US20010044178A1 - Method of forming dielectric film with good crystallinity and low leak - Google Patents
Method of forming dielectric film with good crystallinity and low leak Download PDFInfo
- Publication number
- US20010044178A1 US20010044178A1 US09/809,191 US80919101A US2001044178A1 US 20010044178 A1 US20010044178 A1 US 20010044178A1 US 80919101 A US80919101 A US 80919101A US 2001044178 A1 US2001044178 A1 US 2001044178A1
- Authority
- US
- United States
- Prior art keywords
- forming
- dielectric film
- film
- oxide
- oxide dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 49
- 239000003989 dielectric material Substances 0.000 claims abstract description 22
- 239000000126 substance Substances 0.000 claims abstract description 20
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 11
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000000137 annealing Methods 0.000 claims abstract description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 36
- 239000010410 layer Substances 0.000 claims description 35
- 239000007864 aqueous solution Substances 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 20
- 239000003990 capacitor Substances 0.000 claims description 19
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 18
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 238000004544 sputter deposition Methods 0.000 claims description 10
- 238000009413 insulation Methods 0.000 claims description 9
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 9
- 239000011229 interlayer Substances 0.000 claims description 8
- 238000004381 surface treatment Methods 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 238000003980 solgel method Methods 0.000 claims description 5
- 238000007598 dipping method Methods 0.000 claims 3
- 238000010306 acid treatment Methods 0.000 description 21
- 238000002425 crystallisation Methods 0.000 description 12
- 230000008025 crystallization Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 229910052697 platinum Inorganic materials 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 239000010936 titanium Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000004151 rapid thermal annealing Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910002353 SrRuO3 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002050 hydrofluoric acid Drugs 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N iridium(IV) oxide Inorganic materials O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02197—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/088—Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02343—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02356—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31691—Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/55—Capacitors with a dielectric comprising a perovskite structure material
Definitions
- the present invention relates to a method of forming a dielectric film, and in particular, to a method of forming a dielectric film for use in a capacitor and a semiconductor device.
- a non-volatile memory can be implemented using ferrodielectric films for capacitors of the DRAM.
- PZT lead zirconate titanate
- PTO lead titanate
- PZT lead zirconate titanate
- La lanthanum
- Nb niobium
- Ca calcium
- strontium strontium
- a dielectric film formed using oxide including lead is generally formed on a substrate by, for example, sputtering, sol-gel process, or chemical vapor deposition (CVD) at a room temperature.
- the dielectric layer formed at a room temperature is amorphous in an ordinary situation and will include a mixture of oxide of the constituent element.
- the film is then annealed at a temperature from 500° C. to 800° C. As a result, the film is crystallized to a target dielectric film.
- the thickness of the dielectric film becomes equal to or less than 200 nanometers (nm)
- electric characteristics may be reduced in some cases. For example, there occur reduction of residual polarization charge and increase of leakage current.
- the element of lead is considered to contribute to formation of an initial kernel or nuclear in the crystallization.
- lead is favorably increased to an excessive extent. Excess lead causes increase of the leakage current after the crystallization. Therefore, a minimum quantity of excess lead for the crystallization is desired.
- Another object of the present invention is to provide a method of forming a capacitor with high characteristics using a capacitor dielectric film including lead.
- Still another object of the present invention is to provide a method of forming a semiconductor device with high characteristics using a capacitor dielectric film including lead.
- a method of forming a dielectric film including the steps of forming on a surface of underlie substance a film of an oxide dielectric material including lead or bismuth, treating a surface of the oxide dielectric film with solution including nitric acid, and crystallizing the oxide dielectric film, after the surface treatment, by annealing the film and thereby obtaining an oxide dielectric film.
- a method of forming a capacitor including the steps of forming on a surface of a first conductive layer a film of an oxide dielectric material including lead or bismuth, treating a surface of the oxide dielectric film with solution including nitric acid, crystallizing the oxide dielectric film, after the surface treatment, by annealing the film and thereby obtaining an oxide dielectric film, and forming a second conductive layer on said oxide dielectric film.
- a method of forming a semiconductor device including the steps of forming on a semiconductor substrate a transistor including one pair of current electrodes and a control electrode, covering the transistor with an inter-layer insulation film, forming a lower electrode on said inter-layer insulation film, forming on a surface of said lower electrode a film of an oxide dielectric material including lead or bismuth, treating a surface of the oxide dielectric film with solution including nitric acid, crystallizing the oxide dielectric film, after the surface treatment, by annealing the film and thereby obtaining an oxide dielectric film, and forming an upper electrode on said oxide dielectric film.
- the obtained dielectric film has good crytallinity and a reduced surface layer.
- FIGS. 1A to 1 E are a flowchart and schematic cross-sectional views to explain processes of manufacturing an embodiment of a dielectric film and a capacitor according to the present invention
- FIGS. 2A to 2 C are a graph and tables showing characteristics of samples in the embodiment according to the present invention.
- FIGS. 3A and 3B are sketches of electro-microscopic pictures of samples produced by the embodiment
- FIGS. 4A and 4B are a flowchart of processes to fabricate a dielectric film and a capacitor and a sketch of an electro-microscopic picture of a sample in a prior art.
- FIG. 5 is a cross-sectional view schematically showing constitution of an embodiment of a semiconductor device according to the present invention.
- the amorphous oxide dielectric film can be regarded as a mixture including oxide of the constituent element. Therefore, lead excessively contained in the film for crystallization is included in each grain and is also precipitated more easily on a surface of the grain or grain boundary. Although the excess lead will form the kernel of crystallization, it cannot be considered that all lead on the surface is required for the crystallization.
- FIG. 1A shows, in a flowchart, basic processing steps of forming a dielectric film including oxide of lead in an embodiment of the present invention.
- step S 1 a lower electrode is formed.
- a silicon oxide film 12 with a thickness of about 200 nm is formed on, for example, a silicon substrate 10 .
- Formed on the silicon oxide film 12 is an about 50 nm thick titanium (Ti) layer 14 serving as an adhesion layer on which an about 150 nm platinum (Pt) layer 16 serving as a main electrode is formed.
- Ti titanium
- Pt platinum
- the titanium layer 14 and the platinum layer 16 constitute a lower electrode.
- an alloy may be produced between the layers 14 and 16 .
- the silicon oxide film 12 may be a thermally oxidized film or a silicon oxide formed by, for example, CVD.
- the titanium layer 14 enhances adhesion between the platinum layer 16 and the silicon oxide film 12 .
- a substrate other than the silicon substrate 10 may be used.
- the silicon oxide film 12 may be substituted for another insulation film.
- another conductive film resistive against treatment at a high temperature may be used.
- a metal of platinum group or a conductive substance of oxide of a platinum group element may be used.
- platinum group metal ruthenium (Ru), rhodium (Rh), iridium (Ir), or platinum (Pt) may be used.
- As the oxide of platinum group metal RuO 2 , SrRuO 3 , or IrO 2 has been known.
- step S 2 an amorphous dielectric film is formed on the lower electrode.
- a layer 18 of, for example, lead zirconate titanate (PZT) is formed on the platinum layer 16 by sol-gel process, sputtering, or CVD.
- PZT lead zirconate titanate
- sol-gel process a sol-gel solution in which organic compounds of PZT constituent elements are solved in solvent is applied on the lower electrode and is baked to form a dielectric film.
- the sputtering is conducted using a target of a material to accumulate a film of the material on the lower electrode.
- CVD process a material gas is excited by heat or plasma to cause a desired reaction to pile a material film on the lower electrode.
- the material film formed by the sol-gel process is amorphous in an initial state.
- the film formed by the sputtering or CVD on the substrate at a room temperature is also amorphous in an initial state.
- partially crystallized film may be formed by sputtering or CVD on a substrate heated, it is difficult to form a completely crystallized film. It is therefore determined to first form an amorphous dielectric film or a partially amorphous dielectric film.
- step S 3 the film is treated with aqueous solution of nitric acid, which oxidizes lead.
- the substrate 10 is dipped into aqueous solution of nitric acid 22 in a container 21 as shown in FIG. 1CA.
- the nitric acid treatment can also be carried out by forming a film of aqueous solution of nitric acid 22 on a dielectric film on a surface of the substrate 10 as shown in FIG. 1CB.
- the nitric acid treatment may be achieved in a period of about ten seconds using aqueous solution of nitric acid of a concentration of, for example, about 2% by weight (wt %) to about 30 wt %.
- the substrate is annealed for crystallization at a temperature from 500° C. to 800° C. in step S 4 .
- the substrate is heated for about one minute in an atmosphere of oxygen at about 750° C. by rapid thermal annealing (RTA) as shown in FIG. 1D.
- RTA rapid thermal annealing
- the dielectric film of a mixture of oxide of constituent element is changed into an objective dielectric film.
- excess lead can be considered to serve as a kernel of growth.
- the lead to serve as the growth kernel is insufficient and the number of crystal kernels is minimized. This possibly grows grains having various diameters. With a sufficient quantity of excess lead, the obtained grains have almost a uniform diameter. Excess lead appearing on the surface can be reduced by the nitric acid treatment.
- step S 5 an upper electrode is formed on the crystallized dielectric film.
- a platinum layer 20 with a thickness of about 100 nm by sputtering.
- Thickness of each material layer of the configuration may be appropriately altered depending on purposes.
- Each layer may be patterned by ion milling using argon (Ar) gas.
- the material is accumulated on the lower electrode by sputtering at a room temperature.
- the lower electrode is prepared as follows. On the silicon substrate, an about 50 nm thick titanium layer is formed. On the titanium layer, an about 150 nm thick platinum layer is formed. A dielectric film with a thickness of about 200 nm is accumulated at a room temperature. FIG. 1B shows the sample at this stage.
- the nitric acid treatment is carried out using aqueous solution of nitric acid of 5 wt % and aqueous solution of nitric acid of 30 wt % for a treating period of ten seconds at a room temperature (24° C.).
- the annealing for crystallization is carried out at 750° C. by RTA heating for one minutes in an oxygen atmosphere.
- FIG. 2A shows results of measurement of surfaces of the obtained dielectric films by an X-ray photoelectron spectroscopy.
- the abscissa represents electron energy E in electron volt (eV) and the ordinate represents a counted number N.
- E lead zirconate titanate
- the peak indicating the fixed substance is considerably reduced. The shape of the peak is changed to almost a shape of a shoulder.
- the nitric acid treatment is quite effective to minimize the absorbed or fixed substance on the surface. It has been known that material such as water is fixed on or is absorbed in a surface of oxide dielectric substance including lead. It is expectable that the fixed or absorbed water can be suppressed by the nitric acid treatment.
- FIGS. 3A and 3B are sketches of pictures of an electron microscope of dielectric film surfaces after the nitric acid treatment.
- FIG. 3A shows the surface treated with aqueous solution of nitric acid of 5 wt %
- FIG. 3B shows the surface treated with aqueous solution of nitric acid of 30 wt %.
- the grains defined by grain boundaries GB have respectively almost uniform grain diameters and fixed or absorbed substances are not observed.
- FIG. 4B is a sketch of a picture of an electron microscope of dielectric film surfaces prepared without conducting the nitric acid treatment. Although the dielectric film is crystallized, there is clearly observed fixed substance, called surface layer (SL) on the film.
- SL surface layer
- an upper electrode is formed on the dielectric film.
- a platinum layer 20 with a thickness of about 100 nm is formed by sputtering.
- the upper electrode of the sample for measurement has a size of about 50 micrometers (m ⁇ ) ⁇ 50 m ⁇ . After the upper electrode is formed, to recover damage of the dielectric film, the substrate is thermally treated at 650° C. for about one hour in an oxygen atmosphere. Electric characteristics of each sample are then measured.
- FIG. 2B shows residual polarization charge Qsw and leakage current I L of each sample.
- FIG. 2C shows an I-V characteristic of each sample.
- the characteristic indicates the leakage current which flows through a capacitor when a voltage is applied thereto, the current not flowing in an inherent state.
- the abscissa represents an applied voltage in unit of volt and the ordinate represents the leakage current in unit of ampere (A) per square centimeters (cm 2 ).
- a curve q 1 indicates an I-V characteristic of a sample prepared without conducting the nitric acid treatment.
- Curves q 2 and q 3 are I-V characteristics respectively of samples prepared by conducting the nitric acid treatment with aqueous solution of nitric acid of 5 wt % and 30 wt %, respectively.
- a column of leakage current I L shows values of leakage current I L at points respectively of 5 V and ⁇ 5 V (applied voltage).
- a field of residual polarization value Qsw shows values obtained as follows. Two positive pulses are applied to the sample at an interval of one second. After one second, two negative pulses are applied to the sample at an interval of one second. The residual polarization value Qsw is measured thereafter. The pulse has a height of 5 V and a length of 5 microseconds ( ⁇ s). In none of the samples, the residual polarization value shows a significant change.
- FIG. 5 shows a semiconductor substrate during a production process of a semiconductor device in a cross-sectional view.
- a p-type well 22 is formed on a silicon substrate 21 .
- the p-type well 22 may be a double well formed in an n-type well or a single well formed in an n-type substrate.
- a field isolation film 23 is formed by local oxidization of silicon (LOCOS). In place of LOCOS, shallow trench isolation (STI) may be used.
- LOCOS local oxidization of silicon
- a metal oxide semiconductor (MOS) transistor is formed in an active region surrounded by the field isolation film 23 .
- MOS metal oxide semiconductor
- a gate electrode 25 is formed using a polycrystalline silicon layer (or a lamination of a polycrystalline silicon layer and a silicide layer) with a gate oxide film 24 therebetween.
- a silicide spacer 27 is formed using an oxide film or the like.
- source/drain regions 28 and 29 are formed in a lightly doped drain (LDD) structure through two ion implantation processes to resultantly form a transistor.
- a first inter-layer insulation film 30 is formed to surround the transistor, using a silicon oxide film by CVD or the like or using an oxide silicon film doped with phosphor (P) or boron (B). These constituent elements can be produced according to known techniques of the prior art.
- an adhesion layer 31 is formed with, for example, titanium (Ti) on which a main lower electrode 32 is formed using platinum (Pt) or the like.
- the main lower electrode 32 and the adhesion layer 31 can be patterned by ion milling with argon (Ar) gas or the like.
- a dielectric film 33 including lead is formed partially on the main lower electrode 32 .
- the dielectric film 33 is, for example, a lead zirconate titanate (PZT) film formed according to the embodiment.
- an upper electrode 34 is formed on the dielectric film 33 .
- the upper electrode 34 is made of a platinum group metal, e.g., platinum resistive against high-temperature process.
- a capacitor structure including the dielectric film 33 sandwiched between the lower and upper electrodes is constructed.
- a second inter-layer insulation layer 35 is formed to surround the capacitor structure, using silicon oxide or the like.
- Contact holes are formed beginning at a surface of the second inter-layer insulation film 35 and reaching respectively the upper electrode 34 , the lower electrode 32 , and the source/drain regions 28 and 29 .
- Wiring zones 36 , 37 , and 38 are formed in the contact (via) holes.
- the wiring 36 , 37 , and 38 can be formed using, for example, aluminum (Al) or titanium nitride (TiN). In place of the single wiring, there may be formed plugs in the contact (via) holes and wiring layer patterns on upper surfaces of the plugs. Although the upper electrode of the capacitor is connected to the source/drain electrodes in the configuration, the lower electrode of the capacitor may be connected thereto. The modification can be achieved by changing the pattern of the wiring 36 and 37 .
- a semiconductor memory device has been constructed.
- a ferrordielectric film of, for example, lead zirconate titanate (PZT) is used as the dielectric film 33 .
- a ferroelectric RAM FeRAM
- a high dielectric film is used as the dielectric film 33 , a high-performance DRAM is produced.
- bismuth serves, like lead, as a kernel of crystallization and has a characteristic to easily leave the film. According to the characteristics shared between lead and bismuth, it is expectable that the process including the nitric acid treatment is efficient also for an oxide dielectric layer including bismuth.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
A dielectric film forming method includes forming on a surface of underlie substance a film of an oxide dielectric material including lead or bismuth, treating a surface of the oxide dielectric film with solution of nitric acid, and crystallizing the oxide dielectric film by annealing the film to obtain an oxide dielectric film. This provides a method of forming a dielectric film with good dielectric characteristics.
Description
- This application is based upon and claims priority of Japanese Patent Application No. 2000-142867, filed on May 16, 2000, the contents being incorporated herein by reference.
- 1. Field of the Invention
- The present invention relates to a method of forming a dielectric film, and in particular, to a method of forming a dielectric film for use in a capacitor and a semiconductor device.
- 2. Description of the Related Art
- In fields of semiconductor devices, attention has been attracted to a ferrodielectric or ferroelectric film and high dielectric substances having a high dielectric constant or permittivity. This is because that, for example, use of high dielectric films in a dynamic random access memory (RAM) results in miniaturization or minimization of capacitors for storing a required value of electric charge and hence advantageously increases the degree of integration. A non-volatile memory can be implemented using ferrodielectric films for capacitors of the DRAM. For such ferrodielectric films and the high dielectric substances, research and development have been conducted on materials such as lead zirconate titanate (PZT) and lead titanate (PTO). These substances have a common chemical formula of ABO3.
- Although lead zirconate titanate (PZT) doped with lanthanum (La), niobium (Nb), calcium (Ca), or strontium (Sr) is also known as a ferrodielectric substance, these substances will be collectively called lead zirconate titanate (PZT).
- A dielectric film formed using oxide including lead is generally formed on a substrate by, for example, sputtering, sol-gel process, or chemical vapor deposition (CVD) at a room temperature. The dielectric layer formed at a room temperature is amorphous in an ordinary situation and will include a mixture of oxide of the constituent element. The film is then annealed at a temperature from 500° C. to 800° C. As a result, the film is crystallized to a target dielectric film.
- To increase the integration degree of the semiconductor device, it is desired to reduce an area of the capacitor and film thickness of each constituent material. When the thickness of the dielectric film is reduced, intensity of an electric field generated by applying a constant voltage becomes greater, and hence a necessary voltage for operation of the device can be lowered. This also minimizes a surface step or step on a surface. The small surface step enhances fine work to be done above the step.
- When the thickness of the dielectric film becomes equal to or less than 200 nanometers (nm), electric characteristics may be reduced in some cases. For example, there occur reduction of residual polarization charge and increase of leakage current. To produce a high-performance semiconductor device, it is desired to keep residual polarization charge at a high value and the leakage current at a low value.
- In the process of crystallizing the dielectric material of oxide including lead, the element of lead is considered to contribute to formation of an initial kernel or nuclear in the crystallization. To achieve good crystallization, lead is favorably increased to an excessive extent. Excess lead causes increase of the leakage current after the crystallization. Therefore, a minimum quantity of excess lead for the crystallization is desired.
- It is therefore an object of the present invention to provide a method of forming a dielectric film with high dielectric characteristics.
- Another object of the present invention is to provide a method of forming a capacitor with high characteristics using a capacitor dielectric film including lead.
- Still another object of the present invention is to provide a method of forming a semiconductor device with high characteristics using a capacitor dielectric film including lead.
- According to one aspect of the present invention, there is provided a method of forming a dielectric film including the steps of forming on a surface of underlie substance a film of an oxide dielectric material including lead or bismuth, treating a surface of the oxide dielectric film with solution including nitric acid, and crystallizing the oxide dielectric film, after the surface treatment, by annealing the film and thereby obtaining an oxide dielectric film.
- According to another aspect of the present invention, there is provided a method of forming a capacitor including the steps of forming on a surface of a first conductive layer a film of an oxide dielectric material including lead or bismuth, treating a surface of the oxide dielectric film with solution including nitric acid, crystallizing the oxide dielectric film, after the surface treatment, by annealing the film and thereby obtaining an oxide dielectric film, and forming a second conductive layer on said oxide dielectric film.
- According to still another aspect of the present invention, there is provided a method of forming a semiconductor device including the steps of forming on a semiconductor substrate a transistor including one pair of current electrodes and a control electrode, covering the transistor with an inter-layer insulation film, forming a lower electrode on said inter-layer insulation film, forming on a surface of said lower electrode a film of an oxide dielectric material including lead or bismuth, treating a surface of the oxide dielectric film with solution including nitric acid, crystallizing the oxide dielectric film, after the surface treatment, by annealing the film and thereby obtaining an oxide dielectric film, and forming an upper electrode on said oxide dielectric film.
- The obtained dielectric film has good crytallinity and a reduced surface layer.
- Using the dielectric film, a capacitor with high electric characteristics can be fabricated.
- Using the dielectric film, a semiconductor including capacitors with high electric characteristics can be produced. dr
- The objects and features of the present invention will become more apparent from the consideration of the following detailed description taken in conjunction with the accompanying drawings in which:
- FIGS. 1A to1E are a flowchart and schematic cross-sectional views to explain processes of manufacturing an embodiment of a dielectric film and a capacitor according to the present invention;
- FIGS. 2A to2C are a graph and tables showing characteristics of samples in the embodiment according to the present invention;
- FIGS. 3A and 3B are sketches of electro-microscopic pictures of samples produced by the embodiment;
- FIGS. 4A and 4B are a flowchart of processes to fabricate a dielectric film and a capacitor and a sketch of an electro-microscopic picture of a sample in a prior art; and
- FIG. 5 is a cross-sectional view schematically showing constitution of an embodiment of a semiconductor device according to the present invention.
- For a method in which an oxide dielectric film including lead is formed in an amorphous state on a surface of underlie substance to thereafter anneal the film, the present inventor considered as follows.
- The amorphous oxide dielectric film can be regarded as a mixture including oxide of the constituent element. Therefore, lead excessively contained in the film for crystallization is included in each grain and is also precipitated more easily on a surface of the grain or grain boundary. Although the excess lead will form the kernel of crystallization, it cannot be considered that all lead on the surface is required for the crystallization. The inventor considered to introduce treatment of the surface of the amorphous oxide dielectric film by acid.
- Good results was not obtained through the surface treatment using fluoric acid, hydochloric acid, and sulfuric acid. However, in surface treatment using nitric acid, there were obtained results better than those expected before. Description will next be given of an embodiment of the present invention.
- FIG. 1A shows, in a flowchart, basic processing steps of forming a dielectric film including oxide of lead in an embodiment of the present invention.
- In step S1, a lower electrode is formed.
- As shown in FIG. 1B, a
silicon oxide film 12 with a thickness of about 200 nm is formed on, for example, asilicon substrate 10. Formed on thesilicon oxide film 12 is an about 50 nm thick titanium (Ti)layer 14 serving as an adhesion layer on which an about 150 nm platinum (Pt)layer 16 serving as a main electrode is formed. Thetitanium layer 14 and theplatinum layer 16 constitute a lower electrode. In the configuration, an alloy may be produced between thelayers - The
silicon oxide film 12 may be a thermally oxidized film or a silicon oxide formed by, for example, CVD. Thetitanium layer 14 enhances adhesion between theplatinum layer 16 and thesilicon oxide film 12. - When the dielectric film is formed for other than a semiconductor device, a substrate other than the
silicon substrate 10 may be used. Thesilicon oxide film 12 may be substituted for another insulation film. In place of theplatinum film 16, another conductive film resistive against treatment at a high temperature may be used. For example, in place of platinum, a metal of platinum group or a conductive substance of oxide of a platinum group element may be used. As the platinum group metal, ruthenium (Ru), rhodium (Rh), iridium (Ir), or platinum (Pt) may be used. As the oxide of platinum group metal, RuO2, SrRuO3, or IrO2 has been known. - In step S2, an amorphous dielectric film is formed on the lower electrode.
- As shown in FIG. 1B, a
layer 18 of, for example, lead zirconate titanate (PZT) is formed on theplatinum layer 16 by sol-gel process, sputtering, or CVD. In the sol-gel process, a sol-gel solution in which organic compounds of PZT constituent elements are solved in solvent is applied on the lower electrode and is baked to form a dielectric film. When sputtering is used, the sputtering is conducted using a target of a material to accumulate a film of the material on the lower electrode. In the CVD process, a material gas is excited by heat or plasma to cause a desired reaction to pile a material film on the lower electrode. - The material film formed by the sol-gel process is amorphous in an initial state. The film formed by the sputtering or CVD on the substrate at a room temperature is also amorphous in an initial state. Although partially crystallized film may be formed by sputtering or CVD on a substrate heated, it is difficult to form a completely crystallized film. It is therefore determined to first form an amorphous dielectric film or a partially amorphous dielectric film.
- In step S3, the film is treated with aqueous solution of nitric acid, which oxidizes lead.
- In the treatment, the
substrate 10 is dipped into aqueous solution ofnitric acid 22 in acontainer 21 as shown in FIG. 1CA. - The nitric acid treatment can also be carried out by forming a film of aqueous solution of
nitric acid 22 on a dielectric film on a surface of thesubstrate 10 as shown in FIG. 1CB. - The nitric acid treatment may be achieved in a period of about ten seconds using aqueous solution of nitric acid of a concentration of, for example, about 2% by weight (wt %) to about 30 wt %.
- After the nitric acid treatment, the substrate is annealed for crystallization at a temperature from 500° C. to 800° C. in step S4.
- For example, the substrate is heated for about one minute in an atmosphere of oxygen at about 750° C. by rapid thermal annealing (RTA) as shown in FIG. 1D. As a result of the annealing, the dielectric film of a mixture of oxide of constituent element is changed into an objective dielectric film.
- In the crystallization process, excess lead can be considered to serve as a kernel of growth. When the quantity of excess lead is too small, the lead to serve as the growth kernel is insufficient and the number of crystal kernels is minimized. This possibly grows grains having various diameters. With a sufficient quantity of excess lead, the obtained grains have almost a uniform diameter. Excess lead appearing on the surface can be reduced by the nitric acid treatment.
- In step S5, an upper electrode is formed on the crystallized dielectric film.
- As shown in FIG. 1E, on the
dielectric film 19 formed by crystallizing thedielectric film 18, there is formed, for example, aplatinum layer 20 with a thickness of about 100 nm by sputtering. - Thickness of each material layer of the configuration may be appropriately altered depending on purposes. Each layer may be patterned by ion milling using argon (Ar) gas.
- Description will now be given of results of experiments conducted for performance of the dielectric films and the capacitors formed in the embodiment.
- Using a target of Pb1.15La0.03, Ti0.60O3 as the dielectric material, the material is accumulated on the lower electrode by sputtering at a room temperature.
- The lower electrode is prepared as follows. On the silicon substrate, an about 50 nm thick titanium layer is formed. On the titanium layer, an about 150 nm thick platinum layer is formed. A dielectric film with a thickness of about 200 nm is accumulated at a room temperature. FIG. 1B shows the sample at this stage.
- The nitric acid treatment is carried out using aqueous solution of nitric acid of 5 wt % and aqueous solution of nitric acid of 30 wt % for a treating period of ten seconds at a room temperature (24° C.).
- For comparison, other samples are fabricated without conducting the nitric acid treatment. Comparative examples are fabricated through processes shown in FIG. 4A. Steps S11, S12, and S14 of FIG. 4A are the same as the steps S1, S2, and S4 of FIG. 1A, respectively. The nitric acid treatment in step S3 is not conducted in the processes of FIG. 4A.
- The annealing for crystallization is carried out at 750° C. by RTA heating for one minutes in an oxygen atmosphere.
- FIG. 2A shows results of measurement of surfaces of the obtained dielectric films by an X-ray photoelectron spectroscopy. In the graph, the abscissa represents electron energy E in electron volt (eV) and the ordinate represents a counted number N.
- A sample P1 fabricated without conducting the nitric acid treatment has a peak at energy E (529 eV) for lead zirconate titanate (PZT). At the same time, the sample P1 also has a peak at a point near energy E=531 indicating a fixed or absorbed substance. For a sample P2 fabricated by conducting the nitric acid treatment with aqueous solution of nitric acid of 5 wt % for ten seconds, the peak indicating the fixed substance is considerably reduced. The shape of the peak is changed to almost a shape of a shoulder. For a sample P3 fabricated by conducting the nitric acid treatment with aqueous solution of nitric acid of 30 wt %, the peak of the fixed substance is almost vanished and has a shaped of a shoulder. It is difficult to identify a peak position of the fixed substance.
- The results indicate that the nitric acid treatment is quite effective to minimize the absorbed or fixed substance on the surface. It has been known that material such as water is fixed on or is absorbed in a surface of oxide dielectric substance including lead. It is expectable that the fixed or absorbed water can be suppressed by the nitric acid treatment.
- FIGS. 3A and 3B are sketches of pictures of an electron microscope of dielectric film surfaces after the nitric acid treatment. FIG. 3A shows the surface treated with aqueous solution of nitric acid of 5 wt % and FIG. 3B shows the surface treated with aqueous solution of nitric acid of 30 wt %. On both surfaces, the grains defined by grain boundaries GB have respectively almost uniform grain diameters and fixed or absorbed substances are not observed.
- FIG. 4B is a sketch of a picture of an electron microscope of dielectric film surfaces prepared without conducting the nitric acid treatment. Although the dielectric film is crystallized, there is clearly observed fixed substance, called surface layer (SL) on the film.
- After the crystallization of the dielectric film, an upper electrode is formed on the dielectric film. For this purpose, a
platinum layer 20 with a thickness of about 100 nm is formed by sputtering. - The upper electrode of the sample for measurement has a size of about 50 micrometers (mμ)×50 mμ. After the upper electrode is formed, to recover damage of the dielectric film, the substrate is thermally treated at 650° C. for about one hour in an oxygen atmosphere. Electric characteristics of each sample are then measured.
- FIG. 2B shows residual polarization charge Qsw and leakage current IL of each sample.
- FIG. 2C shows an I-V characteristic of each sample. The characteristic indicates the leakage current which flows through a capacitor when a voltage is applied thereto, the current not flowing in an inherent state. The abscissa represents an applied voltage in unit of volt and the ordinate represents the leakage current in unit of ampere (A) per square centimeters (cm2). A curve q1 indicates an I-V characteristic of a sample prepared without conducting the nitric acid treatment. Curves q2 and q3 are I-V characteristics respectively of samples prepared by conducting the nitric acid treatment with aqueous solution of nitric acid of 5 wt % and 30 wt %, respectively.
- As can be seen from FIG. 2C, the I-V characteristics of the samples q2 and q3 prepared by conducting the nitric acid treatment are considerably lowered when compared with the I-V characteristic of the sample q1 prepared without conducting the nitric acid treatment.
- In FIG. 2B, a column of leakage current IL shows values of leakage current IL at points respectively of 5 V and −5 V (applied voltage).
- A field of residual polarization value Qsw shows values obtained as follows. Two positive pulses are applied to the sample at an interval of one second. After one second, two negative pulses are applied to the sample at an interval of one second. The residual polarization value Qsw is measured thereafter. The pulse has a height of 5 V and a length of 5 microseconds (μs). In none of the samples, the residual polarization value shows a significant change.
- As a result, it is confirmed that the nitric acid treatment prevents the surface layer and hence brings about a dielectric film in which the leakage current is minimized.
- In the samples treated with aqueous solution of nitric acid of 30 wt %, decrease of the dielectric film is observed. To avoid this phenomenon, the concentration of nitric acid in the aqueous solution is desired to be equal to or less than 30 wt %. In the samples treated with aqueous solution of nitric acid of 5 wt %, sufficient effect is observed. Although similar good effect is expectable using more concentrated aqueous solution of nitric acid, it will be desirable to employ aqueous solution of nitric acid of 2 wt % or less. Consequently, it is desirable to conduct the nitric acid treatment with aqueous solution of nitric acid from about 2 wt % to about 30 wt %.
- FIG. 5 shows a semiconductor substrate during a production process of a semiconductor device in a cross-sectional view. On a
silicon substrate 21, a p-type well 22 is formed. The p-type well 22 may be a double well formed in an n-type well or a single well formed in an n-type substrate. On a surface of thesilicon substrate 21, afield isolation film 23 is formed by local oxidization of silicon (LOCOS). In place of LOCOS, shallow trench isolation (STI) may be used. - In an active region surrounded by the
field isolation film 23, a metal oxide semiconductor (MOS) transistor is formed. Over a surface of the p-type well 22, agate electrode 25 is formed using a polycrystalline silicon layer (or a lamination of a polycrystalline silicon layer and a silicide layer) with agate oxide film 24 therebetween. On both sides of thegate electrode 25, asilicide spacer 27 is formed using an oxide film or the like. - On both sides of the gate electrodes, source/
drain regions inter-layer insulation film 30 is formed to surround the transistor, using a silicon oxide film by CVD or the like or using an oxide silicon film doped with phosphor (P) or boron (B). These constituent elements can be produced according to known techniques of the prior art. - On the first
inter-layer insulation film 30, anadhesion layer 31 is formed with, for example, titanium (Ti) on which a mainlower electrode 32 is formed using platinum (Pt) or the like. The mainlower electrode 32 and theadhesion layer 31 can be patterned by ion milling with argon (Ar) gas or the like. Adielectric film 33 including lead is formed partially on the mainlower electrode 32. Thedielectric film 33 is, for example, a lead zirconate titanate (PZT) film formed according to the embodiment. On thedielectric film 33, anupper electrode 34 is formed. Theupper electrode 34 is made of a platinum group metal, e.g., platinum resistive against high-temperature process. - Resultantly, a capacitor structure including the
dielectric film 33 sandwiched between the lower and upper electrodes is constructed. A secondinter-layer insulation layer 35 is formed to surround the capacitor structure, using silicon oxide or the like. Contact holes (via holes) are formed beginning at a surface of the secondinter-layer insulation film 35 and reaching respectively theupper electrode 34, thelower electrode 32, and the source/drain regions Wiring zones - The
wiring wiring - A semiconductor memory device has been constructed. When a ferrordielectric film of, for example, lead zirconate titanate (PZT) is used as the
dielectric film 33, a ferroelectric RAM (FeRAM) is produced. When a high dielectric film is used as thedielectric film 33, a high-performance DRAM is produced. - Description has been given of the present invention according to embodiments. However, the present invention is not restricted by the embodiments. In the description, a lead zirconate titanate (PZT) film is mainly used as the dielectric film. However, even when another material such as lead titanate (PTO) is used as the dielectric substance including lead, a similar advantage can be expected through almost the same process. Various ABO3 type perovskite materials may be employed.
- In a layer of oxide including bismuth, for example, Sr1Bi2Ta2O9, bismuth serves, like lead, as a kernel of crystallization and has a characteristic to easily leave the film. According to the characteristics shared between lead and bismuth, it is expectable that the process including the nitric acid treatment is efficient also for an oxide dielectric layer including bismuth.
- While the present invention has been described with reference to the particular illustrative embodiments, it is not to be restricted by those embodiments but only by the appended claims. It is to be appreciated that those skilled in the art can change or modify the embodiments without departing from the scope and spirit of the present invention.
Claims (20)
1. A method of forming a dielectric film, comprising the steps of:
(a) forming on a surface of underlie substance a film of an oxide dielectric material including lead or bismuth;
(b) dipping a surface of the oxide dielectric film in solution including nitric acid; and
(c) crystallizing the oxide dielectric film, after the surface treatment, by annealing the film and thereby obtaining an oxide dielectric film.
2. A method of forming a dielectric film according to , wherein said step (a) includes forming a film in an amorphous state.
claim 1
3. A method of forming a dielectric film according to , wherein said step (a) includes sputtering, sol-gel process, or chemical vapor deposition (CVD).
claim 1
4. A method of forming a dielectric film according to , wherein said oxide dielectric material is ABO3 perovskite type dielectric material including lead.
claim 1
5. A method of forming a dielectric film according to , wherein said film of oxide dielectric material excessively includes lead when compared with stoichiometric composition of said oxide dielectric material.
claim 4
6. A method of forming a dielectric film according to , wherein said step (b) uses aqueous solution of nitric acid of from about 2 wt % to 30 wt %.
claim 5
7. A method of forming a dielectric film according to , wherein said oxide dielectric material is lead tetanate or lead zirconate titanate.
claim 6
8. A method of forming a dielectric film according to , wherein said underlie surface is formed by a first conductive layer.
claim 1
9. A method of forming a dielectric film according to , further comprising the step of (d) forming a second conductive layer on said oxide dielectric film.
claim 8
10. A method of forming a dielectric film according to , wherein at least said first or second conductive layer is made of a platinum group element or oxide of a platinum group element.
claim 9
11. A method of forming a capacitor, comprising the steps of:
(a) forming on a surface of a first conductive layer a film of an oxide dielectric material including lead or bismuth;
(b) dipping a surface of the oxide dielectric film in solution including nitric acid;
(c) crystallizing the oxide dielectric film, after the surface treatment, by annealing the film and thereby obtaining an oxide dielectric film; and
(d) forming a second conductive layer on said oxide dielectric film.
12. A method of forming a dielectric film according to , wherein said step (a) includes forming a film in an amorphous state.
claim 11
13. A method of forming a dielectric film according to , wherein:
claim 11
said oxide dielectric material is ABO3 perovskite type dielectric material including lead; and
said film of oxide dielectric material excessively includes lead when compared with stoichiometric composition of said oxide dielectric material.
14. A method of forming a dielectric film according to , wherein said step (b) uses aqueous solution of nitric acid of from about 2 wt % to 30 wt %.
claim 13
15. A method of forming a dielectric film according to , wherein at least said first or second conductive layer is made of a platinum group element or oxide of a platinum group element.
claim 11
16. A method of forming a semiconductor device, comprising the steps of:
(x) forming on a semiconductor substrate a transistor including one pair of current electrodes and a control electrode;
(y) covering the transistor with an inter-layer insulation film;
(z) forming a lower electrode on said inter-layer insulation film;
(a) forming on a surface of said lower electrode a film of an oxide dielectric material including lead or bismuth;
(b) dipping a surface of the oxide dielectric film in solution including nitric acid;
(c) crystallizing the oxide dielectric film, after the surface treatment, by annealing the film and thereby obtaining an oxide dielectric film; and
(d) forming an upper electrode on said oxide dielectric film.
17. A method of forming a semiconductor device according to , further comprising the steps of (e) electrically connecting said upper electrode or said lower electrode to either one of said current electrodes.
claim 16
18. A method of forming a semiconductor device according to or , wherein said step (a) includes forming a film in an amorphous state.
claim 16
17
19. A method of forming a semiconductor device according to , wherein:
claim 16
said oxide dielectric material is ABO3 perovskite type dielectric material including lead; and
said film of oxide dielectric material excessively includes lead when compared with stoichiometric composition of said oxide dielectric material.
20. A method of forming a semiconductor device according to , wherein said step (b) uses aqueous solution of nitric acid of from about 2 wt % to 30 wt %.
claim 19
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000142867A JP2001326337A (en) | 2000-05-16 | 2000-05-16 | Method for manufacturing dielectric film, method for manufacturing capacitor and method for manufacturing semiconductor device |
JP2000-142867 | 2000-05-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010044178A1 true US20010044178A1 (en) | 2001-11-22 |
US6365420B2 US6365420B2 (en) | 2002-04-02 |
Family
ID=18649767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/809,191 Expired - Fee Related US6365420B2 (en) | 2000-02-16 | 2001-03-16 | Method of forming dielectric film with good crystallinity and low leak |
Country Status (2)
Country | Link |
---|---|
US (1) | US6365420B2 (en) |
JP (1) | JP2001326337A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070034505A1 (en) * | 2005-08-11 | 2007-02-15 | Mineo Ikematsu | Electrode for electrolysis and method of manufacturing electrode for electrolysis |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6673667B2 (en) * | 2001-08-15 | 2004-01-06 | Motorola, Inc. | Method for manufacturing a substantially integral monolithic apparatus including a plurality of semiconductor materials |
JP2003243536A (en) * | 2002-02-15 | 2003-08-29 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
US7270884B2 (en) * | 2003-04-07 | 2007-09-18 | Infineon Technologies Ag | Adhesion layer for Pt on SiO2 |
US7914847B2 (en) * | 2003-05-09 | 2011-03-29 | Asm America, Inc. | Reactor surface passivation through chemical deactivation |
EP1623454A2 (en) * | 2003-05-09 | 2006-02-08 | ASM America, Inc. | Reactor surface passivation through chemical deactivation |
KR100725690B1 (en) * | 2003-07-08 | 2007-06-07 | 마츠시타 덴끼 산교 가부시키가이샤 | Semiconductor device and method for fabricating the same |
US8293658B2 (en) * | 2010-02-17 | 2012-10-23 | Asm America, Inc. | Reactive site deactivation against vapor deposition |
US9223203B2 (en) | 2011-07-08 | 2015-12-29 | Asm International N.V. | Microcontact printed films as an activation layer for selective atomic layer deposition |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4759823A (en) * | 1987-06-02 | 1988-07-26 | Krysalis Corporation | Method for patterning PLZT thin films |
US5337207A (en) * | 1992-12-21 | 1994-08-09 | Motorola | High-permittivity dielectric capacitor for use in a semiconductor device and process for making the same |
JP3283703B2 (en) | 1994-09-13 | 2002-05-20 | 沖電気工業株式会社 | Method for manufacturing semiconductor device |
JPH0969615A (en) * | 1995-08-30 | 1997-03-11 | Sony Corp | Formation method for ferroelectric thin film and manufacturing method for capacitor structure of semiconductor element |
-
2000
- 2000-05-16 JP JP2000142867A patent/JP2001326337A/en not_active Withdrawn
-
2001
- 2001-03-16 US US09/809,191 patent/US6365420B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070034505A1 (en) * | 2005-08-11 | 2007-02-15 | Mineo Ikematsu | Electrode for electrolysis and method of manufacturing electrode for electrolysis |
Also Published As
Publication number | Publication date |
---|---|
JP2001326337A (en) | 2001-11-22 |
US6365420B2 (en) | 2002-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4428500B2 (en) | Capacitor element and manufacturing method thereof | |
JP3319994B2 (en) | Semiconductor storage element | |
JP4024397B2 (en) | Ferroelectric memory device and manufacturing method thereof | |
US6194228B1 (en) | Electronic device having perovskite-type oxide film, production thereof, and ferroelectric capacitor | |
US5965942A (en) | Semiconductor memory device with amorphous diffusion barrier between capacitor and plug | |
US20090224301A1 (en) | Semiconductor memory device and method of manufacturing thereof | |
EP0821415A2 (en) | A capacitor and method of manufacture thereof | |
JP2001511600A (en) | Process for producing a layered superlattice material and fabricating an electronic device containing the layered superlattice material without exposure to oxygen | |
JPWO2007116442A1 (en) | Semiconductor device and manufacturing method thereof | |
JP2002535838A (en) | Ferroelectric memory having ferroelectric thin film and manufacturing method | |
US6365420B2 (en) | Method of forming dielectric film with good crystallinity and low leak | |
JP3782401B2 (en) | Semiconductor device | |
US6297085B1 (en) | Method for manufacturing ferroelectric capacitor and method for manufacturing ferroelectric memory | |
JPH09232532A (en) | Manufacturing method of ferroelectrics memory | |
JPH09246496A (en) | Method of forming dielectric thin film and method of manufacturing semiconductor device using it | |
US6740532B2 (en) | Method of manufacturing a ferroelectric thin film | |
JP2001237402A (en) | Structured metal oxide containing layer, and method of manufacturing semiconductor structure element | |
DE10064068A1 (en) | Production of a capacitor comprises forming an intermediate insulating layer on a semiconductor substrate, forming a lower electrode, depositing a thin layer, heating and/or calcining or tempering and forming an upper electrode | |
US7049650B1 (en) | Semiconductor device | |
US6455328B2 (en) | Method of manufacture of a capacitor with a dielectric on the basis of strontium-bismuth-tantalum | |
JP3924928B2 (en) | Ferroelectric material and ferroelectric memory | |
JP3830652B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3294214B2 (en) | Thin film capacitors | |
JP3937033B2 (en) | Ferroelectric material, method for manufacturing the same, and ferroelectric memory | |
JPH11121696A (en) | Manufacture of dielectric capacitor and manufacture of semiconductor storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJITSU LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASHIDA, HIROSHI;REEL/FRAME:011655/0417 Effective date: 20010115 |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100402 |