US20010036456A1 - Methods for treating vascular disorders - Google Patents

Methods for treating vascular disorders Download PDF

Info

Publication number
US20010036456A1
US20010036456A1 US09/877,759 US87775901A US2001036456A1 US 20010036456 A1 US20010036456 A1 US 20010036456A1 US 87775901 A US87775901 A US 87775901A US 2001036456 A1 US2001036456 A1 US 2001036456A1
Authority
US
United States
Prior art keywords
apc
hours
activated protein
administered
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/877,759
Other versions
US6426071B2 (en
Inventor
Brian Grinnell
Daniel Howey
Charles Jackson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1998/005732 external-priority patent/WO1998042358A1/en
Application filed by Individual filed Critical Individual
Priority to US09/877,759 priority Critical patent/US6426071B2/en
Publication of US20010036456A1 publication Critical patent/US20010036456A1/en
Application granted granted Critical
Publication of US6426071B2 publication Critical patent/US6426071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/4866Protein C (3.4.21.69)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6464Protein C (3.4.21.69)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21069Protein C activated (3.4.21.69)

Definitions

  • This invention relates to medical science particularly the treatment of vascular disorders with activated protein C.
  • Protein C is a serine protease and naturally occurring anticoagulant that plays a role in the regulation of homeostasis by deactivating Factors V a and VIII a in the coagulation cascade. Human protein C is made in vivo primarily in the liver as a single polypeptide of 461 amino acids.
  • This precursor molecule undergoes multiple post-translational modifications including 1) cleavage of a 42 amino acid signal sequence; 2) proteolytic removal from the one chain zymogen of the lysine residue at position 155 and the arginine residue at position 156 to make the 2-chain form of the molecule, (i.e., a light chain of 155 amino acid residues attached through a disulfide bridge to the serine protease-containing heavy chain of 262 amino acid residues); 3) vitamin K-dependent carboxylation of nine glutamic acid residues clustered in the first 42 amino acids of the light chain, resulting in 9 gamma-carboxyglutamic acid residues; and 4) carbohydrate attachment at four sites (one in the light chain and three in the heavy chain).
  • the heavy chain contains the well established serine protease triad of Asp 257, His 211 and Ser 360.
  • the circulating 2-chain zymogen is activated in vivo by thrombin at a phospholipid surface in the presence of calcium ion. Activation results from removal of a dodecapeptide at the N-terminus of the heavy chain, producing activated protein C (aPC) possessing enzymatic activity.
  • protein C functions as perhaps the most important down-regulator of blood coagulation.
  • the protein C enzyme system represents a major physiological mechanism of anticoagulation.
  • the coagulation system is best viewed as a chain reaction involving the sequential activation of zymogens into active serine proteases eventually producing the enzyme, thrombin, which through limited proteolysis converts plasma fibrinogen into the insoluble gel, fibrin.
  • Two key events in the coagulation cascade are the conversion of clotting factor X to Xa by clotting factor IXa and the conversion of prothrombin into thrombin by clotting factor Xa. Both of these reactions occur on cell surfaces, most notably the platelet surface. Both of these reactions require cofactors.
  • the major cofactors, factors V and VIII, in the system circulate as relatively inactive precursors, but when the first few molecules of thrombin are formed, thrombin loops back and activates the cofactors through limited proteolysis.
  • the activated cofactors, Va and VIIIa accelerate both the conversion of prothrombin into thrombin and also the conversion of factor X to factor Xa by approximately five orders of magnitude.
  • Activated protein C overwhelmingly prefers two plasma protein substrates which it hydrolyzes and irreversibly destroys. These plasma protein substrates are the activated forms of the clotting cofactors, Va and VIIIa. Activated protein C only minimally degrades the inactive precursors, clotting factors V and VIII.
  • Activated protein C in dogs has been shown to sharply increase circulating levels of the major physiological fibrinolytic enzyme, tissue plasminogen activator (tPA).
  • tPA tissue plasminogen activator
  • Activated protein C has been shown in vitro to enhance the lysis of fibrin in human whole blood. Therefore, activated protein C represents an important adjunct to in vivo fibrinolysis in man.
  • r-aPC is useful in the treatment of thrombotic stroke.
  • the administration of aPC is also beneficial in preventing the local extension of the microvascular and macrovascular occluding arterial thrombus, thereby reducing the neurological deficit resulting from the stroke.
  • the present invention provides a method of treatment for human patients with vascular occlusive and arterial thromboembolic disorders, which comprises administering to said patient a dosage of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr of activated protein C by continuous infusion for about 4 to about 96 hours.
  • This invention also provides an article of manufacture for human pharmaceutical use, comprising packaging material and a vial comprising lyophilized activated protein C, wherein said packaging material comprises a label which indicates that said activated protein C be administered at a dosage of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr by continuous infusion for about 4 to about 96 hours.
  • Activated protein C refers to recombinant activated protein C.
  • aPC includes and is preferably human protein C although aPC may also include other species or derivatives having full protein C proteolytic, amidolytic, esterolytic, and biological (anticoagulant or profibrinolytic) activities. Examples of protein C derivatives are described by Gerlitz, et al., U.S. Pat. No. 5,453,373, and Foster, et al., U.S. Pat. No. 5,516,650, the entire teachings of which are hereby included by reference.
  • Recombinant activated protein C may be produced by activating recombinant human protein C zymogen in vitro or by direct secretion of the activated form of protein C.
  • Protein C may be produced in procaryotic cells, eukaryotic cells, transgenic animals, transgenic plants, or gene therapy, including, for example, secretion from human kidney 293 cells as a zymogen then purified and activated by techniques known to the skilled artisan.
  • Continuous infusion continuous substantially uninterrupted the introduction of a solution into a blood vessel for a specified period of time.
  • Bolus injection the injection of a drug in a defined quantity (called a bolus) over a period of time up to about 120 minutes.
  • Suitable for administration A formulation or solution preferably prepared from lyophilized aPC that is appropriate to be given as a therapeutic agent.
  • Zymogen refers to secreted, inactive forms, whether one chain or two chains, of protein C.
  • vial refers broadly to a reservoir suitable for retaining the lyophilized activated protein C and diluent in a contained sterile state. Vials suitable for packaging products for parental administration are well-known and recognized in the art.
  • the present invention provides a method of treatment for human patients with vascular occlusive and arterial thromboembolic disorders which comprises administering to said patient a dosage of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr of activated protein C by continuous infusion for about 4 to about 96 hours.
  • the present invention also demonstrates the effect of intravenous administration of r-aPC on reperfusion of totally occluded coronary arteries in a canine model of occlusive coronary artery thrombosis (Example 2). surprisingly, five of six animals treated with r-aPC demonstrated vessel reperfusion compared to vessel reperfusion in none of the six control animals.
  • aPC administered in accordance with the present invention is useful in treating vascular occlusive or arterial thromboembolic disorders, including thrombotic stroke, peripheral arterial thrombosis, emboli originating from the heart or peripheral arteries, acute myocardial infarction, and coronary arterial disease without the concomitant bleeding problems that may be associated with high dose levels.
  • the present invention provides an article of manufacture comprising packaging material and a vial comprising a lyophilized formulation of activated protein C, wherein said packaging material comprises a label which indicates that said lyophilized formulation be stored at refrigerated temperature; that said lyophilized formulation be reconstituted with normal saline, sterile water or comparable diluent; that said reconstituted formulation may be stored at refrigerated temperature to about 22° C.; and that said reconstituted formulation be administered within 48 hours.
  • the present claimed articles of manufacture are useful for administration of aPC. Applicants have discovered that the reconstituted formulation of activated protein C may be administered at a dosage of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr by continuous infusion for about 4 to about 96 hours.
  • the aPC can be formulated according to known methods to prepare pharmaceutically useful compositions.
  • the aPC is preferably administered parenterally to ensure its delivery into the bloodstream in an effective form by injecting the appropriate dose as continuous infusion for about 4 to about 96 hours.
  • the appropriate dose of aPC will be administered by continuous infusion for about 4 to about 72 hours. More preferably, the appropriate dose of aPC will be administered by continuous infusion for about 4 to about 48 hours. More preferably, the appropriate dose of aPC will be administered by continuous infusion for about 12 to about 48 hours. More preferably, the appropriate dose of aPC will be administered by continuous infusion for about 12 to about 36 hours.
  • the appropriate dose of aPC will be administered by continuous infusion for about 4 to about 36 hours. More preferably, the appropriate dose of aPC will be administered by continuous infusion for about 12 to about 24 hours. Most preferably, the appropriate dose of aPC will be administered by continuous infusion for about 24 hours. The administration of aPC will begin as soon as possible following diagnosis of the vascular occlusive or arterial thromboembolic disorder.
  • the amount of aPC administered is from about 0.01 mg/kg/hr to about 0.05 mg/kg/hr which is equivalent to about 20 mg/70 kg/24 hours to about 84 mg/70 kg/24 hours. While the dose level is identified as a specific amount per 24 hours, one skilled in the art would recognize that this is a designation of the dose level and is not necessarily limited to a 24 hour infusion but may include continuous infusion for various times, for example, from about four hours to about ninety-six hours. More preferably the amount of aPC administered is about 0.01 mg/kg/hr to about 0.04 mg/kg/hr (about 20 mg/70 kg/24 hours to about 67 mg/70 kg/24 hours).
  • the amount of aPC administered will be about 0.01 mg/kg/hr to about 0.03 mg/kg/hr (about 20 mg/70 kg/24 hours to about 50 mg/70 kg/24 hours). Furthermore, the amount of aPC administered is from about 0.02 mg/kg/hr to about 0.05 mg/kg/hr which is equivalent to about 34 mg/70 kg/24 hours to about 84 mg/70 kg/24 hours. More preferably the amount of aPC administered is about 0.024 mg/kg/hr to about 0.048 mg/kg/hr (about 40 mg/70 kg/24 hours to about 80 mg/70 kg/24 hours).
  • the amount of aPC administered will be about 0.027 mg/kg/hr to about 0.045 mg/kg/hr (about 45 mg/70 kg/24 hours to about 75 mg/70 kg/24 hours). While more preferably the amount of aPC administered will be about 0.030 mg/kg/hr to about 0.042 mg/kg/hr (about 50 mg/70 kg/24 hours to about 70 mg/70 kg/24 hours). While more preferably the amount of aPC administered will be about 0.033 mg/kg/hr to about 0.039 mg/kg/hr (about 55 mg/70 kg/24 hours to about 65 mg/70 kg/24 hours).
  • Preferable amounts of aPC administered are about 0.024 mg/kg/hr (about 40 mg/70 kg/24 hours), about 0.027 mg/kg/hr (about 45 mg/70 kg/24 hours) or, about 0.030 mg/kg/hr to about 0.042 mg/kg/hr (about 50 mg/70 kg/24 hours).
  • the aPC will be administered by injecting a portion of the appropriate dose per hour as a bolus injection over a time from about 5 minutes to about 120 minutes, followed by continuous infusion of the appropriate dose for about twenty three hours to about 96 hours which results in the appropriate dose administered over 24 hours to 96 hours.
  • the dosage levels of aPC presented above are in contrast to those presented by Griffin, et al. Griffin claimed dose levels in the range of 0.07 mg/kg/hr to 1.1 mg/kg/hr for the treatment of thrombotic occlusion.
  • the dose levels claimed herein are equivalent to a tenth of this dose or a range of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr.
  • the most preferable dose level of aPC to be administered for thrombolitic occlusion as described herein will be about 0.024 mg/kg/hr. It is significant to note that the most preferable dose level of 0.024 mg/kg/hr as indicated herein is 3 fold less than the lowest dose level claimed by Griffin and 44 fold less than the highest dose level claimed by Griffin.
  • Recombinant human protein C was produced in Human Kidney 293 cells by techniques well known to the skilled artisan such as those set forth in Yan, U.S. Pat. No. 4,981,952, the entire teaching of which is herein incorporated by reference.
  • the gene encoding human protein C is disclosed and claimed in Bang, et al., U.S. Pat. No. 4,775,624, the entire teaching of which is incorporated herein by reference.
  • the plasmid used to express human protein C in 293 cells was plasmid pLPC which is disclosed in Bang, et al., U.S. Pat. No. 4,992,373, the entire teaching of which is incorporated herein by reference.
  • plasmid pLPC The construction of plasmid pLPC is also described in European Patent Publication No. 0 445 939, and in Grinnell, et al., 1987, Bio/Technology 5:1189-1192, the teachings of which are also incorporated herein by reference. Briefly, the plasmid was transfected into 293 cells, then stable transformants were identified, subcultured and grown in serum-free media. After fermentation, cell-free medium was obtained by microfiltration.
  • the human protein C was separated from the culture fluid by an adaptation of the techniques of Yan, U.S. Pat. No. 4,981,952, the entire teaching of which is herein incorporated by reference.
  • the clarified medium was made 4 mM in EDTA before it was absorbed to an anion exchange resin (Fast-Flow Q, Pharmacia).
  • an anion exchange resin Frazier-Flow Q, Pharmacia.
  • the bound recombinant human protein C zymogen was eluted with 20 mM Tris, 150 mM NaCl, 10 mM CaCl 2 , pH 7.4.
  • the eluted protein was greater than 95% pure after elution as judged by SDS-polyacrylamide gel electrophoresis.
  • the eluted protein was prepared for activation by removal of residual calcium.
  • the recombinant human protein C was passed over a metal affinity column (Chelex-100, Bio-Rad) to remove calcium and again bound to an anion exchanger (Fast Flow Q, Pharmacia). Both of these columns were arranged in series and equilibrated in 20 mM Tris, 150 mM NaCl, 5 mM EDTA, pH 6.5. Following loading of the protein, the Chelex-100 column was washed with one column volume of the same buffer before disconnecting it from the series.
  • Bovine thrombin was coupled to Activated CH-Sepharose 4B (Pharmacia) in the presence of 50 mM HEPES, pH 7.5 at 4° C. The coupling reaction was done on resin already packed into a column using approximately 5000 units thrombin/ml resin. The thrombin solution was circulated through the column for approximately 3 hours before adding MEA to a concentration of 0.6 ml/l of circulating solution. The MEA-containing solution was circulated for an additional 10-12 hours to assure complete blockage of the unreacted amines on the resin.
  • the thrombin-coupled resin was washed with 10 column volumes of 1 M NaCl, 20 mM Tris, pH 6.5 to remove all non-specifically bound protein, and was used in activation reactions after equilibrating in activation buffer.
  • Purified rHPC was made 5 mM in EDTA (to chelate any residual calcium) and diluted to a concentration of 2 mg/ml with 20 mM Tris, pH 7.4 or 20 mM Tris-acetate, pH 6.5. This material was passed through a thrombin column equilibrated at 37° C. with 50 mM NaCl and either 20 mM Tris pH 7.4 or 20 mM Tris-acetate pH 6.5. The flow rate was adjusted to allow for approximately 20 min. of contact time between the rHPC and thrombin resin. The effluent was collected and immediately assayed for amidolytic activity.
  • the material did not have a specific activity (amidolytic) comparable to an established standard of aPC, it was recycled over the thrombin column to activate the rHPC to completion. This was followed by 1:1 dilution of the material with 20 mM buffer as above, with a pH of anywhere between 7.4 or 6.0 (lower pH being preferable to prevent autodegradation) to keep the aPC at lower concentrations while it awaited the next processing step.
  • Removal of leached thrombin from the aPC material was accomplished by binding the aPC to an anion exchange resin (Fast Flow Q, Pharmacia) equilibrated in activation buffer (either 20 mM Tris, pH 7.4 or preferably 20 mM Tris-acetate, pH 6.5) with 150 mM NaCl.
  • activation buffer either 20 mM Tris, pH 7.4 or preferably 20 mM Tris-acetate, pH 6.5
  • Thrombin passes through the column and elutes during a 2-6 column volume wash with 20 mM equilibration buffer.
  • Bound aPC is eluted with a step gradient using 0.4 M NaCl in either 5 mM Tris-acetate, pH 6.5 or 20 mM Tris, pH 7.4. Higher volume washes of the column facilitated more complete removal of the dodecapeptide.
  • the material eluted from this column was stored either in a frozen solution ( ⁇ 20° C.) or
  • the amidolytic activity (AU) of aPC was determined by release of p-nitroanaline from the synthetic substrate H-D-Phe-pip-Arg-p-nitroanilide (S-2238) purchased from Kabi Vitrum using a Beckman DU-7400 diode array spectrophotometer.
  • One unit of activated protein C was defined as the amount of enzyme required for the release of 1 ⁇ mol of p-nitroaniline in 1 min. at 25° C., pH 7.4, using an extinction coefficient for p-nitroaniline at 405 nm of 9620 M ⁇ 1 cm ⁇ 1 .
  • the anticoagulant activity of activated protein C was determined by measuring the prolongation of the clotting time in the activated partial thromboplastin time (APTT) clotting assay.
  • a standard curve was prepared in dilution buffer (1 mg/ml radioimmunoassay grade BSA, 20 mM Tris, pH 7.4, 150 mM NaCl, 0.02% NaN 3 ) ranging in protein C concentration from 125-1000 ng/ml, while samples were prepared at several dilutions in this concentration range.
  • 50 ⁇ l of cold horse plasma and 50 ⁇ l of reconstituted activated partial thromboplastin time reagent APTT Reagent, Sigma
  • aPC a lyophilized formulation containing 10 mg aPC, 5 mM Tris acetate buffer and 100 mM sodium chloride reconstituted with two ml of water and adjusted to pH 6.5.
  • Plasma concentrations of aPC were measured using an Immunocapture-Amidolytic Assay. Blood was collected in the presence of citrate anticoagulant and benzamidine, a reversible inhibitor of aPC. The enzyme was captured from plasma by an aPC specific murine monoclonal antibody, C3, immobilized on a microtiter plate. The inhibitor was removed by washing and the amidolytic activity or aPC was measured using an oligopeptide chromogenic substrate. Following incubation for 16-20 h at 37° C., the absorbance was measured at 405 nm and data are analyzed by a weighted linear curve-fitting algorithm.
  • aPC concentrations were estimated from a standard curve ranging in concentrations from 0-100 ng/ml. The limit of quantitation of the assay was 1.0 ng/ml.
  • the aPC dose levels and plasma concentrations were measured at about 24 hours.
  • the plasma ranges are from 2 ng/ml to less than 100 ng/ml.
  • the preferred plasma ranges are from about 20 ng/ml to 80 ng/ml. Most preferably plasma ranges are from about 30 ng/ml to about 60 ng/ml and still more preferably about 50 ng/ml.
  • the dose of 0.024 mg/kg/hr yields the most preferable plasma concentration of 50 ng/ml at 24 hours for treatment of thrombotic stroke without the concomitant bleeding problems from higher dose levels.
  • the LCCA was instrumented with an electromagnetic flow probe, stimulating electrode, and an external occluder to measure coronary blood flow, produce vessel injury, and provide critical stenosis; respectively.
  • Vessel injury was caused by placing the stimulating electrode (anode) in contact with the intimal side of the vessel and stimulating the anode with 100 ⁇ A d.c. current (the circuit was completed by placing the cathode in a subcutaneous site). The injury current was continued for 60 minutes and then stopped whether the vessel has occluded or not. Vessels reached total occlusion in approximately 60 minutes from the initiation of vessel injury.
  • Plasma PAI-1 levels were determined using an IMUBINDTM plasma PAI-1 ELISA kit (American Diagnostica). All data (reported as mean ⁇ SEM) were analyzed for statistical differences using single ANOVA followed by Student-Neuman-Keuls analysis for significance at the level p ⁇ 0.05. Incidence of reperfusion and patency were analyzed using Fisher's Exact test at a level of p ⁇ 0.05.
  • Table 3 illustrates the effects of intravenous administration of aPC on reperfusion of totally occluded coronary arteries.
  • Time to total thrombotic occlusion of the coronary arteries was similar between the 2 groups; 66 ⁇ 7 and 62 ⁇ 6 minutes, vehicle-treated and aPC-treated, respectively.
  • Five of six vessels in the aPC-treated group demonstrated reperfusion compared to none of the 6 vessels receiving vehicle; time to reperfusion in the aPC-treated group was 128 ⁇ 17 min.
  • Coronary blood flow in the aPC treated group was significantly greater than the corresponding vehicle-treated group; the aPC-treated group reached 13.7 ⁇ 2.7 ml/min during the reperfusion period and a flow volume of 1069 ⁇ 623 ml (this represents a restoration of approximately 60-70% of the pre-thrombosis coronary blood flow in this group).
  • Three of the 5 vessels exposed to aPC were still patent at the end of the 4 hr experiment.
  • the data demonstrates that aPC is effective in the treatment of occlusive coronary artery thrombosis in a canine model.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Microbiology (AREA)
  • Reproductive Health (AREA)
  • Dermatology (AREA)
  • Pulmonology (AREA)
  • Endocrinology (AREA)
  • Nutrition Science (AREA)
  • Obesity (AREA)
  • Surgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A method of treatment for patients with vascular occlusion and thromboembolic disorders including the acquired disease state of thrombotic stroke, by administering activated protein C. The administration of aPC provides a highly selective therapeutic agent with a low potential for causing bleeding complications. The administration of aPC is beneficial in preventing the local extension of the microvascular and macrovascular occluding arterial thrombus, thereby reducing the neurological deficit resulting from the stroke.

Description

    PRIORITY
  • This application is a continuation in part of PCT application Ser. No. US98/05732, filed Mar. 24, 1998, which claims the benefit of U.S. Provisional Application Ser. Nos. 60/042,533, filed Mar. 24, 1997, now abandoned; 60/062,549, filed Oct. 20, 1997; and 60/064,765 filed Nov. 7, 1997.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to medical science particularly the treatment of vascular disorders with activated protein C. [0002]
  • BACKGROUND OF THE INVENTION
  • Protein C is a serine protease and naturally occurring anticoagulant that plays a role in the regulation of homeostasis by deactivating Factors V[0003] a and VIIIa in the coagulation cascade. Human protein C is made in vivo primarily in the liver as a single polypeptide of 461 amino acids. This precursor molecule undergoes multiple post-translational modifications including 1) cleavage of a 42 amino acid signal sequence; 2) proteolytic removal from the one chain zymogen of the lysine residue at position 155 and the arginine residue at position 156 to make the 2-chain form of the molecule, (i.e., a light chain of 155 amino acid residues attached through a disulfide bridge to the serine protease-containing heavy chain of 262 amino acid residues); 3) vitamin K-dependent carboxylation of nine glutamic acid residues clustered in the first 42 amino acids of the light chain, resulting in 9 gamma-carboxyglutamic acid residues; and 4) carbohydrate attachment at four sites (one in the light chain and three in the heavy chain). The heavy chain contains the well established serine protease triad of Asp 257, His 211 and Ser 360. Finally, the circulating 2-chain zymogen is activated in vivo by thrombin at a phospholipid surface in the presence of calcium ion. Activation results from removal of a dodecapeptide at the N-terminus of the heavy chain, producing activated protein C (aPC) possessing enzymatic activity.
  • In conjunction with other proteins, protein C functions as perhaps the most important down-regulator of blood coagulation. In other words the protein C enzyme system represents a major physiological mechanism of anticoagulation. [0004]
  • The coagulation system is best viewed as a chain reaction involving the sequential activation of zymogens into active serine proteases eventually producing the enzyme, thrombin, which through limited proteolysis converts plasma fibrinogen into the insoluble gel, fibrin. Two key events in the coagulation cascade are the conversion of clotting factor X to Xa by clotting factor IXa and the conversion of prothrombin into thrombin by clotting factor Xa. Both of these reactions occur on cell surfaces, most notably the platelet surface. Both of these reactions require cofactors. The major cofactors, factors V and VIII, in the system circulate as relatively inactive precursors, but when the first few molecules of thrombin are formed, thrombin loops back and activates the cofactors through limited proteolysis. The activated cofactors, Va and VIIIa, accelerate both the conversion of prothrombin into thrombin and also the conversion of factor X to factor Xa by approximately five orders of magnitude. Activated protein C overwhelmingly prefers two plasma protein substrates which it hydrolyzes and irreversibly destroys. These plasma protein substrates are the activated forms of the clotting cofactors, Va and VIIIa. Activated protein C only minimally degrades the inactive precursors, clotting factors V and VIII. Activated protein C in dogs has been shown to sharply increase circulating levels of the major physiological fibrinolytic enzyme, tissue plasminogen activator (tPA). Activated protein C has been shown in vitro to enhance the lysis of fibrin in human whole blood. Therefore, activated protein C represents an important adjunct to in vivo fibrinolysis in man. [0005]
  • Today, there are few effective treatments available for vascular occlusions, including thrombotic stroke. Treatment with tPA, if administered within three hours from the onset of the stroke, has been recently approved by the FDA. Treatment of strokes with either heparin or oral anticoagulants, although occasionally beneficial, carries a high risk for bleeding into the infarcted brain area. [0006]
  • The use of recombinant aPC (r-aPC) in the treatment of thrombotic occlusion or thromboembolism in a baboon model has been presented by Griffin, et al. in U.S. Pat. No. 5,084,274 and European Patent Specification EP 0 318 201 B1. Griffin claimed dose levels in the range of 0.07 mg/kg/hr to 1.1 mg/kg/hr for the treatment of thrombotic occlusion. However, applicants have found that these dose levels are in a range above the toxicological level of r-aPC. For example, pre-clinical toxicology studies in non-human primates indicate the safety of r-aPC for a 96 hour infusion is limited at a top dose of around 0.05 mg/kg/hr. Therefore, the lowest dose level taught by Griffin, et al., i.e. 0.07 mg/kg/hr, is at a level greater than the toxic dose established by applicants for humans. Thus, even the lowest dose level taught by Griffin would carry a high risk for bleeding into the infarcted brain area, thereby aggravating the neurological deficit accompanying the stroke. Accordingly, even in view of the teaching of Griffin, et al., there remains a need to identify an effective therapy of arterial thrombus formation in humans with aPC. [0007]
  • Contrary to the teachings of prior investigators, applicants have discovered that only low dose therapy with r-aPC is useful in the treatment of thrombotic stroke. The administration of aPC is also beneficial in preventing the local extension of the microvascular and macrovascular occluding arterial thrombus, thereby reducing the neurological deficit resulting from the stroke. [0008]
  • SUMMARY OF THE INVENTION
  • The present invention provides a method of treatment for human patients with vascular occlusive and arterial thromboembolic disorders, which comprises administering to said patient a dosage of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr of activated protein C by continuous infusion for about 4 to about 96 hours. [0009]
  • This invention also provides an article of manufacture for human pharmaceutical use, comprising packaging material and a vial comprising lyophilized activated protein C, wherein said packaging material comprises a label which indicates that said activated protein C be administered at a dosage of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr by continuous infusion for about 4 to about 96 hours. [0010]
  • DETAILED DESCRIPTION OF THE INVENTION
  • For purposes of the present invention, as disclosed and claimed herein, the following terms are as defined below. [0011]
  • Activated protein C (aPC) refers to recombinant activated protein C. aPC includes and is preferably human protein C although aPC may also include other species or derivatives having full protein C proteolytic, amidolytic, esterolytic, and biological (anticoagulant or profibrinolytic) activities. Examples of protein C derivatives are described by Gerlitz, et al., U.S. Pat. No. 5,453,373, and Foster, et al., U.S. Pat. No. 5,516,650, the entire teachings of which are hereby included by reference. Recombinant activated protein C may be produced by activating recombinant human protein C zymogen in vitro or by direct secretion of the activated form of protein C. Protein C may be produced in procaryotic cells, eukaryotic cells, transgenic animals, transgenic plants, or gene therapy, including, for example, secretion from human kidney 293 cells as a zymogen then purified and activated by techniques known to the skilled artisan. [0012]
  • Continuous infusion—continuing substantially uninterrupted the introduction of a solution into a blood vessel for a specified period of time. [0013]
  • Bolus injection—the injection of a drug in a defined quantity (called a bolus) over a period of time up to about 120 minutes. [0014]
  • Suitable for administration—A formulation or solution preferably prepared from lyophilized aPC that is appropriate to be given as a therapeutic agent. [0015]
  • Zymogen—refers to secreted, inactive forms, whether one chain or two chains, of protein C. [0016]
  • The term “vial” refers broadly to a reservoir suitable for retaining the lyophilized activated protein C and diluent in a contained sterile state. Vials suitable for packaging products for parental administration are well-known and recognized in the art. [0017]
  • The present invention provides a method of treatment for human patients with vascular occlusive and arterial thromboembolic disorders which comprises administering to said patient a dosage of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr of activated protein C by continuous infusion for about 4 to about 96 hours. [0018]
  • Applicants have found that pre-clinical toxicology studies in non-human primates indicate the safety of r-aPC for a 96 hour infusion is limited at a top dose of around 0.05 mg/kg/hr. These data are unexpected when compared to the prior art. In fact, the dose levels of r-aPC for humans that have been based on previous pre-clinical and clinical studies are above the toxicological range established in the above toxicological studies. [0019]
  • The present invention also demonstrates the effect of intravenous administration of r-aPC on reperfusion of totally occluded coronary arteries in a canine model of occlusive coronary artery thrombosis (Example 2). surprisingly, five of six animals treated with r-aPC demonstrated vessel reperfusion compared to vessel reperfusion in none of the six control animals. [0020]
  • aPC administered in accordance with the present invention is useful in treating vascular occlusive or arterial thromboembolic disorders, including thrombotic stroke, peripheral arterial thrombosis, emboli originating from the heart or peripheral arteries, acute myocardial infarction, and coronary arterial disease without the concomitant bleeding problems that may be associated with high dose levels. [0021]
  • Furthermore, the present invention provides an article of manufacture comprising packaging material and a vial comprising a lyophilized formulation of activated protein C, wherein said packaging material comprises a label which indicates that said lyophilized formulation be stored at refrigerated temperature; that said lyophilized formulation be reconstituted with normal saline, sterile water or comparable diluent; that said reconstituted formulation may be stored at refrigerated temperature to about 22° C.; and that said reconstituted formulation be administered within 48 hours. [0022]
  • The present claimed articles of manufacture are useful for administration of aPC. Applicants have discovered that the reconstituted formulation of activated protein C may be administered at a dosage of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr by continuous infusion for about 4 to about 96 hours. [0023]
  • The aPC can be formulated according to known methods to prepare pharmaceutically useful compositions. The aPC is preferably administered parenterally to ensure its delivery into the bloodstream in an effective form by injecting the appropriate dose as continuous infusion for about 4 to about 96 hours. Preferably, the appropriate dose of aPC will be administered by continuous infusion for about 4 to about 72 hours. More preferably, the appropriate dose of aPC will be administered by continuous infusion for about 4 to about 48 hours. More preferably, the appropriate dose of aPC will be administered by continuous infusion for about 12 to about 48 hours. More preferably, the appropriate dose of aPC will be administered by continuous infusion for about 12 to about 36 hours. More preferably, the appropriate dose of aPC will be administered by continuous infusion for about 4 to about 36 hours. More preferably, the appropriate dose of aPC will be administered by continuous infusion for about 12 to about 24 hours. Most preferably, the appropriate dose of aPC will be administered by continuous infusion for about 24 hours. The administration of aPC will begin as soon as possible following diagnosis of the vascular occlusive or arterial thromboembolic disorder. [0024]
  • The amount of aPC administered is from about 0.01 mg/kg/hr to about 0.05 mg/kg/hr which is equivalent to about 20 mg/70 kg/24 hours to about 84 mg/70 kg/24 hours. While the dose level is identified as a specific amount per 24 hours, one skilled in the art would recognize that this is a designation of the dose level and is not necessarily limited to a 24 hour infusion but may include continuous infusion for various times, for example, from about four hours to about ninety-six hours. More preferably the amount of aPC administered is about 0.01 mg/kg/hr to about 0.04 mg/kg/hr (about 20 mg/70 kg/24 hours to about 67 mg/70 kg/24 hours). While more preferably the amount of aPC administered will be about 0.01 mg/kg/hr to about 0.03 mg/kg/hr (about 20 mg/70 kg/24 hours to about 50 mg/70 kg/24 hours). Furthermore, the amount of aPC administered is from about 0.02 mg/kg/hr to about 0.05 mg/kg/hr which is equivalent to about 34 mg/70 kg/24 hours to about 84 mg/70 kg/24 hours. More preferably the amount of aPC administered is about 0.024 mg/kg/hr to about 0.048 mg/kg/hr (about 40 mg/70 kg/24 hours to about 80 mg/70 kg/24 hours). While more preferably the amount of aPC administered will be about 0.027 mg/kg/hr to about 0.045 mg/kg/hr (about 45 mg/70 kg/24 hours to about 75 mg/70 kg/24 hours). While more preferably the amount of aPC administered will be about 0.030 mg/kg/hr to about 0.042 mg/kg/hr (about 50 mg/70 kg/24 hours to about 70 mg/70 kg/24 hours). While more preferably the amount of aPC administered will be about 0.033 mg/kg/hr to about 0.039 mg/kg/hr (about 55 mg/70 kg/24 hours to about 65 mg/70 kg/24 hours). Preferable amounts of aPC administered are about 0.024 mg/kg/hr (about 40 mg/70 kg/24 hours), about 0.027 mg/kg/hr (about 45 mg/70 kg/24 hours) or, about 0.030 mg/kg/hr to about 0.042 mg/kg/hr (about 50 mg/70 kg/24 hours). [0025]
  • Alternatively, the aPC will be administered by injecting a portion of the appropriate dose per hour as a bolus injection over a time from about 5 minutes to about 120 minutes, followed by continuous infusion of the appropriate dose for about twenty three hours to about 96 hours which results in the appropriate dose administered over 24 hours to 96 hours. [0026]
  • As noted previously, the dosage levels of aPC presented above are in contrast to those presented by Griffin, et al. Griffin claimed dose levels in the range of 0.07 mg/kg/hr to 1.1 mg/kg/hr for the treatment of thrombotic occlusion. In contrast, the dose levels claimed herein are equivalent to a tenth of this dose or a range of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr. The most preferable dose level of aPC to be administered for thrombolitic occlusion as described herein will be about 0.024 mg/kg/hr. It is significant to note that the most preferable dose level of 0.024 mg/kg/hr as indicated herein is 3 fold less than the lowest dose level claimed by Griffin and 44 fold less than the highest dose level claimed by Griffin. [0027]
  • Preparation 1 Preparation of Human Protein C
  • Recombinant human protein C (rHPC) was produced in Human Kidney 293 cells by techniques well known to the skilled artisan such as those set forth in Yan, U.S. Pat. No. 4,981,952, the entire teaching of which is herein incorporated by reference. The gene encoding human protein C is disclosed and claimed in Bang, et al., U.S. Pat. No. 4,775,624, the entire teaching of which is incorporated herein by reference. The plasmid used to express human protein C in 293 cells was plasmid pLPC which is disclosed in Bang, et al., U.S. Pat. No. 4,992,373, the entire teaching of which is incorporated herein by reference. The construction of plasmid pLPC is also described in European Patent Publication No. 0 445 939, and in Grinnell, et al., 1987, [0028] Bio/Technology 5:1189-1192, the teachings of which are also incorporated herein by reference. Briefly, the plasmid was transfected into 293 cells, then stable transformants were identified, subcultured and grown in serum-free media. After fermentation, cell-free medium was obtained by microfiltration.
  • The human protein C was separated from the culture fluid by an adaptation of the techniques of Yan, U.S. Pat. No. 4,981,952, the entire teaching of which is herein incorporated by reference. The clarified medium was made 4 mM in EDTA before it was absorbed to an anion exchange resin (Fast-Flow Q, Pharmacia). After washing with 4 column volumes of 20 mM Tris, 200 mM NaCl, pH 7.4 and 2 column volumes of 20 mM Tris, 150 mM NaCl, pH 7.4, the bound recombinant human protein C zymogen was eluted with 20 mM Tris, 150 mM NaCl, 10 mM CaCl[0029] 2, pH 7.4. The eluted protein was greater than 95% pure after elution as judged by SDS-polyacrylamide gel electrophoresis.
  • Further purification of the protein was accomplished by making the protein 3 M in NaCl followed by adsorption to a hydrophobic interaction resin (Toyopearl Phenyl 650M, TosoHaas) equilibrated in 20 mM Tris, 3 M NaCl, 10 mM CaCl[0030] 2, pH 7.4. After washing with 2 column volumes of equilibration buffer without CaCl2, the recombinant human protein C was eluted with 20 mM Tris, pH 7.4.
  • The eluted protein was prepared for activation by removal of residual calcium. The recombinant human protein C was passed over a metal affinity column (Chelex-100, Bio-Rad) to remove calcium and again bound to an anion exchanger (Fast Flow Q, Pharmacia). Both of these columns were arranged in series and equilibrated in 20 mM Tris, 150 mM NaCl, 5 mM EDTA, pH 6.5. Following loading of the protein, the Chelex-100 column was washed with one column volume of the same buffer before disconnecting it from the series. The anion exchange column was washed with 3 column volumes of equilibration buffer before eluting the protein with 0.4 M NaCl, 20 mM Tris-acetate, pH 6.5. Protein concentrations of recombinant human protein C and recombinant activated protein C solutions were measured by UV 280 nm extinction E[0031] 0.1%=1.85 or 1.95, respectively.
  • Preparation 2 Activation of Recombinant Human Protein C
  • Bovine thrombin was coupled to Activated CH-Sepharose 4B (Pharmacia) in the presence of 50 mM HEPES, pH 7.5 at 4° C. The coupling reaction was done on resin already packed into a column using approximately 5000 units thrombin/ml resin. The thrombin solution was circulated through the column for approximately 3 hours before adding MEA to a concentration of 0.6 ml/l of circulating solution. The MEA-containing solution was circulated for an additional 10-12 hours to assure complete blockage of the unreacted amines on the resin. Following blocking, the thrombin-coupled resin was washed with 10 column volumes of 1 M NaCl, 20 mM Tris, pH 6.5 to remove all non-specifically bound protein, and was used in activation reactions after equilibrating in activation buffer. [0032]
  • Purified rHPC was made 5 mM in EDTA (to chelate any residual calcium) and diluted to a concentration of 2 mg/ml with 20 mM Tris, pH 7.4 or 20 mM Tris-acetate, pH 6.5. This material was passed through a thrombin column equilibrated at 37° C. with 50 mM NaCl and either 20 mM Tris pH 7.4 or 20 mM Tris-acetate pH 6.5. The flow rate was adjusted to allow for approximately 20 min. of contact time between the rHPC and thrombin resin. The effluent was collected and immediately assayed for amidolytic activity. If the material did not have a specific activity (amidolytic) comparable to an established standard of aPC, it was recycled over the thrombin column to activate the rHPC to completion. This was followed by 1:1 dilution of the material with 20 mM buffer as above, with a pH of anywhere between 7.4 or 6.0 (lower pH being preferable to prevent autodegradation) to keep the aPC at lower concentrations while it awaited the next processing step. [0033]
  • Removal of leached thrombin from the aPC material was accomplished by binding the aPC to an anion exchange resin (Fast Flow Q, Pharmacia) equilibrated in activation buffer (either 20 mM Tris, pH 7.4 or preferably 20 mM Tris-acetate, pH 6.5) with 150 mM NaCl. Thrombin passes through the column and elutes during a 2-6 column volume wash with 20 mM equilibration buffer. Bound aPC is eluted with a step gradient using 0.4 M NaCl in either 5 mM Tris-acetate, pH 6.5 or 20 mM Tris, pH 7.4. Higher volume washes of the column facilitated more complete removal of the dodecapeptide. The material eluted from this column was stored either in a frozen solution (−20° C.) or as a lyophilized powder. [0034]
  • The amidolytic activity (AU) of aPC was determined by release of p-nitroanaline from the synthetic substrate H-D-Phe-pip-Arg-p-nitroanilide (S-2238) purchased from Kabi Vitrum using a Beckman DU-7400 diode array spectrophotometer. One unit of activated protein C was defined as the amount of enzyme required for the release of 1 μmol of p-nitroaniline in 1 min. at 25° C., pH 7.4, using an extinction coefficient for p-nitroaniline at 405 nm of 9620 M[0035] −1cm−1.
  • The anticoagulant activity of activated protein C was determined by measuring the prolongation of the clotting time in the activated partial thromboplastin time (APTT) clotting assay. A standard curve was prepared in dilution buffer (1 mg/ml radioimmunoassay grade BSA, 20 mM Tris, pH 7.4, 150 mM NaCl, 0.02% NaN[0036] 3) ranging in protein C concentration from 125-1000 ng/ml, while samples were prepared at several dilutions in this concentration range. To each sample cuvette, 50 μl of cold horse plasma and 50 μl of reconstituted activated partial thromboplastin time reagent (APTT Reagent, Sigma) were added and incubated at 37° C. for 5 min. After incubation, 50 μl of the appropriate samples or standards were added to each cuvette. Dilution buffer was used in place of sample or standard to determine basal clotting time. The timer of the fibrometer (CoA Screener Hemostasis Analyzer, American Labor) was started upon the addition of 50 μl 37° C. 30 mM CaCl2 to each sample or standard. Activated protein C concentration in samples are calculated from the linear regression equation of the standard curve. Clotting times reported here are the average of a minimum of three replicates, including standard curve samples.
  • The above descriptions enable one with appropriate skill in the art to prepare aPC for utilization it in the treatment of thrombotic stroke.[0037]
  • EXAMPLE 1 Human Plasma Levels of aPC
  • Six human patients received an i.v. infusion of aPC at 1 mg/m[0038] 2 /hour or about 0.024 mg/kg/hr over a 24 hour period. The aPC administered was a lyophilized formulation containing 10 mg aPC, 5 mM Tris acetate buffer and 100 mM sodium chloride reconstituted with two ml of water and adjusted to pH 6.5.
  • Plasma concentrations of aPC were measured using an Immunocapture-Amidolytic Assay. Blood was collected in the presence of citrate anticoagulant and benzamidine, a reversible inhibitor of aPC. The enzyme was captured from plasma by an aPC specific murine monoclonal antibody, C3, immobilized on a microtiter plate. The inhibitor was removed by washing and the amidolytic activity or aPC was measured using an oligopeptide chromogenic substrate. Following incubation for 16-20 h at 37° C., the absorbance was measured at 405 nm and data are analyzed by a weighted linear curve-fitting algorithm. aPC concentrations were estimated from a standard curve ranging in concentrations from 0-100 ng/ml. The limit of quantitation of the assay was 1.0 ng/ml. The aPC dose levels and plasma concentrations were measured at about 24 hours. The plasma ranges are from 2 ng/ml to less than 100 ng/ml. The preferred plasma ranges are from about 20 ng/ml to 80 ng/ml. Most preferably plasma ranges are from about 30 ng/ml to about 60 ng/ml and still more preferably about 50 ng/ml. Thus, the dose of 0.024 mg/kg/hr yields the most preferable plasma concentration of 50 ng/ml at 24 hours for treatment of thrombotic stroke without the concomitant bleeding problems from higher dose levels. [0039]
  • EXAMPLE 2 Induced Reperfusion in a Canine Model of Occlusive Coronary Artery Thrombosis
  • Twelve dogs (17-22 kg, either sex, Butler Farms) were anesthetized with sodium pentobarbital (30 mg/kg, i.v.) and ventilated with room air. Cannulas were placed for measurement of blood pressure, drug administration and blood sampling in the carotid artery, femoral vein, and jugular vein; respectively. A left thoracotomy was performed, the heart was suspended in a pericardial cradle and a 2 cm segment of the left circumflex coronary artery (LCCA) was isolated proximal to the first main diagonal branch. The LCCA was instrumented with an electromagnetic flow probe, stimulating electrode, and an external occluder to measure coronary blood flow, produce vessel injury, and provide critical stenosis; respectively. Vessel injury was caused by placing the stimulating electrode (anode) in contact with the intimal side of the vessel and stimulating the anode with 100 μA d.c. current (the circuit was completed by placing the cathode in a subcutaneous site). The injury current was continued for 60 minutes and then stopped whether the vessel has occluded or not. Vessels reached total occlusion in approximately 60 minutes from the initiation of vessel injury. Thirty minutes after total vessel occlusion (established as zero coronary blood flow for 30 minutes) a continuous intravenous infusion of 2.0 mg/kg/hr aPC or 20 ml TRIS buffer, pH 7.4 (vehicle group) was infused for 2 hr. The preparations were followed for 4 hrs beginning from the point of initiation of LCCA injury. Arterial blood pressure, heart rate and coronary blood flow were acquired and analyzed. At different time points throughout the experiment, blood samples were drawn to determine whole blood clotting times (Hemochron 801), and gingival template bleeding times were determined using a Simplate II bleeding time device. A second set of blood samples (citrated) were collected throughout the experiment for determination of plasma plasminogen activator inhibitor-1 (PAI-1). Plasma PAI-1 levels were determined using an IMUBIND™ plasma PAI-1 ELISA kit (American Diagnostica). All data (reported as mean±SEM) were analyzed for statistical differences using single ANOVA followed by Student-Neuman-Keuls analysis for significance at the level p<0.05. Incidence of reperfusion and patency were analyzed using Fisher's Exact test at a level of p<0.05. [0040]
  • A continuous infusion of 2.0 mg/kg/hr aPC produced a 6 fold increase in APTT whole blood clotting time by the end of the 2 hr drug infusion (table 1). APTT had begun to return to normal values by the end of the experiment. There was no observable effect on thrombin clotting time or template bleeding time. Results are set forth in Table 2. [0041]
    TABLE 2
    Effects of aPC on Coagulation and Template Bleeding Times in
    the Anesthetized Dog
    60 min 120 min
    Treatment Parameter Predrug Inf. Inf. End
    Vehicle Thrombin 36 ± 1 38 ± 4 33 ± 1 34 ± 1
    a Time (sec)
    (n = 6) APTT (sec) 100 ± 6  95 ± 5  89 ± 10  91 ± 10
    Template 132 ± 15 182 ± 14 152 ± 15 159 ± 13
    Bleeding
    Time
    (sec)
    aPC* Thrombin 33 ± 1 34 ± 1 34 ± 1 34 ± 1
    (n = 6) Time
    (sec)
    APTT 96 ± 6  573 ± 237  670 ± 209 138 ± 13
    (sec) * *
    Template 199 ± 41 272 ± 84 204 ± 20 193 ± 39
    Bleeding
    Time
    (sec)
  • Table 3 illustrates the effects of intravenous administration of aPC on reperfusion of totally occluded coronary arteries. Time to total thrombotic occlusion of the coronary arteries was similar between the 2 groups; 66±7 and 62±6 minutes, vehicle-treated and aPC-treated, respectively. Five of six vessels in the aPC-treated group demonstrated reperfusion compared to none of the 6 vessels receiving vehicle; time to reperfusion in the aPC-treated group was 128±17 min. Coronary blood flow in the aPC treated group was significantly greater than the corresponding vehicle-treated group; the aPC-treated group reached 13.7±2.7 ml/min during the reperfusion period and a flow volume of 1069±623 ml (this represents a restoration of approximately 60-70% of the pre-thrombosis coronary blood flow in this group). Three of the 5 vessels exposed to aPC were still patent at the end of the 4 hr experiment. Thus, the data demonstrates that aPC is effective in the treatment of occlusive coronary artery thrombosis in a canine model. [0042]
    TABLE 3
    Effects of aPC on Restoration of Coronary Blood Flow in the
    Canine Coronary Artery Thrombosis Model
    Vehicle aPC
    Parameter (n = 6) (n = 6)
    Time to Occlusion (min)   66 ± 7  62 ± 6
    Thrombus Mass (mg) 10.8 ± 2.1   8.2 ± 1.2
    Incidence of Reperfusion 0 5 of 6 *
    Time to Reperfusion (min) 0  128 ± 17 *
    Vessel Patency @ 0 of 6 3 of 5
    End of Experiment
    CBF during Reperfusion 0  13.7 ± 2.7 *
    (ml/min)
    Reperfusion Volume (ml) 0 1069 ± 623
  • Blood samples drawn throughout the each experiment demonstrated that there was a significant correlation with the intravenous infusion of aPC and circulating levels of plasminogen activator inhibitor-1 (PAI-1). By the end of the intravenous infusion of aPC, plasma PAI-1 levels had decreased by 80%. Upon cessation of the infusion of aPC, plasma PAI-1 levels began to return to pre-infusion levels. [0043]
  • Although these dosage levels in this canine model appear to be higher than the claimed dosage levels for humans, Applicants have found that the dog is especially insensitive to human activated protein C, therefore the claimed dosage levels are appropriate for humans. [0044]

Claims (12)

What is claimed is:
1. A method of treatment for human patients with vascular occlusive and arterial thromboembolic disorders, which comprises administering to said patient a dosage of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr of activated protein C by continuous infusion for about 4 to about 96 hours.
2. The method of
claim 1
wherein the vascular occlusive or thromboembolic disorder is thrombotic stroke.
3. The method according to
claim 2
which comprises administering to said patient about 0.02 mg/kg/hr to about 0.03 mg/kg/hr activated protein C.
4. The method according to
claim 3
wherein the activated protein C is human activated protein C.
5. A method of
claim 1
wherein the activated protein C is administered in a continuous infusion for about 12 hours to about 36 hours.
6. A method of
claim 5
wherein the activated protein C is administered in a continuous infusion for about 24 hours.
7. The method according to
claim 6
which comprises administering about 0.024 mg/kg/hr activated protein C.
8. The method according to
claim 6
which comprises administering about 0.027 mg/kg/hr activated protein C.
9. The method according to
claim 6
which comprises administering about 0.030 mg/kg/hr activated protein C.
10. The method of
claim 1
wherein the activated protein C is administered in a bolus injection followed by said continuous infusion for about 4 to about 96 hours.
11. The method of
claim 10
wherein the activated protein C is administered in a bolus injection in about 5 minutes to about 120 minutes.
12. An article of manufacture for human pharmaceutical use, comprising packaging material and a vial comprising lyophilized activated protein C, wherein said packaging material comprises a label which indicates that said activated protein C be administered at a dosage of about 0.01 mg/kg/hr to about 0.05 mg/kg/hr by continuous infusion for about 4 to about 96 hours.
US09/877,759 1997-03-24 2001-06-08 Methods for treating vascular disorders Expired - Fee Related US6426071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/877,759 US6426071B2 (en) 1997-03-24 2001-06-08 Methods for treating vascular disorders

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US4253397P 1997-03-24 1997-03-24
US6254997P 1997-10-20 1997-10-20
US6476597P 1997-11-07 1997-11-07
PCT/US1998/005732 WO1998042358A1 (en) 1997-03-24 1998-03-24 Methods for treating vascular disorders
USPCT/US98/05732 1998-03-24
US09/161,900 US6037322A (en) 1997-10-20 1998-09-28 Methods for treating vascular disorders using activated protein C
US09/465,076 US6268337B1 (en) 1997-03-24 1999-12-16 Methods for treating vascular disorders using activated protein C
US09/877,759 US6426071B2 (en) 1997-03-24 2001-06-08 Methods for treating vascular disorders

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/465,076 Continuation US6268337B1 (en) 1997-03-24 1999-12-16 Methods for treating vascular disorders using activated protein C

Publications (2)

Publication Number Publication Date
US20010036456A1 true US20010036456A1 (en) 2001-11-01
US6426071B2 US6426071B2 (en) 2002-07-30

Family

ID=26742406

Family Applications (7)

Application Number Title Priority Date Filing Date
US09/161,900 Expired - Lifetime US6037322A (en) 1997-03-24 1998-09-28 Methods for treating vascular disorders using activated protein C
US09/174,507 Expired - Lifetime US6008199A (en) 1997-10-20 1998-10-16 Methods for treating hypercoagulable states or acquired protein C deficiency
US09/415,876 Expired - Lifetime US6156734A (en) 1997-10-20 1999-10-08 Methods for treating hypercoagulable states or acquired protein C deficiency
US09/415,761 Expired - Fee Related US6268344B1 (en) 1997-10-20 1999-10-08 Methods for treating hypercoagulable states or acquired protein C deficiency
US09/465,076 Expired - Fee Related US6268337B1 (en) 1997-03-24 1999-12-16 Methods for treating vascular disorders using activated protein C
US09/568,146 Expired - Fee Related US6489296B1 (en) 1997-10-20 2000-05-10 Method of reducing mortality in severe sepsis
US09/877,759 Expired - Fee Related US6426071B2 (en) 1997-03-24 2001-06-08 Methods for treating vascular disorders

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US09/161,900 Expired - Lifetime US6037322A (en) 1997-03-24 1998-09-28 Methods for treating vascular disorders using activated protein C
US09/174,507 Expired - Lifetime US6008199A (en) 1997-10-20 1998-10-16 Methods for treating hypercoagulable states or acquired protein C deficiency
US09/415,876 Expired - Lifetime US6156734A (en) 1997-10-20 1999-10-08 Methods for treating hypercoagulable states or acquired protein C deficiency
US09/415,761 Expired - Fee Related US6268344B1 (en) 1997-10-20 1999-10-08 Methods for treating hypercoagulable states or acquired protein C deficiency
US09/465,076 Expired - Fee Related US6268337B1 (en) 1997-03-24 1999-12-16 Methods for treating vascular disorders using activated protein C
US09/568,146 Expired - Fee Related US6489296B1 (en) 1997-10-20 2000-05-10 Method of reducing mortality in severe sepsis

Country Status (28)

Country Link
US (7) US6037322A (en)
EP (2) EP1449537A3 (en)
JP (2) JP3805981B2 (en)
KR (1) KR100798174B1 (en)
CN (1) CN1276726A (en)
AT (1) ATE292979T1 (en)
AU (1) AU748417B2 (en)
BR (1) BR9812965A (en)
CA (1) CA2306983A1 (en)
DE (1) DE69829721T2 (en)
DK (1) DK0913156T3 (en)
EA (1) EA002496B1 (en)
ES (1) ES2239382T3 (en)
HK (1) HK1020529A1 (en)
HU (2) HUP0001237A3 (en)
ID (1) ID24901A (en)
IL (2) IL135712A0 (en)
MY (1) MY117655A (en)
NO (1) NO20002005L (en)
NZ (1) NZ504026A (en)
PL (1) PL200515B1 (en)
PT (1) PT913156E (en)
SI (1) SI0913156T1 (en)
TR (1) TR200001059T2 (en)
TW (1) TWI225404B (en)
UA (1) UA72194C2 (en)
WO (1) WO1999020293A1 (en)
ZA (1) ZA989385B (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630137B1 (en) * 1997-04-28 2003-10-07 Eli Lilly And Company Activated protein C formulations
BR9809292A (en) 1997-04-28 2000-07-04 Lilly Co Eli Improved methods for processing activated protein
HUP0001237A3 (en) * 1997-10-20 2002-01-28 Lilly Co Eli Methods for treating vascular disorders
US7175679B2 (en) * 2001-03-29 2007-02-13 Biotempt B.V. Oligopeptide treatment of NF-κB mediated inflammation
EP1138692A1 (en) * 2000-03-29 2001-10-04 Erasmus Universiteit Rotterdam Fragments of human chorionic gonadotropin (hcg) as immunoregulator
US6844315B2 (en) * 1998-05-20 2005-01-18 Erasmus Universiteit Rotterdam Immunoregulator
US6921751B1 (en) 1998-05-20 2005-07-26 Erasmus Universiteit Rotterdam Immunoregulator
US20030220258A1 (en) * 2001-12-21 2003-11-27 Robbert Benner Treatment of ischemic events
US20040202645A1 (en) * 2003-04-08 2004-10-14 Khan Nisar Ahmed Administration of gene-regulatory peptides
US20050227925A1 (en) * 2004-04-08 2005-10-13 Robbert Benner Compositions capable of reducing elevated blood urea concentration
US8680059B2 (en) 1998-05-20 2014-03-25 Biotempt B.V. Oligopeptide acetate and formulations thereof
US6287516B1 (en) 1998-07-10 2001-09-11 Immunocept, L.L.C. Hemofiltration systems, methods, and devices used to treat inflammatory mediator related disease
US20040199099A1 (en) * 1998-07-10 2004-10-07 Matson James R Hemofiltration systems, methods and devices used to treat inflammatory mediator related disease
CN1324244A (en) 1998-10-22 2001-11-28 伊莱利利公司 Methods for treating sepsis
BR9915317A (en) * 1998-11-13 2001-08-07 Lilly Co Eli Method of treating heparin-induced thrombocytopenia
ES2192874T3 (en) * 1998-11-23 2003-10-16 Lilly Co Eli PROTEIN C FOR THE TREATMENT OF CELL DISEASE WITH HEPATIC ANEMIA AND TALASEMIA.
EP1255556B1 (en) * 2000-02-04 2011-04-06 The Scripps Research Institute Neuroprotective, antithrombotic and anti-inflammatory uses of activated protein c (apc)
US6736972B1 (en) 2000-03-24 2004-05-18 Immunocept, L.L.C. Method and system for providing therapeutic agents with hemofiltration for reducing inflammatory mediator related diseases
US8535258B2 (en) * 2000-03-24 2013-09-17 Immunocept, L.L.C. Hemofiltration methods for treatment of diseases in a mammal
US7291122B2 (en) * 2000-03-24 2007-11-06 Immunocept, L.L.C. Hemofiltration methods for treatment of diseases in a mammal
CA2404231A1 (en) * 2000-03-28 2001-10-04 Eli Lilly And Company Methods of treating diseases with activated protein c
US7204981B2 (en) * 2000-03-28 2007-04-17 Eli Lilly And Company Methods of treating diseases with activated protein C
USRE43279E1 (en) 2000-03-29 2012-03-27 Biotemp B.V. Compositions capable of reducing elevated blood urea concentration
US20050037430A1 (en) * 2000-03-29 2005-02-17 Biotempt B.V. Methods and uses for protein breakdown products
US7576174B2 (en) * 2000-03-29 2009-08-18 Biotempt B.V. Compositions capable of reducing elevated blood urea concentration
EP1300418A1 (en) 2001-10-04 2003-04-09 Erasmus Universiteit Rotterdam Gene regulation by oligopeptides
US7358330B2 (en) * 2001-03-29 2008-04-15 Biotempt B.V. Immunoregulatory compositions
US8597516B2 (en) * 2000-05-16 2013-12-03 Immunocept, L.L.C. Methods and systems for colloid exchange therapy
US6787040B2 (en) * 2000-05-16 2004-09-07 Immunocept, L.L.C. Method and system for colloid exchange therapy
EP1289543A2 (en) * 2000-05-24 2003-03-12 Eli Lilly And Company Formulations and methods for treating hypercoagulable states
AU2001290553A1 (en) * 2000-09-18 2002-04-02 Eli Lilly And Company Method for using activated protein c for the treatment of coagulation-associated disorders
CA2438652A1 (en) 2001-02-19 2002-09-06 Merck Patent Gesellschaft Mit Beschraenkter Haftung Method for identification of t-cell epitopes and use for preparing molecules with reeduced immunogenicity
US20040198652A1 (en) * 2001-04-24 2004-10-07 Carter J. Paul Methods and compositions for preventing and treating septic shock and endotoxemia
ES2384099T3 (en) * 2001-06-13 2012-06-29 The University Of Sydney Protein C for wound healing
US20030055003A1 (en) * 2001-07-19 2003-03-20 David Bar-Or Use of copper chelators to inhibit the inactivation of protein C
US20030220259A1 (en) * 2001-12-21 2003-11-27 Robbert Benner Treatment of neurological disorders
BR0213293A (en) 2001-10-15 2004-12-21 Chiron Corp Use of tfpi or tfpi analog in the treatment of septicemia
US7560433B2 (en) * 2001-12-21 2009-07-14 Biotempt B.V. Treatment of multiple sclerosis (MS)
US20030220257A1 (en) * 2001-12-21 2003-11-27 Robbert Benner Treatment of trauma
US20030224995A1 (en) * 2001-12-21 2003-12-04 Khan Nisar Ahmed Treatment of burns
US20030220260A1 (en) * 2001-12-21 2003-11-27 Khan Nisar Ahmed Peptide compositions
US7786084B2 (en) 2001-12-21 2010-08-31 Biotempt B.V. Treatment of burns
US20030220261A1 (en) * 2001-12-21 2003-11-27 Khan Nisar Ahmed Treatment of iatrogenic disease
US20040013661A1 (en) * 2001-12-21 2004-01-22 Gert Wensvoort Stratification
US20080318871A1 (en) * 2001-12-21 2008-12-25 Khan Nisar A Treatment of neurological disorders
US7501391B2 (en) * 2001-12-21 2009-03-10 Biotempt B.V. Treatment of transplant survival
JP2005528351A (en) * 2002-03-08 2005-09-22 イーライ・リリー・アンド・カンパニー Activated protein C formulation
TW200407335A (en) * 2002-07-22 2004-05-16 Chugai Pharmaceutical Co Ltd Non-neutralizing antibody to inhibit the inactivation of activated protein C
BRPI0313399A2 (en) * 2002-08-13 2016-11-08 Arbios Technologies Inc selective plasma exchange therapy
WO2004056309A2 (en) 2002-12-05 2004-07-08 Socratech L.L.C. Neuroprotective activity of activated protein c is independent of its anticoagulant activity
EP1598368A4 (en) * 2003-01-20 2007-07-25 Chugai Pharmaceutical Co Ltd Anti-pci neutralizing antibodies
US20070142272A1 (en) * 2003-01-24 2007-06-21 Zlokovic Berislav V Neuroprotective activity of activated protein c independent of its anticoagulant activity
US7517529B2 (en) * 2003-04-08 2009-04-14 Biotempt B.V. Treatment of type I diabetes
AU2004241069B2 (en) 2003-05-15 2010-09-09 Genentech, Inc. Methods and compositions for the prevention and treatment of sepsis
JP4986618B2 (en) 2003-07-08 2012-07-25 ザ スクリプス リサーチ インスティチュート Activated protein C variant with normal cytoprotective activity but reduced anticoagulant activity
US9192657B2 (en) * 2003-07-08 2015-11-24 The Scripps Research Institute Activated protein C variants with normal cytoprotective activity but reduced anticoagulant activity
US20090227669A1 (en) * 2004-01-23 2009-09-10 The University Of Toledo Compositions and Methods for Perioperative Bladder Instillation
JP2007532486A (en) * 2004-03-17 2007-11-15 カイロン コーポレイション Treatment of severe community-acquired pneumonia by administration of tissue factor pathway inhibitor
CA2566411A1 (en) * 2004-05-11 2005-11-24 Heptest Laboratories, Inc. Compositions, kit and one-step method for monitoring compounds having anti-factor xa and/or anti factor iia activities
US20080305100A1 (en) * 2004-07-23 2008-12-11 Zlokovic Berislav V Activated Protein C Inhibits Undesirable Effects of Plasminogen Activator in the Brain
WO2006124770A2 (en) * 2005-05-13 2006-11-23 The Feinstein Institute For Medical Research Treatment of sepsis and inflammation with alpha2a adrenergic antagonists
RU2496515C2 (en) * 2005-06-24 2013-10-27 Драгрекьюэ Апс Respiratory introduction of activated protein c in inflammatory conditions involving respiratory tract
KR20080033331A (en) 2005-07-05 2008-04-16 바이오템프트, 비.브이. Treatment of tumors
EP1864692A1 (en) * 2006-06-07 2007-12-12 Biotempt B.V. Use of peptides for the control of radiation injury
US7785857B2 (en) * 2006-08-31 2010-08-31 Saint Louis University Protein C variant
GR1005700B (en) * 2006-09-01 2007-10-22 (40%) ����� �������� A way of management of non septic patients suffering from partial thickness burns during the first 48 postburn hours with the continuous administration of activated protein c in order to reduce the total burn injury during the first post burn week.
US20100284997A1 (en) * 2006-10-31 2010-11-11 Griffin John H Dosing regimen of activated protein c and variants having reduced anticoagulant activity
RU2445365C1 (en) * 2010-11-03 2012-03-20 Общество с ограниченной ответственностью "Инновационный Центр "Новые Технологии и Материалы" (ООО "ИЦ Новтехмат") Mus musculus cultivated hybrid cell strain producer of monoclonal antibodies specific to human protein c (versions)
RU2490722C1 (en) * 2012-04-24 2013-08-20 Федеральное государственное бюджетное учреждение науки Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук (ИХБФМ СО РАН) Method for experimental establishment of thrombosed vein flow
CA2877745C (en) 2012-07-04 2021-11-30 The University Of Sydney Treatment of inflammatory skin disorders
CA2946028C (en) 2014-04-16 2022-10-11 Zz Biotech Llc Treatment of abnormal cutaneous scarring
JP7277484B2 (en) 2018-06-15 2023-05-19 エービー サンドビック マテリアルズ テクノロジー Duplex stainless steel strip and method for manufacturing same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775624A (en) * 1985-02-08 1988-10-04 Eli Lilly And Company Vectors and compounds for expression of human protein C
US5516650A (en) * 1985-06-27 1996-05-14 Zymogenetics, Inc. Production of activated protein C
US5084274A (en) * 1987-11-17 1992-01-28 Scripps Clinic And Research Foundation Inhibition of arterial thrombotic occlusion or thromboembolism
US4992373A (en) * 1987-12-04 1991-02-12 Eli Lilly And Company Vectors and compounds for direct expression of activated human protein C
US5009889A (en) * 1987-12-31 1991-04-23 Oklahoma Medical Research Foundation Treatment of dysfunctional vascular endothelium using activated protein C
GB8819607D0 (en) * 1988-08-17 1988-09-21 Wellcome Found Novel combination
US4981952A (en) * 1988-10-04 1991-01-01 Eli Lilly And Company Method for the purification of vitamin K-dependent proteins
US5254532A (en) * 1989-06-26 1993-10-19 Immuno Aktiengesellschaft Fur Chemisch-Medizinische Produkte Preparation for treating and preventing thromboses and thromboembolic complications, use of such a preparation and a method of producing the same
IL97312A (en) * 1990-02-23 1999-01-26 Lilly Co Eli Method for producing a polypeptide in a eukaryotic host cell and recombinant dna vectors containing an improved transcription control unit based on the adenovirus 2 major late promoter used thereto
AT402262B (en) * 1991-06-20 1997-03-25 Immuno Ag MEDICINAL ACTIVATED PROTEIN C
MY110664A (en) * 1992-05-21 1999-01-30 Lilly Co Eli Protein c derivatives
JP3434326B2 (en) * 1992-08-25 2003-08-04 財団法人化学及血清療法研究所 Agent for prevention and treatment of adult respiratory distress syndrome (ARDS)
JP2825739B2 (en) * 1993-09-20 1998-11-18 帝人株式会社 Acute liver failure treatment
JP3802104B2 (en) * 1995-05-31 2006-07-26 財団法人化学及血清療法研究所 Preventive and therapeutic agents for neuropathy associated with spinal cord injury
WO1997020043A1 (en) * 1995-11-30 1997-06-05 Zymogenetics, Inc. Protein c production in transgenic animals
BR9809292A (en) * 1997-04-28 2000-07-04 Lilly Co Eli Improved methods for processing activated protein
HUP0001237A3 (en) * 1997-10-20 2002-01-28 Lilly Co Eli Methods for treating vascular disorders

Also Published As

Publication number Publication date
US6156734A (en) 2000-12-05
JP2001520199A (en) 2001-10-30
NO20002005L (en) 2000-05-16
EA002496B1 (en) 2002-06-27
JP3805981B2 (en) 2006-08-09
HU224901B1 (en) 2006-04-28
CN1276726A (en) 2000-12-13
HK1020529A1 (en) 2000-05-12
US6037322A (en) 2000-03-14
MY117655A (en) 2004-07-31
DK0913156T3 (en) 2005-06-27
HUP0100025A3 (en) 2003-08-28
UA72194C2 (en) 2005-02-15
IL135712A (en) 2010-12-30
KR20010031217A (en) 2001-04-16
EP0913156B1 (en) 2005-04-13
AU748417B2 (en) 2002-06-06
IL135712A0 (en) 2001-05-20
ES2239382T3 (en) 2005-09-16
US6268337B1 (en) 2001-07-31
ID24901A (en) 2000-08-31
ATE292979T1 (en) 2005-04-15
US6008199A (en) 1999-12-28
EP1449537A2 (en) 2004-08-25
EP1449537A3 (en) 2005-09-21
EA200000445A1 (en) 2000-10-30
US6489296B1 (en) 2002-12-03
US6426071B2 (en) 2002-07-30
NZ504026A (en) 2002-12-20
ZA989385B (en) 2000-04-14
TR200001059T2 (en) 2000-10-23
US6268344B1 (en) 2001-07-31
NO20002005D0 (en) 2000-04-17
CA2306983A1 (en) 1999-04-29
SI0913156T1 (en) 2005-10-31
PT913156E (en) 2005-08-31
DE69829721T2 (en) 2006-02-09
HUP0001237A2 (en) 2000-08-28
EP0913156A1 (en) 1999-05-06
WO1999020293A1 (en) 1999-04-29
HUP0100025A2 (en) 2001-05-28
PL340096A1 (en) 2001-01-15
TWI225404B (en) 2004-12-21
HUP0001237A3 (en) 2002-01-28
JP2005097313A (en) 2005-04-14
PL200515B1 (en) 2009-01-30
AU9804098A (en) 1999-05-10
DE69829721D1 (en) 2005-05-19
BR9812965A (en) 2001-03-20
KR100798174B1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
US6426071B2 (en) Methods for treating vascular disorders
CA2288143C (en) Activated protein c formulations
US6630137B1 (en) Activated protein C formulations
EP0872245B1 (en) Methods for treating vascular disorders with activated Protein C
US6743426B2 (en) Method of treating heparin-induced thrombocytopenia
AU1723200A (en) Method of treating sickle cell disease and thalassemia
MXPA99008727A (en) Methods for treating vascular disorders
CZ338799A3 (en) Therapeutic preparation, vessel with dosage unit of this preparation and activated protein C
EP1561469A1 (en) Activated Protein C Formulations
CZ20001392A3 (en) Methods for treating hypercoagulable states or acquired protein C deficiency

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140730