US20010032040A1 - Control device for an electric engine driven vehicle - Google Patents

Control device for an electric engine driven vehicle Download PDF

Info

Publication number
US20010032040A1
US20010032040A1 US09/810,669 US81066901A US2001032040A1 US 20010032040 A1 US20010032040 A1 US 20010032040A1 US 81066901 A US81066901 A US 81066901A US 2001032040 A1 US2001032040 A1 US 2001032040A1
Authority
US
United States
Prior art keywords
engine
vehicle
speed
drag torque
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/810,669
Other versions
US6324449B2 (en
Inventor
Michael Albert
Thomas Reckhorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALBERT, MICHAEL, RECKHORN, THOMAS
Publication of US20010032040A1 publication Critical patent/US20010032040A1/en
Application granted granted Critical
Publication of US6324449B2 publication Critical patent/US6324449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a control device for a vehicle that is propelled by an electric engine.
  • Such control devices are provided both for vehicles driven solely by an electric engine as well as for vehicles with a hybrid drive.
  • Vehicles driven by internal combustion engines are usually distinguished by a retarding action exerted on the vehicle due to an engine drag torque during coasting when the accelerator or brake pedal is released and the internal combustion engine is not de-coupled from the transmission by a clutch.
  • One object of the present invention is to offer the driver this type of familiar vehicle behavior even if the vehicle is partially or solely propelled by an electric engine.
  • a related object is to provide the driver with increased driving comfort even while limiting or minimizing the amount of energy consumed from the energy storage device of the vehicle.
  • Related control devices for vehicles propelled by an electric engine are known from, e.g., German Patent DE 43 24 010 C2 and European Laid-Open Publication EP-A 0 846 590 (which has a counterpart U.S. Pat. No. 5,954,779). The disclosures of these three related art references are incorporated into the present application by reference.
  • onset of the current or analogous parameter is dependent on reaching a minimum value of an increase in engine speed or vehicle speed (or a minimum acceleration value of the engine speed or vehicle speed) after release of the accelerator pedal or the brake pedal.
  • the parameter and the minimum threshold value thereof can be, e.g., of any of the following: a required increase in engine rpm or in vehicle speed, or a required engine speed acceleration or vehicle speed acceleration, compared to the engine speed or vehicle speed that is present after release of the accelerator pedal or brake pedal. Due to this engine brake characteristic being re-definable in adaptation to the minimum differential threshold values, or the onset of the engine drag torque being thus re-definable, these control values are a function of the actual engine speed or vehicle speed that is present after the accelerator pedal or brake pedal has been released.
  • the invention thus avoids, on the one hand, additional deceleration by a simulated engine drag torque, which in itself is not necessary or desirable. This prevents impairment of the driving comfort, since the driver may, depending on the situation, attempt to compensate for the unintended excessive deceleration by renewed actuation of the accelerator pedal. It further avoids, in particular, the unnecessary usage of the energy carried on board in the vehicle's energy storage device that would arise from the undesirably strong deceleration or the subsequent acceleration of the vehicle.
  • the vehicle's energy consumption is optimized by advantageously expanding the vehicle's electric range, rather than recuperating the braking energy, regardless of the specific recuperation method employed, since the recuperation process is always connected with electric losses due to inefficiencies in the recovery processes.
  • any such undesirable excessive braking or re-acceleration is advantageously avoided, however, because the onset of the simulated engine drag torque is made to depend on reaching a minimum threshold value of (i) an engine rpm increase, (ii) a vehicle speed increase, (iii) an engine acceleration or (iv) vehicle acceleration. Reaching the minimum threshold value is factored from the speed of the engine or the speed of the vehicle at the time of or subsequent to the release of the accelerator pedal or brake pedal.
  • the invention provides a simulated engine drag torque that prevents the vehicle from accelerating due to external forces after the accelerator pedal or brake pedal is released. This makes it possible generally to counteract any external acceleration or deceleration forces acting on the vehicle after the release of the accelerator pedal or brake pedal.
  • the engine brake characteristic is selected so that the engine drag torque sets in only at engine speeds or vehicle speeds above a certain minimum engine speed or minimum vehicle speed. This has the advantage in particular of avoiding unchecked control fluctuations.
  • the brake current characteristic as a function of the electric engine speed or the vehicle speed is selected such that the brake current initially increases and, after reaching a predefined maximum engine brake current, remains essentially constant.
  • the rate of the increase in the brake current in the first speed range is preferably constant. However, this rate of increase in the brake current in the first speed range and/or the absolute value of the maximum brake current can instead be variable, i.e. a function of additional parameters.
  • FIG. 1 is a characteristic, by way of example, of the engine brake current to adjust a drag torque as a function of the engine speed or the vehicle speed,
  • FIG. 2 shows the onset of the brake current only after a minimum threshold value of a rpm or speed increase is attained following release of the accelerator pedal
  • FIG. 3 shows the onset of the brake current only after a minimum threshold value of a rpm or speed increase is attained following release of the brake pedal
  • FIG. 4 illustrates the minimum threshold value of the engine speed and the vehicle speed increase or the brake current increase variable as a function of the electric engine rpm or the vehicle speed after the accelerator pedal or the brake pedal has been released
  • FIG. 5 is a block diagram of circuitry wherein the engine drag torque is adjusted by means of a proportional action controller
  • FIG. 6 is a block diagram of circuitry wherein the engine drag torque is adjusted by means of a proportional-plus-integral controller.
  • FIG. 1 shows the characteristic of the brake current I B as a function of the electric engine speed n or the vehicle speed v starting at an engine speed n 1 or a vehicle speed v 1 .
  • the characteristic of the brake current as a function of the engine speed n or the vehicle speed v is selected, according to one embodiment of the invention, such that the brake current, and thus the engine drag torque it simulates, initially increases, preferably continuously, up to a maximum engine brake current I Bmax at an engine speed n 2 or a vehicle speed v 2 and then remains constant.
  • FIG. 2 shows a simulated engine drag torque in which increased driving comfort and a simultaneous saving of energy carried in the vehicle energy storage device is made possible. This is accomplished in that the brake current I B and thus the start of the engine drag torque sets in only after a minimum threshold value for a difference in the engine speed ⁇ n or the vehicle speed ⁇ v. This allows other external factors affecting the vehicle after the release of the accelerator pedal or the brake pedal to be taken into account. Thereby, utilization of the vehicle's kinetic energy is optimized, without needing to relinquish the beneficial simulation of an engine drag torque in desired situations. This is made possible in that the engine speed n 0 or vehicle speed v 0 present after the release of the accelerator pedal is assessed (e.g.
  • the onset of the simulated engine drag torque is shifted to an engine speed point n 1 * or vehicle speed point v 1 *.
  • the minimum threshold values of the increase i.e., the differential values ⁇ n of the engine speed or ⁇ v of the vehicle speed can be freely parameterized.
  • the maximum brake current I Bmax is then reached at a higher engine speed n 2 * or a higher vehicle speed v 2 *.
  • the triggering of the simulated engine drag torque is a function of reaching a minimum value of an engine speed increase or a vehicle speed increase after release of, in this case, the brake pedal.
  • FIG. 4 shows an additional exertion of influence on the engine brake characteristic in such a way that (i) the increase in the brake current IB, i.e., its increase per unit of speed (rpm or vehicle speed), and/or (ii) the minimum engine speed increase ⁇ n or the minimum theshold vehicle speed increase ⁇ v required prior to onset of the simulated engine drag torque is made dependent on the corresponding engine speed or vehicle speed present after the accelerator pedal or the brake pedal has been released.
  • the left portion of FIG. 4 shows a steeper increase in the brake current I B and a lesser minimum threshold rpm increase ⁇ n or minimum threshold speed increase ⁇ v at a lower engine speed n 0 or vehicle speed v 0 .
  • FIG. 4 shows an additional exertion of influence on the engine brake characteristic in such a way that (i) the increase in the brake current IB, i.e., its increase per unit of speed (rpm or vehicle speed), and/or (ii) the minimum engine speed increase ⁇ n or the minimum theshold
  • the maximum brake current I Bmax which is assumed to be at a constant level in the embodiments shown in the drawings, may also vary as a function of the respective engine speed n 0 or vehicle speed v 0 following release of the accelerator pedal or brake pedal.
  • the corresponding acceleration value instead of the engine speed or vehicle speed present after the accelerator pedal or brake pedal is released, the corresponding acceleration value, i.e., the rpm increase or speed increase per unit of time, may be used as a basis.
  • FIG. 5 and 6 are schematic block diagrams showing two exemplary embodiments for determining the parameters of brake current I B as a function of the engine speed n or the vehicle speed v.
  • the determination is carried out by means of a proportional action controller P with current limiter B; in the case of FIG. 6, a proportional-plus-integral controller PI with current limiter B are used.
  • Controllers P and PI each receive their corresponding setpoints from the sum of (i) the engine speed n 0 or vehicle speed v 0 present when the accelerator pedal or brake pedal is released and (ii) the minimum threshold engine speed increase ⁇ n or minimum threshold vehicle speed increase ⁇ v.
  • controllers P and PI are the absolute value of the engine speed n or of the vehicle speed v.
  • the outputs of the controllers P and PI are limited, respectively, by a current limiter B to the maximum engine brake current I Bmax .
  • the amplification factors k p and k i of the respective controllers P and PI are used to define the rate of the increase in the brake current I B (cf., e.g., FIG. 4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

To recreate the familiar vehicle behavior of vehicles with internal combustion engines, a simulated engine drag torque is provided through controlled braking of the electric engine after release of the accelerator pedal or the brake pedal. To increase the driving comfort and, in addition, to save energy carried on board in the vehicle's energy storage device, the simulated engine drag torque sets in only upon reaching a minimum threshold value of a speed increase after the accelerator pedal or the brake pedal is released.

Description

  • This is a Continuation of International Application PCT/DE99/02818, with an international filing date of Sep. 6, 1999, the disclosure of which is incorporated into this application by reference. [0001]
  • FIELD OF AND BACKGROUND OF THE INVENTION
  • The invention relates to a control device for a vehicle that is propelled by an electric engine. Such control devices are provided both for vehicles driven solely by an electric engine as well as for vehicles with a hybrid drive. [0002]
  • Vehicles driven by internal combustion engines are usually distinguished by a retarding action exerted on the vehicle due to an engine drag torque during coasting when the accelerator or brake pedal is released and the internal combustion engine is not de-coupled from the transmission by a clutch. [0003]
  • OBJECTS OF THE INVENTION
  • One object of the present invention is to offer the driver this type of familiar vehicle behavior even if the vehicle is partially or solely propelled by an electric engine. A related object is to provide the driver with increased driving comfort even while limiting or minimizing the amount of energy consumed from the energy storage device of the vehicle. Related control devices for vehicles propelled by an electric engine are known from, e.g., German Patent DE 43 24 010 C2 and European Laid-Open Publication EP-A 0 846 590 (which has a counterpart U.S. Pat. No. 5,954,779). The disclosures of these three related art references are incorporated into the present application by reference. [0004]
  • SUMMARY OF THE INVENTION
  • According to one formulation of the invention, this and other objects are attained by a control device for a vehicle driven by an electric engine: [0005]
  • with a simulated engine drag torque achieved by controlling the electric engine upon release of the previously actuated accelerator pedal or the previously actuated brake pedal of the vehicle, [0006]
  • wherein the electric engine is controlled through an engine brake current (I[0007] B=f(n;v)) or analogous parameter, such that the current or analogous parameter varies in accordance with a respective engine speed (n) or vehicle speed (v), and
  • wherein onset of the current or analogous parameter is dependent on reaching a minimum value of an increase in engine speed or vehicle speed (or a minimum acceleration value of the engine speed or vehicle speed) after release of the accelerator pedal or the brake pedal. [0008]
  • It is possible to simulate an engine drag torque familiar to the driver of a vehicle that is driven solely by an internal combustion engine. This is done by providing an engine brake current (or analogous parameter) upon release of the accelerator pedal or brake pedal, and making this engine brake current a function of the vehicle speed or the engine rpm in accordance with a predefinable characteristic. Further, in order to increase the driving comfort and in addition particularly to save the energy carried on board in the energy storage device, the onset of the simulated engine drag torque is set to commence upon a parameter reaching a predefined minimum threshold above the parameter value that exists after release of the accelerator pedal or release of the brake pedal. The parameter and the minimum threshold value thereof can be, e.g., of any of the following: a required increase in engine rpm or in vehicle speed, or a required engine speed acceleration or vehicle speed acceleration, compared to the engine speed or vehicle speed that is present after release of the accelerator pedal or brake pedal. Due to this engine brake characteristic being re-definable in adaptation to the minimum differential threshold values, or the onset of the engine drag torque being thus re-definable, these control values are a function of the actual engine speed or vehicle speed that is present after the accelerator pedal or brake pedal has been released. This occurs in such a way that external acceleration or deceleration forces acting on the vehicle (e.g., an upward or downward slope of the roadway or special wind conditions, or the nature of the road surface), which also affect the vehicle's acceleration or deceleration after the release of the accelerator pedal or brake pedal, are advantageously taken into account. [0009]
  • In such situations, the invention thus avoids, on the one hand, additional deceleration by a simulated engine drag torque, which in itself is not necessary or desirable. This prevents impairment of the driving comfort, since the driver may, depending on the situation, attempt to compensate for the unintended excessive deceleration by renewed actuation of the accelerator pedal. It further avoids, in particular, the unnecessary usage of the energy carried on board in the vehicle's energy storage device that would arise from the undesirably strong deceleration or the subsequent acceleration of the vehicle. It is preferable to have the utilization of the kinetic energy of the vehicle be as exact as possible, without resort to regenerative braking, More specifically, the vehicle's energy consumption is optimized by advantageously expanding the vehicle's electric range, rather than recuperating the braking energy, regardless of the specific recuperation method employed, since the recuperation process is always connected with electric losses due to inefficiencies in the recovery processes. According to the invention, any such undesirable excessive braking or re-acceleration is advantageously avoided, however, because the onset of the simulated engine drag torque is made to depend on reaching a minimum threshold value of (i) an engine rpm increase, (ii) a vehicle speed increase, (iii) an engine acceleration or (iv) vehicle acceleration. Reaching the minimum threshold value is factored from the speed of the engine or the speed of the vehicle at the time of or subsequent to the release of the accelerator pedal or brake pedal. [0010]
  • On the other hand, the invention provides a simulated engine drag torque that prevents the vehicle from accelerating due to external forces after the accelerator pedal or brake pedal is released. This makes it possible generally to counteract any external acceleration or deceleration forces acting on the vehicle after the release of the accelerator pedal or brake pedal. [0011]
  • Advantageously, the engine brake characteristic is selected so that the engine drag torque sets in only at engine speeds or vehicle speeds above a certain minimum engine speed or minimum vehicle speed. This has the advantage in particular of avoiding unchecked control fluctuations. According to a preferred embodiment of the invention, the brake current characteristic as a function of the electric engine speed or the vehicle speed is selected such that the brake current initially increases and, after reaching a predefined maximum engine brake current, remains essentially constant. The rate of the increase in the brake current in the first speed range is preferably constant. However, this rate of increase in the brake current in the first speed range and/or the absolute value of the maximum brake current can instead be variable, i.e. a function of additional parameters.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention as well as specific advantageous embodiments thereof will now be described in greater detail by way of schematic examples with reference to the drawing in which: [0013]
  • FIG. 1 is a characteristic, by way of example, of the engine brake current to adjust a drag torque as a function of the engine speed or the vehicle speed, [0014]
  • FIG. 2 shows the onset of the brake current only after a minimum threshold value of a rpm or speed increase is attained following release of the accelerator pedal, [0015]
  • FIG. 3 shows the onset of the brake current only after a minimum threshold value of a rpm or speed increase is attained following release of the brake pedal, [0016]
  • FIG. 4 illustrates the minimum threshold value of the engine speed and the vehicle speed increase or the brake current increase variable as a function of the electric engine rpm or the vehicle speed after the accelerator pedal or the brake pedal has been released, [0017]
  • FIG. 5 is a block diagram of circuitry wherein the engine drag torque is adjusted by means of a proportional action controller, and [0018]
  • FIG. 6 is a block diagram of circuitry wherein the engine drag torque is adjusted by means of a proportional-plus-integral controller.[0019]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 shows the characteristic of the brake current I[0020] B as a function of the electric engine speed n or the vehicle speed v starting at an engine speed n1 or a vehicle speed v1. The characteristic of the brake current as a function of the engine speed n or the vehicle speed v is selected, according to one embodiment of the invention, such that the brake current, and thus the engine drag torque it simulates, initially increases, preferably continuously, up to a maximum engine brake current IBmax at an engine speed n2 or a vehicle speed v2 and then remains constant.
  • FIG. 2 shows a simulated engine drag torque in which increased driving comfort and a simultaneous saving of energy carried in the vehicle energy storage device is made possible. This is accomplished in that the brake current I[0021] B and thus the start of the engine drag torque sets in only after a minimum threshold value for a difference in the engine speed Δn or the vehicle speed Δv. This allows other external factors affecting the vehicle after the release of the accelerator pedal or the brake pedal to be taken into account. Thereby, utilization of the vehicle's kinetic energy is optimized, without needing to relinquish the beneficial simulation of an engine drag torque in desired situations. This is made possible in that the engine speed n0 or vehicle speed v0 present after the release of the accelerator pedal is assessed (e.g. stored in memory) and the onset of the simulated engine drag torque is shifted to an engine speed point n1* or vehicle speed point v1*. The minimum threshold values of the increase, i.e., the differential values Δn of the engine speed or Δv of the vehicle speed can be freely parameterized. In the embodiment, the maximum brake current IBmax is then reached at a higher engine speed n2* or a higher vehicle speed v2*.
  • Similarly to what has been described above with reference to FIG. 2 for releasing the accelerator pedal, a corresponding adaptation of the onset of the engine brake current and thus the simulated engine drag torque is provided also upon the release of a previously actuated brake pedal, according to a further embodiment of the invention, which is described with reference to FIG. 3. To this end, the engine speed n[0022] 0B or vehicle speed V0B present when the brake pedal is released is again stored. The engine brake characteristic is then again shifted by a freely parameterizable amount ΔnB or ΔvB to onset point n1B* or V1B*, with the maximum brake current being reached at n2B* or v2B*. As a result, even after the brake pedal is released, it is possible to achieve the increased driving comfort described in connection with the release of the accelerator pedal and simultaneously to conserve the energy carried on board. According to the invention, the triggering of the simulated engine drag torque is a function of reaching a minimum value of an engine speed increase or a vehicle speed increase after release of, in this case, the brake pedal.
  • FIG. 4 shows an additional exertion of influence on the engine brake characteristic in such a way that (i) the increase in the brake current IB, i.e., its increase per unit of speed (rpm or vehicle speed), and/or (ii) the minimum engine speed increase Δn or the minimum theshold vehicle speed increase Δv required prior to onset of the simulated engine drag torque is made dependent on the corresponding engine speed or vehicle speed present after the accelerator pedal or the brake pedal has been released. For example, the left portion of FIG. 4 shows a steeper increase in the brake current I[0023] B and a lesser minimum threshold rpm increase Δn or minimum threshold speed increase Δv at a lower engine speed n0 or vehicle speed v0. On the right, FIG. 4 shows a flatter increase in the brake current and a greater minimum threshold rpm increase Δn′ or minimum threshold speed increase Δv′ if the accelerator pedal or brake pedal is released at a higher engine speed n0′ or vehicle speed v0′.
  • According to further embodiments of the invention, the maximum brake current I[0024] Bmax, which is assumed to be at a constant level in the embodiments shown in the drawings, may also vary as a function of the respective engine speed n0 or vehicle speed v0 following release of the accelerator pedal or brake pedal. As a further, alternative parameter for defining the corresponding brake characteristic, instead of the engine speed or vehicle speed present after the accelerator pedal or brake pedal is released, the corresponding acceleration value, i.e., the rpm increase or speed increase per unit of time, may be used as a basis.
  • FIG. 5 and [0025] 6 are schematic block diagrams showing two exemplary embodiments for determining the parameters of brake current IB as a function of the engine speed n or the vehicle speed v. In the case of FIG. 5, the determination is carried out by means of a proportional action controller P with current limiter B; in the case of FIG. 6, a proportional-plus-integral controller PI with current limiter B are used. Controllers P and PI each receive their corresponding setpoints from the sum of (i) the engine speed n0 or vehicle speed v0 present when the accelerator pedal or brake pedal is released and (ii) the minimum threshold engine speed increase Δn or minimum threshold vehicle speed increase Δv. The actual (i.e. measured) value supplied to controllers P and PI is the absolute value of the engine speed n or of the vehicle speed v. The outputs of the controllers P and PI are limited, respectively, by a current limiter B to the maximum engine brake current IBmax. The amplification factors kp and ki of the respective controllers P and PI are used to define the rate of the increase in the brake current IB (cf., e.g., FIG. 4).
  • The above description of the preferred embodiments has been given by way of example. From the disclosure given, those skilled in the art will not only understand the present invention and its attendant advantages, but will also find apparent various changes and modifications to the structures and methods disclosed. It is sought, therefore, to cover all such changes and modifications as fall within the spirit and scope of the invention, as defined by the appended claims, and equivalents thereof. [0026]

Claims (21)

What is claimed is:
1. Control device for a vehicle propelled by an electric engine, providing:
a simulated engine drag torque through control of the electric engine upon release of a previously actuated accelerator pedal or a previously actuated brake pedal of the vehicle,
a characteristic of the simulated engine drag torque as a function of an engine brake current (IB) or a parameter algebraically proportional to the engine brake current, wherein the engine brake current or the algebraically proportional parameter is variable with respect to at least one of an engine speed (n) or a vehicle speed (v), and
an onset of the simulated engine drag torque as a function of reaching a minimum, non-zero threshold value of an engine speed increase (Δn) or a vehicle speed increase (Δv) after release of the accelerator pedal or the brake pedal.
2. Control device as claimed in
claim 1
, wherein at least one of the following is variable with respect to either an absolute value of the engine speed (n0) or an absolute value of the vehicle speed (v0) after release of the accelerator pedal or the brake pedal:
the onset of the simulated engine drag torque,
the minimum threshold value of the engine speed increase (Δn),
the vehicle speed increase (Δv),
a rate of the increase in the engine brake current (IB), or
a maximum value (IBmax) of the engine brake current.
3. Control device as claimed in
claim 1
, wherein the simulated engine drag torque is suppressed from commencing until an actual differential value reaches a minimum threshold engine speed value (n1) or a minimum threshold vehicle speed value (v1).
4. Control device as claimed in
claim 1
,
wherein the engine brake current (IB) increases in accordance with increasing engine speed in a first engine speed range (n1<n<n2) or in accordance with increasing vehicle speed in a first vehicle speed range (v1<v<v2), and
wherein, after reaching a maximum engine brake speed (IBmax), the engine brake current is essentially constant in a second engine speed range (n2<n) or in a second speed range (v2<v).
5. Control device as claimed in
claim 4
,
wherein the engine brake current increases linearly in the first engine speed range (n1<n<n2) or in the first vehicle speed range (v1<v<v2).
6. Control device as claimed in
claim 4
,
wherein the engine brake current increases at a variable rate (IB=f(n;v)) in the first engine speed range (n1<n<n2) or in the first vehicle speed range (v1<v<v2).
7. Control device as claimed in
claim 1
,
wherein the engine brake current (IB) increases in accordance with increasing engine speed in a first engine speed range (n1<n<n2) or in accordance with increasing vehicle speed in a first vehicle speed range (v1<v<v2), and
wherein the engine brake current is variable in a second engine speed range (n2<n) or in a second speed range (v2<v).
8. Control device as claimed in
claim 1
, comprising:
a proportional action controller that adjusts the simulated engine drag torque as a function of at least one of the following:
the engine speed increase (Δn) or
the vehicle speed increase (Δv).
9. Control device as claimed in
claim 2
, comprising:
a proportional action controller that adjusts the simulated engine drag torque as a function of at least one of the following:
the engine speed increase (Δn),
the vehicle speed increase (Δv),
the absolute value of the engine speed (n0), or
the absolute value of the vehicle speed (v0).
10. Control device as claimed in
claim 1
, comprising:
a proportional-plus-integral controller that adjusts the simulated engine drag torque as a function of at least one of the following:
the engine speed increase (Δn) or
the vehicle speed increase (Δv).
11. Control device as claimed in
claim 2
, comprising:
a proportional-plus-integral controller that adjusts the simulated engine drag torque as a function of at least one of the following:
the engine speed increase (Δn),
the vehicle speed increase (Δv),
the absolute value of the engine speed (n0), or
the absolute value of the vehicle speed (v0).
12. Control device for a vehicle propelled by an electric engine, providing:
a simulated engine drag torque through control of the electric engine upon release of a previously actuated accelerator pedal or a previously actuated brake pedal of the vehicle,
a characteristic of the simulated engine drag torque as a function of an engine brake current (IB) or a parameter algebraically proportional to the engine brake current, wherein the engine brake current or the algebraically proportional parameter is variable with respect to at least one of an engine speed (n) or a vehicle speed (v), and
an onset of the simulated engine drag torque as a function of reaching a minimum, non-zero threshold value of an engine acceleration or a vehicle acceleration after release of the accelerator pedal or the brake pedal.
13. Control device as claimed in
claim 12
, comprising:
a proportional action controller that adjusts the simulated engine drag torque as a function of at least one of the following:
the engine acceleration, and
the vehicle acceleration.
14. Control device as claimed in
claim 12
, comprising:
a proportional-plus-integral controller that adjusts the simulated engine drag torque as a function of at least one of the following:
the engine acceleration, and
the vehicle acceleration.
15. A method for propelling a vehicle with an electric engine, comprising:
actuating an accelerator pedal of the electric engine; and
controlling the electric engine to simulate an engine drag torque,
wherein an amount of the simulated engine drag torque is a function of an electrical engine brake parameter, and
wherein the simulated engine drag torque is suppressed from commencing until an actual differential value reaches a threshold differential value.
16. The method according to
claim 15
, wherein:
the electrical engine brake parameter is an engine brake current, and
the differential value comprises an increase in engine speed of the electric engine or an increase in vehicle speed of the vehicle.
17. The method according to
claim 15
, wherein:
the electrical engine brake parameter is an engine brake current, and
the differential value comprises an engine acceleration or a vehicle acceleration.
18. The method according to
claim 12
, wherein the actual differential value is measured from at least one of:
releasing the accelerator pedal and
releasing a brake pedal of the vehicle.
19. The method according to
claim 12
, wherein the threshold differential value is calculated from at least one of:
releasing the accelerator pedal and
releasing a brake pedal of the vehicle.
20. A control device for a vehicle propelled by an electric engine, comprising:
a first input for at least one of a base value of a engine speed (n0) or a base value of the vehicle speed (v0), wherein the base value is triggered in response to an operational change in actuation of at least one of an accelerator pedal of the vehicle or a brake pedal of the vehicle;
a second input for at least one of a threshold engine speed increase value (Δn) and a threshold vehicle speed increase value (Δv);
a third input for at least one of a measured engine speed or a measured vehicle speed; and
an element suppressing for a time a signal to simulate an engine drag torque based on a result of processing signals from said first, second and third inputs.
21. The control device according to
claim 20
, further comprising:
a controller that receives the signal and adjusts an amount of the simulated engine drag torque by applying an electrical braking parameter to the electric engine as a function of at least one of the following:
the threshold engine speed increase value (Δn),
the threshold vehicle speed increase value (Δv),
the base value of the engine speed (n0),
the base value of the vehicle speed (v0),
a threshold engine acceleration value, or
a threshold vehicle acceleration value.
US09/810,669 1998-09-17 2001-03-19 Control device for an electric engine driven vehicle Expired - Fee Related US6324449B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19842509A DE19842509C1 (en) 1998-09-17 1998-09-17 Control device for a vehicle that can be driven by an electric motor
DE19842509 1998-09-17
DE19842509.0 1998-09-17
PCT/DE1999/002818 WO2000017004A1 (en) 1998-09-17 1999-09-06 Control or regulating device for a motor vehicle that is driven by an electric motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/002818 Continuation WO2000017004A1 (en) 1998-09-17 1999-09-06 Control or regulating device for a motor vehicle that is driven by an electric motor

Publications (2)

Publication Number Publication Date
US20010032040A1 true US20010032040A1 (en) 2001-10-18
US6324449B2 US6324449B2 (en) 2001-11-27

Family

ID=7881219

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/810,669 Expired - Fee Related US6324449B2 (en) 1998-09-17 2001-03-19 Control device for an electric engine driven vehicle

Country Status (3)

Country Link
US (1) US6324449B2 (en)
DE (1) DE19842509C1 (en)
WO (1) WO2000017004A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080287252A1 (en) * 2004-11-09 2008-11-20 Toyota Jidosha Kabushiki Kaisha Motor Vehicle and Control Method of Motor Vehicle
US20090227418A1 (en) * 2008-03-06 2009-09-10 Toyota Motor Engineering & Manufacturing North America, Inc. Methods and Systems for Regulating Hill Descent Speed of an Electric Vehicle
US20100049387A1 (en) * 2006-12-19 2010-02-25 Takanori Aoki Vehicular control device and method of controlling a vehicle
US20100282532A1 (en) * 2006-02-10 2010-11-11 Jens-Werner Falkenstein Method For Operating A Drive Device Of A Hybird Vehicle
US8473151B2 (en) 2010-03-30 2013-06-25 Toyota Motor Engineering & Manufacturing North America, Inc. Excursion prevention methods and systems
US8831842B2 (en) * 2013-01-17 2014-09-09 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid vehicle automatic simulated shifting
GB2523894A (en) * 2014-02-07 2015-09-09 Zahnradfabrik Friedrichshafen Method for controlling a two-speed transmission with electric motor
CN107204138A (en) * 2017-07-21 2017-09-26 吉林大学 A kind of electric instruction car manipulation analogue means based on small-sized pure electric car

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006040638A1 (en) * 2006-08-30 2008-03-13 Robert Bosch Gmbh Method for operating a hybrid drive
US7783461B2 (en) * 2007-05-04 2010-08-24 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for simulating vehicle operation
DE102008001973A1 (en) * 2008-05-26 2009-12-03 Robert Bosch Gmbh Method for controlling a drag torque of an electric motor-driven motor vehicle taking into account the coefficient of friction present on the road surface and apparatus for carrying out such a method
FR2945243B1 (en) * 2009-05-11 2012-06-01 Renault Sas SYSTEM FOR CONTROLLING THE TORQUE TO THE WHEELS OF A VEHICLE EQUIPPED WITH AT LEAST ONE ELECTRIC MOTOR.
DE102010064058B4 (en) * 2010-12-23 2016-06-16 Robert Bosch Gmbh Method for operating a motor vehicle
DE102011119845A1 (en) * 2011-12-01 2013-06-06 Max Kellner Method for simulation of driving characteristics of internal combustion engine in vehicle, involves predetermining drive speed of drive, and changing directly rotational torque of drive by supplementary control element formed as clutch
DE102013208325B4 (en) * 2013-05-07 2021-02-04 Bayerische Motoren Werke Aktiengesellschaft Method for controlling the build-up of a regenerative braking torque generated by an electrical machine of a vehicle
CN108583365B (en) * 2018-03-12 2021-03-26 上海伊控动力系统有限公司 Tooth surface reversing anti-shake control method for electric automobile
DE102018009549A1 (en) * 2018-12-10 2020-06-10 Senvion Gmbh Method and system for parameterizing a controller of a wind turbine and / or operating a wind turbine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324010C2 (en) * 1993-07-17 1995-05-11 Daimler Benz Ag Method for controlling the torque output of a hybrid drive driving a vehicle
DE19518813C1 (en) * 1995-05-23 1996-12-19 Bosch Gmbh Robert Torque control for IC engine
DE19637210B4 (en) * 1996-09-12 2007-05-24 Siemens Ag Powertrain control for a motor vehicle
DE19650570A1 (en) 1996-12-06 1998-06-10 Voith Turbo Kg Process for controlling the drag torque in a diesel-electric drive system and drive system
DE19814482A1 (en) * 1998-04-01 1999-10-07 Bosch Gmbh Robert Method and device for generating an error signal in a motor vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736267B2 (en) * 2004-11-09 2010-06-15 Toyota Jidosha Kabushiki Kaisha Motor vehicle and control method of motor vehicle
US20100217496A1 (en) * 2004-11-09 2010-08-26 Toyota Jidosha Kabushiki Kaisha Motor vehicle and control method of motor vehicle
US20080287252A1 (en) * 2004-11-09 2008-11-20 Toyota Jidosha Kabushiki Kaisha Motor Vehicle and Control Method of Motor Vehicle
US8720619B2 (en) * 2006-02-10 2014-05-13 Robert Bosch Gmbh Method for operating a drive device of a hybird vehicle
US20100282532A1 (en) * 2006-02-10 2010-11-11 Jens-Werner Falkenstein Method For Operating A Drive Device Of A Hybird Vehicle
US9085228B2 (en) * 2006-12-19 2015-07-21 Toyota Jidosha Kabushiki Kaisha Vehicular control device and method of controlling a vehicle
US20100049387A1 (en) * 2006-12-19 2010-02-25 Takanori Aoki Vehicular control device and method of controlling a vehicle
US8033955B2 (en) * 2008-03-06 2011-10-11 Toyota Motor Engineering & Manufacturing North America, Inc. Methods and systems for regulating hill descent speed of an electric vehicle
US20090227418A1 (en) * 2008-03-06 2009-09-10 Toyota Motor Engineering & Manufacturing North America, Inc. Methods and Systems for Regulating Hill Descent Speed of an Electric Vehicle
US8473151B2 (en) 2010-03-30 2013-06-25 Toyota Motor Engineering & Manufacturing North America, Inc. Excursion prevention methods and systems
US8831842B2 (en) * 2013-01-17 2014-09-09 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid vehicle automatic simulated shifting
GB2523894A (en) * 2014-02-07 2015-09-09 Zahnradfabrik Friedrichshafen Method for controlling a two-speed transmission with electric motor
CN107204138A (en) * 2017-07-21 2017-09-26 吉林大学 A kind of electric instruction car manipulation analogue means based on small-sized pure electric car

Also Published As

Publication number Publication date
US6324449B2 (en) 2001-11-27
WO2000017004A1 (en) 2000-03-30
DE19842509C1 (en) 2000-07-06

Similar Documents

Publication Publication Date Title
US6324449B2 (en) Control device for an electric engine driven vehicle
US9211871B2 (en) Vehicle and method for controlling regenerative braking
US7955216B2 (en) Automatic transmission shift control apparatus
JP3881553B2 (en) Travel control device
US6450281B1 (en) Control system for a vehicle
KR100992769B1 (en) Control method for fuel consumption improvement of hybrid electric vehicles
US9921589B2 (en) Method and device for controlling a coasting operating mode in a motor vehicle with an internal combustion engine
JP4293311B2 (en) Reduction ratio selection control method for automatic transmission and vehicle
US5505671A (en) Method for controlling the operating sequences of a motor vehicle equipped with an automatic transmission
US6460647B1 (en) Slip control system
US7204784B2 (en) Apparatus for controlling a gear ratio changing operation in a transmission
KR20210142020A (en) Vehicle having electric motor and method of controlling braking signal for the same
US20010016538A1 (en) Constant-speed running controller for vehicle
SE1250349A1 (en) Method and system for controlling at least one speed controller
JPH09329227A (en) Gear ratio regulating system of continuously variable transmission
JP2000291459A (en) Control method and device for driving unit
US20040143383A1 (en) Method for controlling and/or adjusting a torque transmission system in the drive chain of a vehicle
JP2001295677A (en) Control method and device for vehicle speed
US11046311B2 (en) Vehicle control method and vehicle control device
CN114655215A (en) Antiskid control method, device, equipment and storage medium
KR102602922B1 (en) Creep torque control method of electric vehicles
KR20070101847A (en) Method for multi-operating mode control of an automated transmission for a motor vehicle, in particular for idle speed running with activated brake and corresponding device
JP2006142963A (en) Driving force control device for vehicle
CN112158080A (en) Control method, system and device for manual transmission electric automobile
CN111391840A (en) Braking force control device for vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALBERT, MICHAEL;RECKHORN, THOMAS;REEL/FRAME:011842/0318;SIGNING DATES FROM 20010507 TO 20010515

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20051127