US20010029786A1 - Pressure sensor with water repellent filter - Google Patents

Pressure sensor with water repellent filter Download PDF

Info

Publication number
US20010029786A1
US20010029786A1 US09/824,708 US82470801A US2001029786A1 US 20010029786 A1 US20010029786 A1 US 20010029786A1 US 82470801 A US82470801 A US 82470801A US 2001029786 A1 US2001029786 A1 US 2001029786A1
Authority
US
United States
Prior art keywords
filter
case
pressure
introduction port
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/824,708
Other versions
US6807864B2 (en
Inventor
Masaki Takakuwa
Masahito Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000115531A external-priority patent/JP4221876B2/en
Priority claimed from JP2000115530A external-priority patent/JP4221875B2/en
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IMAI, MASAHITO, TAKAKUWA, MASAKI
Publication of US20010029786A1 publication Critical patent/US20010029786A1/en
Application granted granted Critical
Publication of US6807864B2 publication Critical patent/US6807864B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0654Protection against aggressive medium in general against moisture or humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0038Fluidic connecting means being part of the housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0636Protection against aggressive medium in general using particle filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/141Monolithic housings, e.g. molded or one-piece housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/147Details about the mounting of the sensor to support or covering means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • FIG. 5 Three kinds of pressure sensors 100 according to the present embodiment were formed with various opening areas (48 mm 2 , 90 mm 2 , and 150 mm 2 ) of the atmospheric pressure introduction ports 10 .
  • a conventional pressure sensor disclosed in the conventional document described above was formed with an opening area of 28 mm 2 .
  • FIG. 5 In the sensors of the comparative example and of the present embodiment with the opening area of 48 mm 2 , clogging occurred in at least one sample. To the contrary, in the sensors of the present embodiment with the opening areas of 90 mm 2 and 150 mm 2 , all the samples had no clogging.
  • the atmospheric pressure introduction port 10 is composed of a single opening portion.
  • the atmospheric pressure introduction port 10 is composed of several (three in the figure) opening portions 21 divided by a frame 20 .
  • Each of the opening portions 21 has an elongated shape elongated in the gravitational direction.
  • each of the opening portions 21 has a rectangular shape with a long side parallel to the gravitational direction.
  • the filter surface of the water repellent filter 12 is approximately flat (slightly convex) in the first embodiment, as shown in FIG. 7B, the filter surface has a convex shape protruding outward (more largely) from the case 1 in the second embodiment.
  • the frame 20 for dividing the opening portions 21 is formed with protrusions 22 protruding to the outside of the case 1 , and the filter surface of the water repellent filter 12 is disposed in contact with the distal ends of the protrusions 22 . Accordingly, the filter surface can form the convex shape in accordance with the protruding heights of the protrusions 22 .
  • the protrusions 22 are not provided at a part of peripheral edge portions of the opening portions 21 , and gap portions 23 are provided between the frame 20 and the filter surface where the protrusions 22 are not provided. Therefore, the atmospheric pressure can be introduced into the opening portions 21 through the filter surface of the water repellent filter 12 and the gap portions 23 .
  • the filter hardly clogs with water and the like, and the environmental pressure introduction passage can also be prevented from clogging.
  • the following advantages can be provided.
  • the filter surface of the water repellent filter 12 is formed with a convex (curved) shape such as an R-like shape or a spherical shape protruding outwardly from the case 1 , the surface tension of water can be reduced as compared to the case where the filter surface is flat. Because of this, for example, as shown in FIG. 9, even when moisture or foreign matter K 1 such as dust is attached to the filter surface of the water repellent filter 12 , it can be dropped more easily in comparison with the case where the filter surface is flat.
  • the protrusions 22 include upper and lower protrusions arranged in the gravitational direction as shown in FIG. 7B
  • the upper protrusion preferably has a protruding height larger than that of the lower protrusion to enhance the above advantages.
  • the water repellent filter 12 may be assembled with the case 1 to have a convex filter surface protruding to the outside of the case more largely. In this case, the same advantages as those of the first embodiment can be provided.
  • the atmospheric pressure introduction port 10 is composed of several opening portions 21 divided by the frame 20 , a contact area of air flowing in the port 10 and moisture is increased due to the frame 20 in comparison with the case where the atmospheric pressure introduction port 10 is composed of a single opening portion, so that even a little moisture can be promoted to condense.
  • moisture is collected by the water repellent filter 12 and is prevented from invading inside the filter 12 .
  • the water removing performance of the filter 12 can be enhanced. That is, moisture condenses and drops from the filter 12 more easily, so that moisture can be removed more efficiently.
  • the gap portions 23 capable of introducing atmospheric pressure (environmental pressure) are provided between the frame 20 and the filter surface of the water repellent filter 12 , the gap portions 23 can securely conduct the atmospheric pressure toward the sensor element unit 4 even if the filter surface clogs.
  • the present invention is applied to a relative pressure sensor for detecting a differential pressure between atmospheric pressure and measurement pressure; however, the present invention is not limited to that, but may be applied to various sensors such as a pressure sensor that detects a pressure based on atmospheric pressure (environmental pressure) as absolute pressure introduced toward a sensor element unit. That is, the feature of the present invention is, in a pressure sensor for introducing through a filter environmental pressure from an outside of a case toward a sensor element unit disposed within the case, the filter surface of the filter attached to an induction port of the case is disposed approximately along the gravitational direction, and the other features may be changed appropriately.

Abstract

A case of a pressure sensor has an atmospheric pressure introduction port for introducing atmospheric pressure into the case, and a water repellent filter that is attached to the atmospheric pressure introduction port to prevent passage of moisture, dust and the like while allowing flow of air. The filter is disposed to have a filter surface extending along a gravitational direction when the pressure sensor is used.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is based upon and claims the benefit of Japanese Patent Applications No. 2000-115530 filed on Apr. 17, 2000, No. 2000-115531 filed on Apr. 17, 2000, the contents of which are incorporated herein by reference. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • This invention relates to a pressure sensor so constructed that environmental pressure outside a case is conducted to a sensor element within the case through a filter, and particularly to a pressure sensor used under harsh environment in which the pressure sensor easily takes water. [0003]
  • 2. Description of the Related Art [0004]
  • JP-A-9-43085 and JP-A-9-43076 propose this kind of pressure sensors. In the pressure sensor, a sensor element for detecting pressure is disposed within a case into which environmental pressure (atmospheric pressure) and pressure to be measured (measurement pressure) can be introduced so that the sensor element detects a differential pressure between the two pressures. A water repellent filter is further disposed in a passage through which environmental pressure is introduced, and removes dusts, moisture, and the like in the air. [0005]
  • When the conventional pressure sensor as described above is attached to a measurement member such as a fuel tank of a vehicle, the filter is positioned horizontally with a filter surface facing downward. Because of this, if moisture within pressure medium (air) is attached to the filter, the moisture is difficult to be dropped due to surface tension thereof and may clog the filter. The clogged filter closes the introduction passage of environmental pressure, and prevents the sensor from working. Especially in a case where the sensor easily takes water of rainwater or the like, the above problem becomes prominent. [0006]
  • SUMMARY OF THE INVENTION
  • The present invention has been made in view of the above problem. An object of the present invention is to prevent clogging of a filter in a pressure sensor so constructed that environmental pressure is introduced into a case through the filter toward a sensor element unit disposed in the case. [0007]
  • According to one aspect of the present invention, briefly, a filter attached to an environmental pressure introduction port, through which environmental pressure is introduced into a case, has a filter surface that is positioned along a gravitational direction when a pressure sensor is used. In the pressure sensor, because the filter surface is positioned along the gravitational direction, moisture attached to the filter surface can easily drop due to the self-weight thereof. Therefore, the filter can be prevented from clogging with moisture. Preferably, the filter surface has a convex shape protruding outwardly from the case. In this case, moisture attached to the filter surface can drop more easily due to reduced surface tension thereof. [0008]
  • According to another aspect of the present invention, an environmental pressure introduction port covered with a filter is divided into a plurality of opening portions. In this case, even little moisture is liable to condense, so that the removal of moisture can be promoted.[0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other features of the present invention will become more readily apparent from a better understanding of the preferred embodiments described below with reference to the following drawings, in which; [0010]
  • FIG. 1 is a cross-sectional view showing a pressure sensor according to a first embodiment of the present invention; [0011]
  • FIG. 2 is a plan view showing the pressure sensor in a direction indicated by arrow II in FIG. 1; [0012]
  • FIG. 3 is en enlarged cross-sectional view showing a sensor element unit in FIG. 1; [0013]
  • FIGS. 4A and 4B are enlarged views showing a vicinity of an atmospheric pressure introduction port of the pressure sensor in the first embodiment; [0014]
  • FIG. 5 is a table showing experimental results with respect to an opening area of the atmospheric pressure introduction port; [0015]
  • FIG. 6 is a cross-sectional view showing a pressure sensor according to a second embodiment of the present invention; [0016]
  • FIG. 7A is a plan view showing a main part of the pressure sensor in a direction indicated by arrow VIIA in FIG. 6; [0017]
  • FIG. 7B is an enlarged cross-sectional view showing a part indicated by arrow VIIB in FIG. 6; [0018]
  • FIG. 8 is a schematic view showing a structure of an atmospheric pressure introduction port of the pressure sensor in the second embodiment; [0019]
  • FIG. 9 is an explanatory view showing an effect due to a convex filter surface of a filter in the second embodiment; and [0020]
  • FIG. 10 is an explanatory view showing an effect of gap portions of the filter in the second embodiment.[0021]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • (First Embodiment) [0022]
  • Referring to FIG. 1, a [0023] pressure sensor 100 according to a first embodiment of the invention is so constructed that environmental pressure can be introduced through a filter 12 into a case 1 in which a sensor element unit 4 for detecting pressure is provided. For example, the sensor 100 is attached to a fuel tank (not shown) so that an up-down direction in FIG. 1 corresponds to a vertical direction with respect to the ground (i.e., gravitational direction), and in this case the sensor 100 is used as a fuel pressure sensor for detecting pressure in the tank.
  • The [0024] case 1 is formed by molding resin such as PBT (polybutylene terephthalate) or PPS (polyphenylene sulfide). The case 1 has a recess at the central portion thereof, and the space defined in the recess is divided into a reference pressure chamber 2 into which atmospheric pressure (environmental pressure) is introduced, and a measurement pressure chamber 3 into which measurement pressure such as gasoline vapor is introduced. The sensor element unit 4 is fixed in the recess as a partition between the two chambers 2, 3.
  • At the opposite side of the [0025] case 1 with respect to the recess, a pressure introducing portion 1 a is provided as a part of the case 1, and protrudes with a cylindrical shape. A pressure introduction passage 1 b for introducing measurement pressure toward the sensor element unit 4 is formed in the pressure introducing portion 1 a so that the measurement pressure chamber 3 communicates with the outside of the case 1.
  • An O-[0026] shaped ring 17 made of rubber or the like and a holding member (spacer) 18 for holding the O-shaped ring 17 within the introduction passage 1 b are attached to an inner wall of the introduction passage 1 b. The pressure introducing portion 1 a is connectable to a member such as a hose or a pipe extending from the fuel tank so that it can communicate with the inside of the fuel tank with the O-shaped ring 17 that prevents leakage of pressure transmitted from the member into the conduction passage 1 b.
  • The [0027] sensor element unit 4 is, as shown in FIG. 3, composed of a pressure sensitive element 4 a made of silicon or the like, and a glass base 4 b for fixedly holding the pressure sensitive element 4 a. The pressure sensitive element 4 a is composed of a substrate made of silicon or the like and formed with a diaphragm, and is joined to the glass base 4 b whose thermal expansion coefficient is approximate to that of the pressure sensitive element 4 a. The glass base 4 b has a through hole, and the pressure sensitive element 4 a detects a differential pressure between atmospheric pressure introduced from the reference pressure chamber 2 and measurement pressure introduced from the measurement pressure chamber 3.
  • The [0028] sensor element unit 4 is fixed to the case 1 through a hollow-shaped stem 5 having a through hole. The stem 5 adopts 42-alloy (Fe:Ni=58:42) whose thermal expansion coefficient is approximate to that of the glass base 4 b. The sensor element unit 4 and the stem 5 are fixed together by adhesive made of thermosetting resin or the like. The stem 5 and the case 1 are also fixed together by adhesive made of thermosetting resin. The measurement pressure conducted from the measurement pressure chamber 3 can be transmitted to the back surface of the pressure sensitive element 4 a (surface joined to the glass base 4 b) securely by fixing the sensor element unit 4 and the stem 5 to the case 1.
  • The recess of the [0029] case 1 is filled with adhesive 6 such as thermosetting resin and silicone gel 7. The adhesive 6 is to improve air tightness of the fixed portions between the sensor element unit 4 and the stem 5 and between the stem 5 and the case 1. The silicone gel 7 is to improve moisture resistance of the sensor element unit 4. Referring back to FIG. 1, the upper surface of the reference pressure chamber 2 is closed with a lid 8 that is made of resin such as PBT and hermetically fixed by adhesive 9.
  • Meanwhile, an atmospheric [0030] pressure introduction port 10 is provided to externally open at one side of the case 1 to introduce atmospheric pressure (environmental pressure). An atmospheric pressure introduction passage 11 is further formed in the case 1. The atmospheric pressure introduction passage 11 extends from the atmospheric pressure introduction port 10 to the reference pressure chamber 2, and communicates with the reference pressure chamber 2 through a gap provided between the lid 8 and the case 1. Thus, the reference pressure chamber 2 is opened to the air via the atmospheric pressure introduction port 10 and the atmospheric pressure introduction passage 11.
  • As shown in FIGS. 1 and 2, a water repellent filter (filter portion) [0031] 12 composed a sheet made of resin or the like is fixedly attached to the atmospheric pressure introduction port 10. In the present embodiment, when the sensor 100 is used (that is, when the sensor 100 is attached to the measurement member), the filter surface is positioned approximately in parallel with the gravitational direction as shown in FIG. 1.
  • Here, FIGS. 4A and 4B show enlarged views of the vicinity of the atmospheric [0032] pressure introduction port 10. FIG. 4A is an enlarged plan view corresponding to FIG. 2, while FIG. 4B is an enlarged cross-sectional view corresponding to FIG. 1. In FIGS. 2 and 4A, the water repellent filter 12 is hatched. In FIG. 4B, although angle formed between the filter surface and the gravitational direction is 0., it is not limited to 0.. A preferable range of angle . is 0 to 45..
  • The [0033] water repellent filter 12 is formed from a porous sheet made of fluorine system resin such as polytetrafluoroethylene (PTFE) to which a water repellent treatment has been performed. The water repellent filter 12 is assembled with the case 1 by a filter fixation member (spacer) 13 that is formed into a frame shape (rectangular shape in this embodiment) corresponding to the outer wall shape of the atmospheric pressure introduction port 10. The material constituting the filter fixation member 13 is not limited especially, but is the same as that of the case 1 in the present embodiment.
  • The assembling of the [0034] water repellent filter 12 is performed by, for example, disposing the water repellent filter 12 on the case 1 to cover the atmospheric pressure introduction port 10, press-fitting the fixation member 13 to sandwich the filter 12 with the outer wall of the atmospheric pressure introduction port 10, and adhering the fixation member 13 to the case 1 through adhesive 14 made of epoxy resin to prevent the detachment of the fixation member 13. Accordingly, the water repellent filter 12 and the case 1 are sealed with each other, and dust and moisture are prevented from invading into the reference pressure chamber 2 while allowing a flow of air.
  • On the other hand, the pressure [0035] sensitive element 4 a that is fixed to the case 1 through the stem 5 has an output terminal for outputting a detection signal, and the output terminal is connected to a terminal 15 through a bonding wire 16. Accordingly, the signal detected by the pressure sensitive element 4 a can be taken out to an outside (for example, an ECU of the vehicle or the like).
  • Next, a method for manufacturing the [0036] pressure sensor 100 is explained briefly. First, the case 1 is molded from resin such as PBT or PPS. At that time, the terminal 15 is insert-molded with the case 1 integrally. The water repellent filter 12 is then fixed to the case 1 in the assembling manner as described above. Next, the O-shaped ring 17 and the holding member 18 are attached to the pressure introducing portion 1 a of the case 1.
  • Successively, the pressure [0037] sensitive element 4 a is adhered to the glass base 4 b to form the sensor element unit 4, and the glass base 4 b of the sensor element unit 4 is adhered to the stem 5. Further, the stem 5 is adhered to the recess of the case 1. Accordingly, the inside of the recess is divided into the reference pressure chamber 2 and the measurement pressure chamber 3. Next, the output terminal of the pressure sensitive element 4 a is wire-bonded to the terminal 15 with the wire 16.
  • Then, the adhesive [0038] 6 is injected into the side of the reference pressure chamber 2 in the recess, and is hardened by a heat treatment or the like. After that, the silicone gel 17 is injected to cover the sensor element unit 4 and the bonding portion, and is hardened as well. Next, the lid 8 is fixed to the upper end wall of the reference pressure chamber 2 by the adhesive 9, thereby hermetically sealing the reference pressure chamber 2. As a result, the pressure sensor 100 is completed.
  • The [0039] pressure sensor 100 thus manufactured is connected to the measurement member with the O-shaped ring 17 that seals the pressure introducing portion 1 a, and becomes usable accordingly. The measurement pressure is conducted into the measurement pressure chamber 3 from the measurement member (fuel tank) through the introduction passage 1 b, and is transmitted to the back surface of the pressure sensitive element 4 a through the hollow portion of the stem 5 and the through hole of the glass base 4 b. The measurement pressure transmitted to the pressure sensitive element 4 a is, as described above, detected as a differential pressure with respect to the atmospheric pressure conducted from the reference pressure chamber 2, and is taken out to the outside through the bonding wire 16 and the terminal 15.
  • According to the present embodiment, the filter surface of the [0040] water repellent filter 12 is disposed along the gravitational direction when the sensor 100 is used. Therefore, even when moisture in the environmental pressure medium (air) is attached to the filter surface, the moisture is liable to drop from the filter surface due to the self-weight thereof. Because of this, the water repellent filter 12 hardly clogs with moisture, thereby preventing the introduction passage of the environmental pressure from being closed.
  • For example, when the [0041] pressure sensor 100 is attached to the fuel tank, the sensor 100 easily takes water raised by wheels of the vehicle traveling during rain. Even under such harsh environment, according to the pressure sensor 100 of the present embodiment, because the water repellent filter 12 is prevented from clogging by water attached thereto, the sensor characteristics do not deteriorate.
  • In addition, an opening area of the atmospheric [0042] pressure introduction port 10 has been studied in the present embodiment to enhance the above advantage considering that the larger the opening area of the atmospheric pressure introduction port 10 is, the more effectively the advantage for preventing the clogging as described above may be exhibited. Specifically, as a test, after the entirety of the pressure sensor 100 was immersed into water, the pressure sensor 100 was taken out of water and it was confirmed whether the water repellent filter 12 and the atmospheric pressure introduction port 10 were clogged or not.
  • Three kinds of [0043] pressure sensors 100 according to the present embodiment were formed with various opening areas (48 mm2, 90 mm2, and 150 mm2) of the atmospheric pressure introduction ports 10. Further, as a comparative example, a conventional pressure sensor disclosed in the conventional document described above was formed with an opening area of 28 mm2. In each sensor, several (4 to 6) samples were examined in the test described above. The results are shown in FIG. 5. In the sensors of the comparative example and of the present embodiment with the opening area of 48 mm2, clogging occurred in at least one sample. To the contrary, in the sensors of the present embodiment with the opening areas of 90 mm2 and 150 mm2, all the samples had no clogging. Accordingly, it is revealed that the effect for preventing clogging can be efficiently exhibited when the opening area of the atmospheric pressure introduction port 10 is 90 mm2 or more, even under the environment (where the entirety of the sensor is immersed into water) harsher than the ordinal usage environment.
  • (Second Embodiment) [0044]
  • In a second embodiment of the present invention, the structures of the [0045] water repellent filter 12 and the atmospheric pressure introduction port 10 are modified from those in the first embodiment. In the second embodiment, the same parts as those in the first embodiment are designated with the same reference numerals, and the same explanations are not reiterated.
  • FIG. 6 shows a pressure sensor [0046] 100 a in the second embodiment, and FIGS. 7A and 7B show a main part of the pressure sensor 100 a. Specifically, FIG. 7A is a plan view corresponding to FIG. 4A and FIG. 7B is a cross-sectional view corresponding to FIG. 4B. FIG. 8 shows a detailed structure of the atmospheric pressure introduction port 10 from which the water repellent filter 12 and the filter fixation member 13 are detached.
  • In the first embodiment described above, the atmospheric [0047] pressure introduction port 10 is composed of a single opening portion. As opposed to this, in the present embodiment, as shown in FIG. 7A, the atmospheric pressure introduction port 10 is composed of several (three in the figure) opening portions 21 divided by a frame 20. Each of the opening portions 21 has an elongated shape elongated in the gravitational direction. In this embodiment, each of the opening portions 21 has a rectangular shape with a long side parallel to the gravitational direction.
  • Here, in the atmospheric [0048] pressure introduction passage 11, a passage part extending from the atmospheric pressure introduction port 10 to the side of the reference pressure chamber 2 (in the lateral direction in FIG. 7B) is referred to as a first passage 11 a, and a passage part extending from the first passage 11 a to the side of the lid 8 (in the vertical direction in FIG. 7B) is referred to as a second passage 11 b. In the present embodiment, several first passages 11 a are provided in parallel to correspond to the several opening portions 21, and a single second passage 11 b is provided to join and communicate with the several first passages 11 a.
  • Also, although the filter surface of the [0049] water repellent filter 12 is approximately flat (slightly convex) in the first embodiment, as shown in FIG. 7B, the filter surface has a convex shape protruding outward (more largely) from the case 1 in the second embodiment. Specifically, as shown in FIGS. 7B and 8, the frame 20 for dividing the opening portions 21 is formed with protrusions 22 protruding to the outside of the case 1, and the filter surface of the water repellent filter 12 is disposed in contact with the distal ends of the protrusions 22. Accordingly, the filter surface can form the convex shape in accordance with the protruding heights of the protrusions 22.
  • As shown in FIG. 8 with hatching (that is not a cross-section), the [0050] protrusions 22 are not provided at a part of peripheral edge portions of the opening portions 21, and gap portions 23 are provided between the frame 20 and the filter surface where the protrusions 22 are not provided. Therefore, the atmospheric pressure can be introduced into the opening portions 21 through the filter surface of the water repellent filter 12 and the gap portions 23.
  • According to the second embodiment, like the first embodiment, the filter hardly clogs with water and the like, and the environmental pressure introduction passage can also be prevented from clogging. In addition, the following advantages can be provided. [0051]
  • First, because the filter surface of the [0052] water repellent filter 12 is formed with a convex (curved) shape such as an R-like shape or a spherical shape protruding outwardly from the case 1, the surface tension of water can be reduced as compared to the case where the filter surface is flat. Because of this, for example, as shown in FIG. 9, even when moisture or foreign matter K1 such as dust is attached to the filter surface of the water repellent filter 12, it can be dropped more easily in comparison with the case where the filter surface is flat.
  • When the [0053] protrusions 22 include upper and lower protrusions arranged in the gravitational direction as shown in FIG. 7B, the upper protrusion preferably has a protruding height larger than that of the lower protrusion to enhance the above advantages. Here, in the first embodiment described above, the water repellent filter 12 may be assembled with the case 1 to have a convex filter surface protruding to the outside of the case more largely. In this case, the same advantages as those of the first embodiment can be provided.
  • Also, according to the second embodiment, because the atmospheric [0054] pressure introduction port 10 is composed of several opening portions 21 divided by the frame 20, a contact area of air flowing in the port 10 and moisture is increased due to the frame 20 in comparison with the case where the atmospheric pressure introduction port 10 is composed of a single opening portion, so that even a little moisture can be promoted to condense. As a result, moisture is collected by the water repellent filter 12 and is prevented from invading inside the filter 12. In consequence, the water removing performance of the filter 12 can be enhanced. That is, moisture condenses and drops from the filter 12 more easily, so that moisture can be removed more efficiently.
  • Further, according to the second embodiment, because the [0055] gap portions 23 capable of introducing atmospheric pressure (environmental pressure) are provided between the frame 20 and the filter surface of the water repellent filter 12, the gap portions 23 can securely conduct the atmospheric pressure toward the sensor element unit 4 even if the filter surface clogs.
  • For example, as shown in FIG. 10, even if foreign matter K[0056] 2 such as dirt is attached to the filter surface of the water repellent filter 12 to close one of the opening portions 21, the communication between the outside and the opening portion 21 can be attained because the gap portions 23 are provided as hatched in FIG. 10. Therefore, the atmospheric pressure introduction passage can be securely prevented from being closed as long as the entire region of the filter surface is clogged with foreign matters.
  • In the above-described embodiments, the present invention is applied to a relative pressure sensor for detecting a differential pressure between atmospheric pressure and measurement pressure; however, the present invention is not limited to that, but may be applied to various sensors such as a pressure sensor that detects a pressure based on atmospheric pressure (environmental pressure) as absolute pressure introduced toward a sensor element unit. That is, the feature of the present invention is, in a pressure sensor for introducing through a filter environmental pressure from an outside of a case toward a sensor element unit disposed within the case, the filter surface of the filter attached to an induction port of the case is disposed approximately along the gravitational direction, and the other features may be changed appropriately. [0057]
  • While the present invention has been shown and described with reference to the foregoing preferred embodiments, it will be apparent to those skilled in the art that changes in form and detail may be made therein without departing from the scope of the invention as defined in the appended claims. [0058]

Claims (14)

What is claimed is:
1. A pressure sensor comprising:
a case having an environmental pressure introduction port;
a sensor element unit disposed in the case for detecting a pressure based on an environmental pressure introduced into the case through the environmental pressure introduction port; and
a filter attached to the environmental pressure introduction port so that the environmental pressure enters the case after passing through the filter, the filter having a filter surface that is positioned along a gravitational direction when the pressure sensor is used.
2. The pressure sensor according to
claim 1
, wherein the filter surface of the filter has a convex shape protruding to an outside of the case.
3. The pressure sensor according to
claim 1
, wherein the environmental pressure introduction port is composed of a plurality of opening portions that are divided by a frame.
4. The pressure sensor according to
claim 3
, wherein each of the plurality of opening portions has an elongated shape with a longitudinal direction approximately parallel to the gravitational direction.
5. The pressure sensor according to
claim 3
, wherein:
the frame has a protrusion protruding outward from the case; and
the filter is disposed in contact with a distal end of the protrusion to have the filter surface that is convex and to define a gap portion between the frame and the filter for conducting the environmental pressure into the case.
6. The pressure sensor according to
claim 1
, wherein the environmental pressure introduction port has an opening area equal to or larger than 90 mm2.
7. A pressure sensor comprising:
a case having an environmental pressure introduction port;
a sensor element unit disposed in the case for detecting a pressure based on an environmental pressure introduced into the case through the environmental pressure introduction port; and
a filter attached to the environmental pressure introduction portion so that the environmental pressure is introduced into the case after passing through the filter, wherein:
the environmental pressure introduction port is divided into a plurality of opening portions that are covered with the filter.
8. The pressure sensor according to
claim 7
, further comprising a frame dividing the environmental pressure introduction port into the plurality of opening portions.
9. The pressure sensor according to
claim 8
, wherein:
the frame has a protrusion protruding outwardly from the case; and
the filter is disposed in contact with a distal end of the protrusion to provide a gap portion between the filter and the frame for introducing the environmental pressure into the case.
10. The pressure sensor according to
claim 9
, wherein:
the environmental pressure introduction port is open in an approximately horizontal direction; and
the filter disposed in contact with the distal end of the protrusion has a filter surface that is curved and extends approximately in parallel with a vertical direction.
11. The pressure sensor according to
claim 9
, wherein:
the frame has first and second protrusions protruding outwardly from the case and arranged in a gravitational direction;
the first protrusion arranged at an upper side of the second protrusion has a protruding height larger than that of the second protrusion; and
the filter is disposed in contact with both first and second distal ends of the first and second protrusions to have a curved filter surface.
12. A pressure sensor comprising:
a case having a measurement pressure introduction passage extending in a vertical direction for introducing a measurement pressure and an environmental pressure introduction passage extending in a horizontal direction and having an environmental pressure introduction port that is open in the horizontal direction for introducing an environmental pressure;
a sensor element disposed in the case for detecting the measurement pressure based on the environmental pressure; and
a filter covering the environmental pressure introduction port.
13. The pressure sensor according to
claim 12
, wherein the filter has a filter surface extending in a direction that forms a specific angle with the vertical direction, the specific angle falling in a range of 0 to 45..
14. The pressure sensor according to
claim 12
, wherein the filter has a convex filter surface protruding outward from the case in the horizontal direction.
US09/824,708 2000-04-17 2001-04-04 Pressure sensor with water repellent filter Expired - Fee Related US6807864B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000115531A JP4221876B2 (en) 2000-04-17 2000-04-17 How to use the pressure sensor
JP2000-115531 2000-04-17
JP2000-115530 2000-04-17
JP2000115530A JP4221875B2 (en) 2000-04-17 2000-04-17 Pressure sensor

Publications (2)

Publication Number Publication Date
US20010029786A1 true US20010029786A1 (en) 2001-10-18
US6807864B2 US6807864B2 (en) 2004-10-26

Family

ID=26590249

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/824,708 Expired - Fee Related US6807864B2 (en) 2000-04-17 2001-04-04 Pressure sensor with water repellent filter

Country Status (1)

Country Link
US (1) US6807864B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619110B1 (en) * 1998-12-11 2003-09-16 Johnson Controls Automotive Electronics Module for measuring tire pressure
WO2004090494A2 (en) * 2003-04-07 2004-10-21 Endress + Hauser Gmbh + Co. Kg Relative pressure transducer
US20080115584A1 (en) * 2006-10-11 2008-05-22 Dieter Mutz Fluid sensor
US20120279580A1 (en) * 2011-05-05 2012-11-08 Rosemount Inc. Process fluid pressure transmitter with replaceable atmospheric vent filter
DE10346626B4 (en) * 2003-10-08 2013-02-21 Robert Bosch Gmbh Pressure sensor housing
US20160025586A1 (en) * 2014-07-28 2016-01-28 Ford Global Technologies, Llc Protective Cover For Pressure Sensor Nozzle
WO2019224453A1 (en) 2018-05-22 2019-11-28 A. Raymond Et Cie Housing for protecting an electronic device
CN111163986A (en) * 2017-10-05 2020-05-15 罗伯特·博世有限公司 Pressure sensor for vehicle
CN113310621A (en) * 2021-05-27 2021-08-27 形翼科技(上海)有限公司 Dampproofing pressure sensor
US11435259B2 (en) * 2020-03-31 2022-09-06 Denso Corporation Pressure sensor for evaporated fuel leak detector

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839683B1 (en) * 2002-05-15 2005-02-18 Johnson Contr Automotive Elect PRESSURE SENSOR ON PNEUMATIC VALVE
US7302855B2 (en) * 2004-10-28 2007-12-04 Denso Corporation Pressure detection device
JP2007064837A (en) * 2005-08-31 2007-03-15 Denso Corp Pressure sensor
JP4249193B2 (en) * 2006-02-20 2009-04-02 三菱電機株式会社 Semiconductor pressure sensor device
US7981182B2 (en) * 2007-12-31 2011-07-19 Honda Motor Co., Ltd. Labyrinth box structure and method
US8534055B2 (en) * 2010-03-29 2013-09-17 Thermo King Corporation Filter arrangement for exhaust aftertreatment system
US8671766B2 (en) * 2011-05-19 2014-03-18 Infineon Technologies Ag Integrated pressure sensor seal
CN104736984B (en) * 2012-11-30 2017-09-08 富士电机株式会社 The manufacture method of pressure sensor apparatus and pressure sensor apparatus
JP6315025B2 (en) * 2016-04-26 2018-04-25 株式会社デンソー Physical quantity sensor and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051032A (en) * 1976-05-21 1977-09-27 Environmental Filtration Products, Inc. Water treatment system
US4410443A (en) * 1982-05-24 1983-10-18 Katalco Corporation Method of dissolving iron oxide-chrome oxide spent shift catalysts to prepare a nitrate solution suitable for use in preparing a new catalyst
US5195376A (en) * 1990-11-15 1993-03-23 Bicc Plc Fluid pressure differential monitor
US5240593A (en) * 1991-02-05 1993-08-31 Moredock James G Apparatus for the purification of fluids

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319980A (en) 1991-06-07 1994-06-14 Maclean-Fogg Company Board construction for resistive strain gauge pressure sensors
US5379650A (en) * 1992-09-23 1995-01-10 Korr Medical Technologies Inc. Differential pressure sensor for respiratory monitoring
JPH08105808A (en) * 1994-10-05 1996-04-23 Mitsubishi Electric Corp Pressure sensor
JPH08184519A (en) 1994-12-28 1996-07-16 Matsushita Electric Works Ltd Pressure sensor
JPH08297064A (en) 1995-04-27 1996-11-12 Nissan Motor Co Ltd Pressure sensor
US5703296A (en) 1995-06-27 1997-12-30 Delco Electronics Corp. Pressure sensor having reduced hysteresis and enhanced electrical performance at low pressures
US5747694A (en) * 1995-07-28 1998-05-05 Nippondenso Co., Ltd. Pressure sensor with barrier in a pressure chamber
JP3319990B2 (en) * 1997-08-29 2002-09-03 三菱電機株式会社 Pressure sensor device
US6046667A (en) * 1997-12-23 2000-04-04 Honeywell Inc. Pressure transducer with porous material for media isolation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051032A (en) * 1976-05-21 1977-09-27 Environmental Filtration Products, Inc. Water treatment system
US4410443A (en) * 1982-05-24 1983-10-18 Katalco Corporation Method of dissolving iron oxide-chrome oxide spent shift catalysts to prepare a nitrate solution suitable for use in preparing a new catalyst
US5195376A (en) * 1990-11-15 1993-03-23 Bicc Plc Fluid pressure differential monitor
US5240593A (en) * 1991-02-05 1993-08-31 Moredock James G Apparatus for the purification of fluids

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619110B1 (en) * 1998-12-11 2003-09-16 Johnson Controls Automotive Electronics Module for measuring tire pressure
WO2004090494A2 (en) * 2003-04-07 2004-10-21 Endress + Hauser Gmbh + Co. Kg Relative pressure transducer
WO2004090494A3 (en) * 2003-04-07 2005-03-10 Endress & Hauser Gmbh & Co Kg Relative pressure transducer
DE10346626B4 (en) * 2003-10-08 2013-02-21 Robert Bosch Gmbh Pressure sensor housing
US20080115584A1 (en) * 2006-10-11 2008-05-22 Dieter Mutz Fluid sensor
US7458271B2 (en) * 2006-10-11 2008-12-02 Atmel Germany Gmbh Fluid sensor
US20120279580A1 (en) * 2011-05-05 2012-11-08 Rosemount Inc. Process fluid pressure transmitter with replaceable atmospheric vent filter
US8863580B2 (en) * 2011-05-05 2014-10-21 Rosemount Inc. Process fluid pressure transmitter with replaceable atmospheric vent filter
US20160025586A1 (en) * 2014-07-28 2016-01-28 Ford Global Technologies, Llc Protective Cover For Pressure Sensor Nozzle
CN105319004A (en) * 2014-07-28 2016-02-10 福特全球技术公司 Protective Cover For Pressure Sensor Nozzle
US10352796B2 (en) * 2014-07-28 2019-07-16 Ford Global Technologies, Llc Protective cover for pressure sensor nozzle
CN111163986A (en) * 2017-10-05 2020-05-15 罗伯特·博世有限公司 Pressure sensor for vehicle
US11447117B2 (en) * 2017-10-05 2022-09-20 Robert Bosch Gmbh Pressure sensor for a vehicle
WO2019224453A1 (en) 2018-05-22 2019-11-28 A. Raymond Et Cie Housing for protecting an electronic device
US11415478B2 (en) 2018-05-22 2022-08-16 A. Raymond Et Cie Protective housing for protecting an electronic device from environmental conditions
US11435259B2 (en) * 2020-03-31 2022-09-06 Denso Corporation Pressure sensor for evaporated fuel leak detector
CN113310621A (en) * 2021-05-27 2021-08-27 形翼科技(上海)有限公司 Dampproofing pressure sensor

Also Published As

Publication number Publication date
US6807864B2 (en) 2004-10-26

Similar Documents

Publication Publication Date Title
US6807864B2 (en) Pressure sensor with water repellent filter
US5747694A (en) Pressure sensor with barrier in a pressure chamber
US8707774B2 (en) Sensor system for differential pressure measurement
KR101011098B1 (en) Pressure measuring device
US8109148B2 (en) Pressure compensation unit for use in a pressure sensor
US7284435B2 (en) Pressure sensor
US5438877A (en) Pressure sensor package for reducing stress-induced measurement error
US7197936B2 (en) Pressure sensor
US7311006B2 (en) Pressure sensor
US6575038B1 (en) Pressure sensor and method for assembling the same
US7600432B2 (en) Pressure sensor with sensing chip protected by protective material
JP4221876B2 (en) How to use the pressure sensor
JP4221875B2 (en) Pressure sensor
JP2004279091A (en) Pressure sensor
JP3627766B2 (en) Pressure sensor
JP2000346737A (en) Pressure sensor
JP2006105853A (en) Pressure sensor
JP4731673B2 (en) Water detection electrode
JP4224224B2 (en) Converter case structure
JP2000186969A (en) Pressure sensor
JP3835317B2 (en) Pressure sensor
CN215121460U (en) Induction probe
JP2002181651A (en) Pressure sensor
JP3758304B2 (en) Sensor device
JPH07294355A (en) Pressure sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKAKUWA, MASAKI;IMAI, MASAHITO;REEL/FRAME:011969/0513

Effective date: 20010329

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20161026