mirror. [0031]
  • 11. The overhead linear AOS design concept of the invention is applicable to vehicles with a sunroof, as the sunroof can be fit between both driver and passenger units. [0032]
  • 12. The unit would be cheaper than current designs, mainly because a less powerful processor is needed, less memory is needed, no grill is needed, no bezel is needed, but only a single-piece sensor mounting piece that holds the sensors and a single circuit board. Cost savings can also be realized due to the elimination of a Faraday cage for the sensors. The range feature is amplitude independent, and works well under low SNR (Signal-to-Noise Ratio) conditions; sensor deterioration over time would not affect performance. [0033]
  • 13. The linear array AOS system optionally functions as an intrusion/anti-theft system, on both driver and passenger sides, the AOS system including an algorithm to use the US range data to determine an intrusion (presence of an occupant when system is armed in an anti-theft mode) into the vehicle. In response the array of the present invention outputs a signal to an anti-theft device, such as an audible alarm. The linear AOS array can be extended to cover the back seats with conventional modifications. Additional sensors (such as IR, mass sensor, etc.), even where not needed for classification, may optionally be included in the AOS for temperature control, for example.[0034]
  • BRIEF DESCRIPTION OF DRAWINGS
  • The invention is described in more detail in the accompanying drawings, in which: [0035]
  • FIGS. 1A, B, C and D show schematic views of the front seat occupant area of a vehicle interior including the linear AOS transducer array of the invention, in which FIG. 1A is a rear view and FIG. 1B is a side view of the passenger side, FIG. 1C is a top view, and FIG. 1D is a side view of the drivers side.; [0036]
  • FIG. 2 shows a schematic cross section of the linear AOS transducer array mounted in the space between the headliner and roof of a vehicle; [0037]
  • FIG. 3 shows a top view of a first alternative mounting of the AOS array shown in FIG. 1C; [0038]
  • FIG. 4 shows a top view of a second alternative mounting of the AOS array shown in FIG. 1C; [0039]
  • FIG. 5 shows a schematic top view of an occupant seat showing examples of target points for transducers of the AOS array; and [0040]
  • FIGS. 6A and 6B show schematic views of the front seat occupant area of a vehicle interior in the same configuration as in FIGS. 1A and 1C, and show an additional embodiment of the transducer array of the invention for a side airbag AOS which defines a side keep-out zone.[0041]
  • DETAILED DESCRIPTION OF THE BEST MODE FOR CARRYING OUT THE INVENTION
  • The following detailed description illustrates the invention by way of example, not by way of limitation of the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention. [0042]
  • In this regard, the invention is illustrated in the several figures, and is of sufficient complexity that the many parts, interrelationships, and sub-combinations thereof simply cannot be fully illustrated in a single patent-type drawing. For clarity and conciseness, several of the drawings show in schematic, or omit, parts that are not essential in that drawing to a description of a particular feature, aspect or principle of the invention being disclosed. Thus, the best mode embodiment of one feature may be shown in one drawing, and the best mode of another feature will be called out in another drawing. [0043]
  • All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. [0044]
  • FIGS. 1A to D show a schematic rear view, passenger's side view, top view, and driver's side view respectively of the front seat occupant area of a passenger P in vehicle V seated in [0045] seat 12, 14 with the head H projecting in the H-zone 20. The linear AOS transducer array of the invention 1 is mounted between the roof 2 and the headliner 4. The AOS array 1 extends longitudinally generally parallel to the vehicle centerline from about the rear margin of the sunvisor 6 adjacent windshield 8, rearwardly to about the position of the headrest 10 of seatback 12 of seat 14 and is located laterally about over the seat centerline or axis. As shown in FIG. 1B, the passenger airbag assembly 7 is mounted in dashboard 9 and may reflect off windshield 8. The exemplary AOS embodiment shown includes 6 PZT transducers 16 spaced longitudinally, preferably in a substantially straight line along the AOS unit 1. A second, mirror-image AOS installation 1′ is shown in FIGS. 1A and 1D mounted over the left-hand driver seat 14′ in the same manner and orientation as the passenger side AOS 1. The driver's airbag assembly 7′ is typically mounted in steering wheel 15.
  • The [0046] transducers 16 are flush mounted at the level of the headliner 4 and are directed generally vertically downward to produce an array of ultrasound (US) beams 18 (dashed lines) directed towards the seat area. The beams 18 (i.e. path of main US pulse strength) spread laterally as they propagate downward, and are preferably shaped in cross-section to be generally elliptical with the major axis aligned laterally (transversely) with respect to the vehicle fore/aft axis, in order to spread to cover the seat area side-to-side. Collectively, the beams 18 spread to cover the longitudinal and lateral extent of the H-zone 20 (thick dashed line) in which the head H of the passenger P is shown as projecting. The lower extent of the H-zone is determined by airbag deployment safety criteria and may range from about the vertical level of the middle of the seatback 12 to the top of the seat back. Alternatively, transducers emitting generally circular cross-section beams may be used, with additional transducers being included where necessary in an appropriately spaced configuration to produce beams to cover the extent of the H-zone 20.
  • FIG. 2 is a schematic detailed cross-section of the installation of [0047] AOS unit 1 showing one of the transducers 16 and integral AOS cover or edge bezel 22 flush mounted at the level of headliner 4. The transducers are mounted to a mounting board 24, which optionally includes electronics/circuitry, which board is in turn mounted to the roof 2 by a plurality of fasteners or adhesive pads 26. Power supply wiring 28 and AOS output signal wiring 30 are shown extending from the AOS unit 1 to the vehicle electrical system and airbag deployment system (not shown), respectively.
  • FIGS. 3 and 4 show a first and a second alternative mounting of the [0048] AOS unit 1. In FIG. 3 the AOS unit 1 is mounted in a lateral position offset somewhat outboard of the driver's seat centerline or fore/aft central axis, and the opposite side AOS unit 1′ is similarly mounted somewhat outboard of the passenger's side seat central axis (for a typical automobile, the seat axis is generally parallel to the vehicle centerline). The US beams 18 are angled slightly inward to compensate for the outboard mounting of the AOS 1. The array offset permits the headliner directly above the seat center to be padded and free of hard AOS elements. The spacing between the two units is enough to permit installation of a sun/moon roof unit between them. Alternatively, the transducers of the invention may be integrated into one or more marginal edge trim strips of the sun/moon roof unit.
  • In FIG. 4 the [0049] AOS unit 1 is mounted in a lateral position offset somewhat inboard of the driver's side seat centerline, and there is a similar inboard offset on the passenger side AOS 1′. The inboard/outboard offset mounting shown in FIGS. 3 and 4 permits the headliner area above the occupant's head to comprise padded material to comply with possible head injury regulatory requirements.
  • FIG. 5 shows schematically a top view of a front seat with examples of center points at which the transducer beams are aimed. Four points (a)-(d) are shown, although the AOS array may have more or fewer transducers: (a) the [0050] seatback 12 with the seat 14 adjusted fully to its rearward (back) position; (b) the rear portion of the seat cushion 14 with the seat fully back; (c) the front portion of the seat cushion 14 with the seat fully back; and (d) the front portion of the seat cushion 14 with the seat adjusted fully forward. Additional transducers and aiming points may be included if desired to further subdivide the H-zone, such as multiple transducers aimed at sections of the seat back when it is in a reclined configuration.
  • The linear AOS transducer array may optionally also be employed in AOS systems which regulate side-deploying airbags to protect occupants in accidents involving high sideward accelerations, such as in side-impact collisions. The range data from the H-zone transducers may be used for this purpose, or a separate array defining a side “keep-out zone” (KOZ) may be used. FIGS. 6A and 6B show the front seats and occupants of a vehicle in the same configuration as in FIGS. 1A and 1C, and show a side [0051] airbag AOS array 32 in addition to the front airbag AOS array 1. The side array 32 is preferably located outboard of the front airbag array in the headliner adjacent the side window area, and emits US beams 34 aimed at a volume adjacent the side window area. Optionally, the side array 32 can be integrated into the same circuit board package as front array 1, with the respective individual transducers of each array aligned or aimed to define a corresponding US beam of the H-zone 20 and side keep-out zone 36 respectively. A Side Keep-Out-Zone (SKOZ) 36 is pre-defined by the US beams, the extent of the SKOZ depending on the specific deployment characteristics and associated injury criteria of the particular type of side airbag system or other side protection system employed (such as a downward, forward, rearward, upward or diagonal deploying side airbag system or an extensible inflating/padded webbing system). Upon receipt of an AOS state or classification output indicating occupant head and/or shoulder intrusion into the SKOZ 36, the side airbag deployment system disables or modifies the enablement of the side airbag.
  • INDUSTRIAL APPLICABILITY
  • It is clear that the linear AOS transducer array of the invention has wide industrial applicability to AOS systems for automotive airbag systems. The AOS transducer array and its associated classification and calibration algorithms can readily be adapted to alternative transducer arrays which are not linearly spaced, but which are geometrically spaced adjacent the headliner to provide a comparable array of US beams to define the H-zone. [0052]
  • In addition to use in front airbag systems (airbags deploying generally forward of an occupant, particularly to protect the occupant in a front-impact collision), the AOS transducer array of the invention is also useful for regulation of the deployment of side airbag systems (airbags and/or other protective elements deploying generally to the side of an occupant, particularly to protect the occupant in a side-impact collision). [0053]
  • It should be understood that various modifications within the scope of this invention can be made by one of ordinary skill in the art without departing from the spirit thereof. It is therefore wished that the invention is to be defined by the scope of the appended claims as broadly as the prior art will permit, and in view of the specification and equivalents, if need be. [0054]

Claims (29)

What is claimed is:
1. An improved AOS system for determination of the presence of an occupant in a zone above at least one seat within a vehicle for use in cooperation with an airbag deployment system, comprising in operative combination:
a) at least one spaced array of sensors including a plurality of US transducers mounted adjacent the headliner of the vehicle generally above said seat and directed generally downward to define a pre-selected occupancy H-zone adjacent and above said seat covered by US beams transmitted from said transducers;
b) AOS electronics mounted within said vehicle and connected to said array to cause said array to emit US pulses into said defined H-zone and to receive US echoes of objects in said H-zone as AOS input signals; and
c) said AOS electronics including a processor and classification algorithm using range data derived from said AOS US input signals to output a signal indicative of the determination of the presence or absence in said H-zone of an object.
2. An improved AOS system as in
claim 1
, wherein at least one of said US transducers is a PZT sensor.
3. An improved AOS system as in
claim 1
, wherein:
a) said vehicle has a centerline; and
b) said transducer array is disposed in a line generally parallel to said vehicle centerline.
4. An improved AOS system as in
claim 3
, wherein
a) said seat has a central axis; and
b) said transducer array line is offset with respect to said seat axis.
5. An improved AOS system as in
claim 4
, wherein said array line is offset outboard of said seat axis.
6. An improved AOS system as in
claim 4
, wherein said array line is offset inboard of said seat axis.
7. An improved AOS system as in
claim 3
, including at least one of said transducer arrays disposed generally above each of a driver seat and a front passenger seat.
8. An improved AOS system as in
claim 7
, further including at least one of said transducer arrays disposed generally above at least one rear passenger seat.
9. An improved AOS system as in
claim 7
, further including at least one of said transducer arrays disposed generally above both a rear passenger seat and one of a front passenger seat and a driver seat, said array transducers defining a distinct H-zone with respect to the occupancy of each of said seats.
10. An improved AOS system as in
claim 1
, wherein said AOS system outputs said presence or absence determination signal to an airbag deployment system for regulating the deployment of at least one of a front airbag system and a side airbag system.
11. An improved AOS system as in
claim 1
, wherein at least one of said US transducers is directed so as to produce at least one of said US echos by reflection from the head of said occupant in the event that said seat is occupied.
12. An improved AOS system as in
claim 11
, wherein
a) said seat includes a headrest;
b) at least one of said US transducers is directed so as to produce at least one of said US echos by reflection from the head of said seat occupant in the event that said seat is occupied.
13. An improved AOS system as in
claim 1
, wherein
a) a subset of at least one of said US transducers but less than the full array of said US transducers is directed to define a keep-out zone located forward of said H-zone;
b) said AOS includes sensors to determine whether a crash-imminent state exists; and
c) in response to a determination of the existence of said crash-imminent state, said AOS processors use range data limited to a subset of said transducers of said array to determine motion of an occupant into said keep-out zone, to permit a faster update rate in said output signal during the existence of a crash-imminent state.
14. An improved AOS system as in
claim 1
, wherein said array does not include a Faraday cage for at least one of said transducers.
15. An improved AOS system as in
claim 1
, wherein
a) said AOS electronics includes a processor and algorithm to determine from said range data an intrusion of a person into a parked vehicle; and
b) said AOS electronics outputs an intrusion signal to at least one anti-theft device.
16. An improved AOS system for determination of the intrusion of an occupant into a keep-out zone above at least one seat within a vehicle and adjacent the vehicle side for use in cooperation with an airbag deployment system for side-impact protection, comprising in operative combination:
a) at least one spaced array of sensors including a plurality of US transducers mounted adjacent the headliner of the vehicle generally above said seat and directed generally downward to define a pre-selected keep-out zone above a seat and adjacent the vehicle side covered by US beams transmitted from said transducers;
b) AOS electronics mounted within said vehicle and connected to said array to cause said array to emit US pulses into said defined keep-out zone and to receive US echoes of objects in said keep-out zone as AOS input signals; and
c) said AOS electronics including a processor and classification algorithm using range data derived from said AOS US input signals to output a signal indicative of the determination of the presence or absence in said keep-out zone of an object.
17. An improved AOS system as in
claim 16
, wherein at least one of said US transducers is a PZT sensor.
18. A method of determining the presence of an occupant in a zone above at least one seat within a vehicle for an airbag deployment system, comprising in any operative order the steps of:
a) transmitting a plurality of spaced US transducer beams in a space array downward from above towards said seat to define an occupancy H-zone adjacent and above said seat;
b) receiving return US echo signals for at least one of said transducers;
c) deriving echo range values from said return echo signals;
d) determining occupant presence within said H-zone from said echo range values; and
e) sending a least one signal to said airbag deployment system indicative of one of the presence and the absence of an occupant in said H-zone.
19. A method as in
claim 18
, including:
a) determining the time history of said echo range values; and
b) determining the velocity of the motion of an occupant relative to said vehicle from said time history; and
c) predicting the presence of said occupant in said H-zone at a future time by extrapolating from said velocity.
20. A method as in
claim 18
, wherein said transmitting step includes transmitting said beams directed and spaced so that at least one of said beams is reflected by the head of said seat occupant in the event that said seat is occupied.
21. A method as in
claim 20
, wherein:
a) said seat includes a headrest;
b) said transmitting step includes transmitting at least one of said beams substantially towards said headrest so as to produce at least one return echo signal from said headrest; and
c) said determining step includes determining the location of said headrest from at least one of said echo range values.
22. A method as in
claim 18
, wherein
a) said transmitting step includes transmitting a subset of at least one of said US transducer beams but less than the full array of said US transducer beams to define a keep-out zone located forward of said H-zone;
b) determining whether a crash-imminent state exists; and
c) in response to a determination that a crash-imminent state exists, determining motion of an occupant into said keep-out zone using said echo range values corresponding to said subset of transducer beams, to permit a faster update rate in said occupant presence determination during the duration of the crash-imminent state.
23. A method of determining the intrusion of an occupant in a keep-out zone above at least one seat within a vehicle for an airbag deployment system, comprising in any operative order the steps of:
a) transmitting a plurality of spaced US transducer beams in a space array downward from above towards said seat to define an occupancy keep-out zone above said seat and adjacent the vehicle side;
b) receiving return US echo signals for at least one of said transducers;
c) determining occupant intrusion into said keep-out zone from echo range values derived from said return echo signals; and
d) sending a least one signal to said airbag deployment system indicative of one of the intrusion and non-intrusion of an occupant in said keep-out zone.
24. An improved sensor system for a vehicle interior AOS, comprising in operative combination:
a) a mounting board means for mounting sensors in the headliner of a vehicle;
b) a plurality of US transducers mounted on said mounting board; and
c) said transducers are mounted on said board in a spaced array angled to provide coverage in at least one defined zone in said vehicle.
25. An improved sensor system as in
claim 24
, wherein at least one of said US transducers is a PZT sensor.
26. An improved sensor system as in
claim 24
, wherein said the transducers of said spaced array are mounted in a generally straight line on said board.
27. An improved sensor system as in
claim 24
, wherein said defined zone is an occupancy H-zone adjacent and above a seat in said vehicle.
28. An improved sensor system as in
claim 24
, wherein said defined zone is a keep-out zone above a seat in said vehicle and adjacent a side of said vehicle.
29. An improved sensor system as in
claim 24
, wherein:
a) said transducers are mounted on said board in a spaced array angled to provide coverage in at least two defined zones in said vehicle; and
b) said defined zones are selected from:
i) an occupancy H-zone adjacent and above a seat in said vehicle;
ii) a keep-out zone above a seat in said vehicle and adjacent a front dashboard in said vehicle.
iii) a keep-out zone above a seat in said vehicle and adjacent a side of said vehicle.
US09/292,170 1999-04-15 1999-04-15 Linear ultrasound transducer array for an automotive occupancy sensor system Expired - Lifetime US6431592B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/292,170 US6431592B2 (en) 1999-04-15 1999-04-15 Linear ultrasound transducer array for an automotive occupancy sensor system
DE10018699A DE10018699B4 (en) 1999-04-15 2000-04-14 Linear ultrasonic transducer array for a motor vehicle occupancy sensor system
JP2000113842A JP3880771B2 (en) 1999-04-15 2000-04-14 Linearly arranged ultrasonic transducers for automotive occupancy sensor systems
GB0009386A GB2348955B (en) 1999-04-15 2000-04-14 Linear ultrasound transducer array for an automotive occupancy sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/292,170 US6431592B2 (en) 1999-04-15 1999-04-15 Linear ultrasound transducer array for an automotive occupancy sensor system

Publications (2)

Publication Number Publication Date
US20010048217A1 true US20010048217A1 (en) 2001-12-06
US6431592B2 US6431592B2 (en) 2002-08-13

Family

ID=23123524

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/292,170 Expired - Lifetime US6431592B2 (en) 1999-04-15 1999-04-15 Linear ultrasound transducer array for an automotive occupancy sensor system

Country Status (4)

Country Link
US (1) US6431592B2 (en)
JP (1) JP3880771B2 (en)
DE (1) DE10018699B4 (en)
GB (1) GB2348955B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080048421A1 (en) * 1994-05-23 2008-02-28 Automotive Technologies International, Inc. Airbag Which Deploys Along Multiple Sides of Occupant
US11366436B2 (en) 2018-12-03 2022-06-21 DSi Digital, LLC Data interaction platforms utilizing security environments
CN115284990A (en) * 2016-10-28 2022-11-04 伯斯有限公司 Back speaker with acoustic channel

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598900B2 (en) * 1999-04-19 2003-07-29 Automotive Systems Laboratory, Inc. Occupant detection system
US6922622B2 (en) * 1999-06-03 2005-07-26 Robert Bosch Corporation Hot vehicle safety system and methods of preventing passenger entrapment and heat suffocation
US6693273B1 (en) * 2000-05-02 2004-02-17 Prospects, Corp. Method and apparatus for monitoring a powered vent opening with a multifaceted sensor system
JP3785929B2 (en) * 2000-12-08 2006-06-14 三菱電機株式会社 Crew protection device
US6925193B2 (en) * 2001-07-10 2005-08-02 Eaton Corporation Image processing system for dynamic suppression of airbags using multiple model likelihoods to infer three dimensional information
US6856694B2 (en) * 2001-07-10 2005-02-15 Eaton Corporation Decision enhancement system for a vehicle safety restraint application
US7009502B2 (en) 2002-08-26 2006-03-07 Automotive Technologies International, Inc. Method for controlling output of a classification algorithm
US7019641B1 (en) * 2003-03-13 2006-03-28 M-Vision Inc. Human being presence detection system
US20070013509A1 (en) * 2003-03-13 2007-01-18 Sridhar Lakshmanan Living being presence detection system
KR20050047634A (en) * 2003-11-18 2005-05-23 현대자동차주식회사 Method for improving speaker sound quality of vehicle by controlling angle of speaker
DE102005003794A1 (en) * 2005-01-26 2006-08-03 Cedes Ag Gate, e.g. rolling gate, protecting device, has light barriers between which distance transfers another light barrier in measuring state if gate is in path between another two of barriers and before gate reaches former barrier
US20070046443A1 (en) * 2005-08-31 2007-03-01 Zhang Yao Y Rearview mirror having an alarm
US20070095595A1 (en) * 2005-11-02 2007-05-03 Arvinmeritor Light Vehicle Systems-France Anti-squeeze method utilizing airbag information
DE102005057973B4 (en) * 2005-12-05 2017-02-23 Robert Bosch Gmbh Method for functional testing of an ultrasonic sensor and distance measuring device
KR102254081B1 (en) * 2015-12-09 2021-05-20 현대자동차주식회사 Intrusion detection apparatus and vehicle comprising the same, control method for the intrusion detection apparatus
US10114113B2 (en) 2016-03-02 2018-10-30 Ford Global Technologies, Llc Ultrasound range correction
DE102017106971B4 (en) * 2016-05-17 2020-02-20 Grammer Aktiengesellschaft Seat occupancy recognition
US10603980B2 (en) 2017-09-14 2020-03-31 Lin Yu Vehicle interior environment control
US11766919B2 (en) * 2021-01-28 2023-09-26 Caterpillar Inc. System and method of climate control in unmanned machine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791667A (en) * 1972-05-04 1974-02-12 H Haviland Retractable vehicle passenger cushioning system
US5845000A (en) * 1992-05-05 1998-12-01 Automotive Technologies International, Inc. Optical identification and monitoring system using pattern recognition for use with vehicles
US4963856A (en) * 1987-04-03 1990-10-16 Mazda Motor Corporation Theft deterrent system
DE4005598C2 (en) * 1990-02-22 2000-06-15 Bosch Gmbh Robert Protection procedure for vehicle occupants and device for carrying out the procedure
US5330226A (en) * 1992-12-04 1994-07-19 Trw Vehicle Safety Systems Inc. Method and apparatus for detecting an out of position occupant
WO1994022693A1 (en) * 1993-03-31 1994-10-13 Automotive Technologies International, Inc. Vehicle occupant position and velocity sensor
US5366241A (en) * 1993-09-30 1994-11-22 Kithil Philip W Automobile air bag system
US5482314A (en) * 1994-04-12 1996-01-09 Aerojet General Corporation Automotive occupant sensor system and method of operation by sensor fusion
US5602734A (en) * 1994-09-23 1997-02-11 Advanced Safety Concepts, Inc. Automobile air bag systems
JP2973863B2 (en) * 1995-03-31 1999-11-08 トヨタ自動車株式会社 Airbag device for passenger seat
JP3766145B2 (en) * 1996-10-16 2006-04-12 株式会社日本自動車部品総合研究所 Vehicle interior condition detection device
US6007095A (en) * 1997-02-05 1999-12-28 Automotive Systems Laboratory, Inc. Vehicle occupant position sensor
US6116640A (en) * 1997-04-01 2000-09-12 Fuji Electric Co., Ltd. Apparatus for detecting occupant's posture
US5954360A (en) * 1997-09-18 1999-09-21 Breed Automotive Technology, Inc. Vehicle occupant sensing apparatus and method
JP3346245B2 (en) * 1997-10-22 2002-11-18 日本電気株式会社 Occupant detection system and occupant detection method
US6220627B1 (en) * 1998-04-20 2001-04-24 Automotive Systems Lab Occupant detection system
US6196579B1 (en) * 1998-09-24 2001-03-06 Trw Vehicle Safety Systems Inc. Rear impact occupant protection system
US6199902B1 (en) * 1999-02-12 2001-03-13 Trw Inc. Apparatus and method for discerning at least one occupant characteristic via absorption of an energy signal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080048421A1 (en) * 1994-05-23 2008-02-28 Automotive Technologies International, Inc. Airbag Which Deploys Along Multiple Sides of Occupant
CN115284990A (en) * 2016-10-28 2022-11-04 伯斯有限公司 Back speaker with acoustic channel
US11366436B2 (en) 2018-12-03 2022-06-21 DSi Digital, LLC Data interaction platforms utilizing security environments
US11402811B2 (en) * 2018-12-03 2022-08-02 DSi Digital, LLC Cross-sensor predictive inference
US11520301B2 (en) 2018-12-03 2022-12-06 DSi Digital, LLC Data interaction platforms utilizing dynamic relational awareness
US11663533B2 (en) 2018-12-03 2023-05-30 DSi Digital, LLC Data interaction platforms utilizing dynamic relational awareness

Also Published As

Publication number Publication date
US6431592B2 (en) 2002-08-13
GB2348955A (en) 2000-10-18
DE10018699B4 (en) 2010-04-08
GB0009386D0 (en) 2000-06-07
JP2001026234A (en) 2001-01-30
GB2348955B (en) 2003-10-08
DE10018699A1 (en) 2000-11-30
JP3880771B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
US6431592B2 (en) Linear ultrasound transducer array for an automotive occupancy sensor system
US6412813B1 (en) Method and system for detecting a child seat
US5901978A (en) Method and apparatus for detecting the presence of a child seat
US6039139A (en) Method and system for optimizing comfort of an occupant
US6325414B2 (en) Method and arrangement for controlling deployment of a side airbag
US7467809B2 (en) Vehicular occupant characteristic determination system and method
US6474683B1 (en) Method and arrangement for obtaining and conveying information about occupancy of a vehicle
US6950022B2 (en) Method and arrangement for obtaining and conveying information about occupancy of a vehicle
US6279946B1 (en) Methods for controlling a system in a vehicle using a transmitting/receiving transducer and/or while compensating for thermal gradients
US6116639A (en) Vehicle interior identification and monitoring system
US5802479A (en) Motor vehicle occupant sensing systems
US6793242B2 (en) Method and arrangement for obtaining and conveying information about occupancy of a vehicle
US6942248B2 (en) Occupant restraint device control system and method
US6513833B2 (en) Vehicular occupant motion analysis system
US6272411B1 (en) Method of operating a vehicle occupancy state sensor system
US5829782A (en) Vehicle interior identification and monitoring system
US6736231B2 (en) Vehicular occupant motion detection system using radar
US5893582A (en) Airbag deployment control system
GB2289332A (en) Passenger identification and monitoring
US6517107B2 (en) Methods for controlling a system in a vehicle using a transmitting/receiving transducer and/or while compensating for thermal gradients
JP2002512145A (en) Occupant detection system
JP2002512146A (en) Occupant detection system
US6712387B1 (en) Method and apparatus for controlling deployment of a side airbag
US6856876B2 (en) Methods for controlling a system in a vehicle using a transmitting/receiving transducer and/or while compensating for thermal gradients
KR100322160B1 (en) Control device for a restraining medium in a motor vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEIP, RALF;REEL/FRAME:009913/0865

Effective date: 19990401

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12