US20010025073A1 - Water soluble rapid prototyping support and mold material - Google Patents

Water soluble rapid prototyping support and mold material Download PDF

Info

Publication number
US20010025073A1
US20010025073A1 US09/850,179 US85017901A US2001025073A1 US 20010025073 A1 US20010025073 A1 US 20010025073A1 US 85017901 A US85017901 A US 85017901A US 2001025073 A1 US2001025073 A1 US 2001025073A1
Authority
US
United States
Prior art keywords
peo
thermoplastic composition
polymer
thermoplastic
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/850,179
Other versions
US6437034B2 (en
Inventor
John Lombardi
Dragan Popovich
Gregory Artz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stratasys Inc
Original Assignee
Stratasys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/825,893 external-priority patent/US6067480A/en
Priority claimed from US09/082,064 external-priority patent/US6070107A/en
Application filed by Stratasys Inc filed Critical Stratasys Inc
Priority to US09/850,179 priority Critical patent/US6437034B2/en
Publication of US20010025073A1 publication Critical patent/US20010025073A1/en
Application granted granted Critical
Publication of US6437034B2 publication Critical patent/US6437034B2/en
Assigned to STRATASYS, INC. reassignment STRATASYS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARTZ, GREGORY JOHN, LOMBARDI, JOHN LANG, POPOVICH, DRAGAN
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines

Definitions

  • This invention relates to thermoplastic polymer materials for the preparation of three-dimensional prototypes or models.
  • Prototypes of parts are made and used in testing in a wide-variety of industries, such as the automobile, aerospace, and biomedical prostheses manufacturing industries. After successful testing the prototypes of parts, a mold of the prototype can be made and the part can be manufactured on a mass production basis.
  • a second method of making prototypes involves sculpting a three-dimensional prototype of a particular shape from a block work piece.
  • the prototype is drawn either manually or using computer-aided design (CAD) techniques, and the prototype is formed by removing material from a block work piece.
  • the part can be further machined either manually or using computer-aided machining (CAM) techniques.
  • CAD computer-aided design
  • CAM computer-aided machining
  • a third method that has been developed involves the formation of a three-dimensional prototype by depositing multiple layers of a material in a fluid state onto a base.
  • the fluid solidifies to define the prototype element.
  • this method is often termed freeforming in the prior art.
  • a layer of the fluid material solidifies and then another layer of fluid material is deposited over the preceding layer. The thickness of each layer is controlled by the distance between the tip of the dispensing head and the preceding layer.
  • materials for high pressure fused deposition include polyaryletherketone (PEEK® produced by Victrex), polmethylmethacrylate (PMMA® produced by DuPont), polycarbonate (Lexan® made by General Electric Plastics), thermoplastic polyurethane (Pellethane(® made by Dow Chemical), and polylatic acid/polyglycolic acid block copolymer (a bio-absorbable material made by a Biomet joint venture).
  • Fused deposition of fiber reinforced grades of engineering polymers and composites, for example PEEK® and Lexan® can also be used for the invention disclosed in U.S. Ser. No. 08/825,893.
  • prototypes can be made in accordance with that invention using fiber reinforcement.
  • carbon fiber reinforced PEEK® materials had a tensile strength of over 36,000 psi, exhibited a very high fracture toughness and demonstrated highly anisotropic mechanical properties whereas unreinforced materials did not.
  • a unique thermoplastic polymer material i.e., poly(2-ethyl-2-oxazoline) (referred to hereafter as “PEO”)
  • PEO poly(2-ethyl-2-oxazoline)
  • PEO poly(2-ethyl-2-oxazoline)
  • PEO is used as a support material for use in rapid prototype processes such as extrusion freeform fabrication or a a fused deposition modeling process.
  • rapid prototype processes such as extrusion freeform fabrication or a a fused deposition modeling process.
  • many parts which are fabricated by these processes have complicated overhang geometries which require the use of a support material that prevents the sagging of deposited molten, prototype material layers before cooling and solidification.
  • PEO polyethylene oxide
  • Polyethylene oxide has negligible interlayer adhesion when free formed.
  • PEO polystyrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-sty
  • PEO is not as hygroscopic compared to other commercial water soluble polymers including polyvinyl alcohol and polyethylene oxide, and thus PEO possesses significantly greater dimensional stability in ambient humid atmosphere compared to these other polymers. Moreover, PEO can be extruded at higher temperatures without decomposing and having its melt viscosity change with time.
  • PEO is used as a fugitive mold material for casting ceramic slurries, e.g. for ceramic green body fabrication, and also preparing polyurethane or epoxy parts by pouring reactive mixtures of these liquid precursor materials into a mold which is precision machined from bulk PEO stock.
  • parts can be subsequently extracted from the mold by placing the entire part in a water bath after the slurry or precursors are cured so that the water dissolves the PEO and leaves the fabricated polymer or green ceramic part behind.
  • the specific thermoplastic polymer material poly(2-ethyl-2-oxazoline), i.e., PEO, was prepared as a slug in the form of a cylinder having the following dimensions: 0.3 875 inches in diameter by 5.50 inches in length.
  • the slug was inserted into an apparatus, the type described in U.S. Pat. No. 6,067,480 and extruded as a fine ribbon by said apparatus to form a prototype mechanical element or object. More specifically, the steps performed comprised the steps of:
  • the polymer material comprising PEO can be used as a support for free formed layers of other material. Further, the method of the present invention can be used to make an article of manufacture that is a free form three-dimensional object comprising a plurality of layers of a ribbon of PEO.
  • the present invention further includes a thermoplastic polymer in the form of an extrudable object comprising a slug of PEO.
  • At least one inorganic filler can be added to the polymer material comprising PEO.
  • the inorganic filler can be comprised of at least one soluble salt.
  • soluble salts include alkali or alkaline earth halides (e.g., sodium chloride, magnesium chloride) or their sulfates (e.g., magnesium sulfate).
  • the PEO can be blended with at least one inert filler.
  • the inert filler can be selected from the polymer filler group consisting of calcium carbonate, glass spheres, graphite, carbon black, carbon fiber, glass fiber, talc, wollastonite, mica, alumina, silica and silicon carbide.
  • the typical extrusion temperature of the polymer in the head member can be in the range of about 120-410° C., and is preferably in the range of 150-200° C., and most preferably approximately 175° C.
  • the rod is compressed and extruded at a pressure of about 200-1,000 psi, and is preferably compressed and extruded at a pressure in a range of about 500-700 psi.
  • Samples were tested along the writing direction. This simply denotes the bead direction with respect to the mechanical testing equipment.
  • the equipment used was a model 1011 Instron apparatus with a load cell capacity of 1000 pounds.
  • the 1011 Instron apparatus uses vertical specimen loading and wedge-action type grips.
  • the cross head speed for all specimens was 0.2 inches per minute.
  • PEO has been found to be not only useful as cylindrical feed rod material, but also as filament feed material in yet another preferred embodiment of the present invention. It has been discovered that PEO is an excellent filament feed material that can be free formed using fused deposition modeling processes taught in U.S. Pat. No. 5,340,433 and U.S. Pat. No. 5,121,329 because it is water soluble and can be washed away easily, is a stiff material, is thermally stable, and adheres well to other materials, including other layers of PEO. Therefore, PEO filament feedstock can be used as a support material in fused deposition modeling of polymer prototype parts.
  • the present invention includes a method for forming prototype mechanical elements from at least one polymer material on a platform comprising the steps of:
  • the polymer material comprising PEO can be used as a support for free formed layers of other material. Further, the method of the present invention can be used to make an article of manufacture that is a free form three-dimensional object comprising a plurality of filament layers of PEO.
  • the present invention further includes a thermoplastic polymer in the form of an extrudable object comprising a filament of PEO.
  • PEO can be blended with a variety of polar thermoplastics, fillers, and plasticizers to modify its physical properties. These additives enable the PEO polymer to be extruded into tough, flexible geometries (including Stratasys Fused Deposition Modeller (FDM®) filament form).
  • FDM® Stratasys Fused Deposition Modeller
  • the polymer material comprising PEO can also include an inorganic filler, which in turn can be comprised of at least one soluble salt.
  • the PEO can be blended with at least one inert filler.
  • the inert filler can be selected from the polymer filler group consisting of calcium carbonate, glass spheres, graphite, carbon black, carbon fiber, glass fiber, talc, wollastonite, mica, alumina, silica and silicon carbide.
  • the typical extrusion temperature of the polymer in the head member can be in the range of about 120-410° C., and is preferably in the range of 150-290° C., and most preferably approximately 180° C.
  • the modulus of PEO can be decreased by the addition an alcohol plasticizer.
  • the alcohol plasticizer is in an amount of 0.5 to 45 wt. % alcohol plasticizer to the PEO.
  • Preferred alcohol plasticizers are water soluble and have structures composed of multiple hydroxyl groups (i.e., ethylene glycol, glycerol or 200-10,000 MW Union Carbide PEG polyethylene glycols). 600 MW PEG is a preferred plasticizer due to its combination of low viscosity and low melting point.
  • FDM(®) machine Stratasys Fused Deposition Modeller
  • PEG plasticizers are miscible with water and are believed to enhance the overall water solubility and dissolution rate of the free formed plasticized PEO material.
  • PEG plasticized PEO filament is highly tacky in humid atmosphere, which makes it difficult to uniformly spool as feed material through the Stratasys FDM® machine dispensing head. Consequently, its formulation must be modified to decrease its tackiness as well as enhance its strength. Addition of 0.25 -5 wt. % of polar wax has been shown to decrease filament tackiness.
  • the polar wax can be selected from the group consisting of compounds having alcohol, acid, ester or amide functional groups.
  • amide waxes including oleamide and stearamide, stearic acid, and stearate/oleate esters.
  • Unithox 420 an ethoxylated fatty alcohol known under the tradename of Unithox 420 (Baker Petrolite Corporation, Tulsa, Okla.) has been found to reduce filament tackiness.
  • the structure of Unithox 420 is given below:
  • Unithox 420 is believed to be uniformly soluble in the PEG plasticized PEO at elevated temperatures but phase separates from the mixture and migrates to the extruded filament surface upon cooling. This leaves a slightly waxy, low tackiness surface upon the cooled filament.
  • Polar homopolymers and copolymers containing polar functional groups can be added to PEG plasticized PEO formulations in order to increase the strength and toughness of the filament.
  • Examples of polar homopolymers and copolymers that can be added to the PEG plasticized poly(2-ethyl-2-oxazoline) include Nylon 12, amorphous nylon copolymer of terephthalamide/isophthalamide/hexamethylenediamide, Nylon 6/Nylon 12 copolymer, polyvinylformal, polyvinylbutyral and polyesters. These polymers also decrease the tendency of the filament to fracture when it is fed through the rollers on the Stratasys FDM® machine head.
  • polyamides examples include Nylon 12 (Grilamid L16) and an amorphous nylon copolymer of terephthalamide/isophthalamide/hexamethylenediamide (Grivory G16), both manufactured by EMS American Grilon Inc., Sumter, S.C., and Nylon 6/Nylon 12 Copolymer (Vestamelt 430P-1), made by Huls/Creanova Inc., Somerset, N.J. These polyamides can be present in amounts ranging from 0.5-35 wt. % based upon the total mass of PEG plasticized PEO.
  • Polyvinylbutyral used is known under the tradename Butvar B-98, made by Monsanto Company of St. Louis, Mo.
  • Phenoxy PKHM 301 is a linear thermoplastic phenoxy resin oligomer blend obtained from Phenoxy Specialists (Division in InChem Corp.), Rock Hill, S.C.
  • Tyril 125 is a styrene-acrylonitrile (SAN) copolymer manufactured by Dow Chemical Corp., Midland, Mich.
  • SAN copolymers have an amount ranging from about 20-40 wt. % acrylonitrile repeat units present in the polymer chains.
  • Examples VI and VII are believed to provide the most preferred embodiments of the present invention in that they are the easiest to formulate, and both exhibit excellent fluidity characteristics.
  • the polar polymer added to the PEO is a polar polymer selected from the group consisting of compounds having nitrile functional groups (like Example VII) or compounds having ether and hydroxyl functional groups (like Example VI).
  • the linear thermoplastic phenoxy resin oligomer blend of Example VI and the styrene-acrylonitrile copolymer of Example VII each exhibited a high degree of thermodynamic compatibility with PEO polymers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Formation of polymeric prototype elements is effected by high pressure and high temperature extrusion of selected materials onto a plate as a ribbon of liquefied polymer comprising poly(2-ethyl-2-oxazoline) and a polar polymer discharged in a programmed pattern.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This is a divisional of U.S. application Ser. No.09/096,100, filed Jun. 11, 1998; which is a continuation in part of U.S. application Ser. No. 09/082,064, filed May 20, 1998, now U.S. Pat. No. 6,070,107; which is a continuation in part of U.S. application Ser. No. 08/825,893, filed Apr. 2,1997, now U.S. Pat. No. 6,067,480; all of which are incorporated herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • This invention relates to thermoplastic polymer materials for the preparation of three-dimensional prototypes or models. Prototypes of parts are made and used in testing in a wide-variety of industries, such as the automobile, aerospace, and biomedical prostheses manufacturing industries. After successful testing the prototypes of parts, a mold of the prototype can be made and the part can be manufactured on a mass production basis. [0002]
  • There are three ways of making prototypes. One method involves simply making a mold of the part, making the prototype, and then testing the prototype. However, this method requires the cost of making a mold, which itself can be extremely expensive and time-consuming. Moreover, this method may require numerous molds to be made on a trial and error basis until a successful part has been designed that sufficiently passes the required testing. [0003]
  • A second method of making prototypes involves sculpting a three-dimensional prototype of a particular shape from a block work piece. In this method, the prototype is drawn either manually or using computer-aided design (CAD) techniques, and the prototype is formed by removing material from a block work piece. The part can be further machined either manually or using computer-aided machining (CAM) techniques. However, this method can also be a costly and time-consuming process because it may require repeated iterations until a desired prototype is made. [0004]
  • A third method that has been developed involves the formation of a three-dimensional prototype by depositing multiple layers of a material in a fluid state onto a base. The fluid solidifies to define the prototype element. In general this method is often termed freeforming in the prior art. For example, such a method is taught in U.S. Pat. No. 5,340,433, and U.S. Pat. No. 5,121,329, both issued to S. Scott Crump and assigned to Stratasys, Inc. incorporated herewith by reference. In this method, a layer of the fluid material solidifies and then another layer of fluid material is deposited over the preceding layer. The thickness of each layer is controlled by the distance between the tip of the dispensing head and the preceding layer. However, there are a number of disadvantages to the method and apparatus taught in this third method because only certain types of materials can be suitably used to make the prototypes, such as waxes having low melt viscosity and strength. Thermoset materials may be used to try to improve strength and toughness. In any event, this prior art deposition method may not produce durable prototypes made from high performance engineering polymers and composites. [0005]
  • There is a clear need for a method and apparatus that can make stronger and tougher prototypes made of engineering polymers and composites having high melt viscosity and long chain lengths. Such a method and apparatus is disclosed in U.S. Pat. No. 6,067,480, which is incorporated herein by reference. [0006]
  • As noted in U.S. Pat. No. 6,067,480, materials for high pressure fused deposition include polyaryletherketone (PEEK® produced by Victrex), polmethylmethacrylate (PMMA® produced by DuPont), polycarbonate (Lexan® made by General Electric Plastics), thermoplastic polyurethane (Pellethane(® made by Dow Chemical), and polylatic acid/polyglycolic acid block copolymer (a bio-absorbable material made by a Biomet joint venture). Fused deposition of fiber reinforced grades of engineering polymers and composites, for example PEEK® and Lexan® can also be used for the invention disclosed in U.S. Ser. No. 08/825,893. Moreover, prototypes can be made in accordance with that invention using fiber reinforcement. For example, carbon fiber reinforced PEEK® materials had a tensile strength of over 36,000 psi, exhibited a very high fracture toughness and demonstrated highly anisotropic mechanical properties whereas unreinforced materials did not. [0007]
  • Thus, there is a clear need for strong materials that can be used in a method for making prototypes, and in particular materials for the method involving the depositing of multiple layers in a fluid state onto a base. More specifically, there is a need for strong thermoplastic polymers that can be easily melt extruded by an extrusion freeforming apparatus in layer form, and which then solidify upon cooling so that complicated shaped parts can be freeform fabricated by precisely and sequentially depositing polymer layers upon one another until the desired component is produced. There is also a need for strong materials that can be used as a support material for use in an extrusion freeforming apparatus that prevents the sagging of deposited molten, prototype material layers before cooling and solidification. Support materials are particularly important when fabricating complex geometry, dimensionally accurate prototypes having numerous overhangs, or internal cavity features. [0008]
  • BRIEF SUMMARY OF THE INVENTION
  • In the present invention, a unique thermoplastic polymer material, i.e., poly(2-ethyl-2-oxazoline) (referred to hereafter as “PEO”), is used as a polymer layer material as well as a support material in a freeform fabrication process. More specifically, PEO is melt extruded by a freeforming apparatus in layer form. The PEO layers solidify upon cooling and complicated shaped parts can be freeform fabricated by precisely and sequentially depositing polymer layers upon one another until the desired component is produced. Thus, prototypes can be directly free formed by an extrusion freeforming apparatus using PEO as a raw material. [0009]
  • In addition, in the present invention, PEO is used as a support material for use in rapid prototype processes such as extrusion freeform fabrication or a a fused deposition modeling process. In particular, many parts which are fabricated by these processes have complicated overhang geometries which require the use of a support material that prevents the sagging of deposited molten, prototype material layers before cooling and solidification. [0010]
  • It has been discovered that a major advantage of PEO over other materials is that PEO is a high strength rigid thermoplastic polymer that is easily and accurately extruded and has a good slump resistance at temperatures less than about 200° C. PEO also has the added benefits in that it is essentially an amorphous polymer that does not undergo significant shrinkage upon solidification. Polyethylene oxide, another commercially available water soluble thermoplastic, on the other hand, undergoes approximately 15-20% shrinkage due to crystallization upon solidification. Shrinkage on the order of this magnitude puts a great deal of stress and may induce warpage in free formed support material layers. PEO also has high degree of interlayer adhesion when free formed. Polyethylene oxide has negligible interlayer adhesion when free formed. A major benefit of using PEO is that it has all of the above properties coupled with high water solubility. Rapid prototype parts can therefore be fabricated using PEO as a support material and the PEO support can be easily washed away with water from the completed prototype part without employing toxic and environmentally detrimental solvents, which may also dissolve the desired polymer prototype part. It is believed that PEO is the only commercially available non-ionic water soluble thermoplastic material (sold under the tradename Aquazol by Polymer Chemistry Innovations Inc., of Tucson, Ariz.) that has all of the above properties. PEO is also very tacky and many materials readily adhere to it, thereby making PEO an excellent rapid prototyping support material. [0011]
  • Furthermore, PEO is not as hygroscopic compared to other commercial water soluble polymers including polyvinyl alcohol and polyethylene oxide, and thus PEO possesses significantly greater dimensional stability in ambient humid atmosphere compared to these other polymers. Moreover, PEO can be extruded at higher temperatures without decomposing and having its melt viscosity change with time. [0012]
  • In another aspect of the present invention, PEO is used as a fugitive mold material for casting ceramic slurries, e.g. for ceramic green body fabrication, and also preparing polyurethane or epoxy parts by pouring reactive mixtures of these liquid precursor materials into a mold which is precision machined from bulk PEO stock. Thus, in accordance with the present invention, parts can be subsequently extracted from the mold by placing the entire part in a water bath after the slurry or precursors are cured so that the water dissolves the PEO and leaves the fabricated polymer or green ceramic part behind. [0013]
  • This unique polymer PEO, not heretofore suggested for use asan extrusion freeform fabrication material, greatly facilitates the extrusion free form fabrication of parts, as well as for casting ceramic slurries. [0014]
  • These and other objects, advantages and features of the present invention will be more fully understood and appreciated by reference to the detailed description which follows.[0015]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • PEO as Cylindrical Feed Rod Material [0016]
  • In a preferred embodiment of the present invention, the specific thermoplastic polymer material poly(2-ethyl-2-oxazoline), i.e., PEO, was prepared as a slug in the form of a cylinder having the following dimensions: 0.3 875 inches in diameter by 5.50 inches in length. [0017]
  • Thereafter, the slug was inserted into an apparatus, the type described in U.S. Pat. No. 6,067,480 and extruded as a fine ribbon by said apparatus to form a prototype mechanical element or object. More specifically, the steps performed comprised the steps of: [0018]
  • a) positioning a cylindrical rod of said polymer material comprising PEO in a cylindrical housing having a throughbore with a diameter substantially equal to the diameter of the cylindrical rod, said housing being connected with and attached to a discharge head member having a uniform diameter bore connecting with the throughbore, a discharge tip, a reduced diameter discharge opening in the tip, and a circumferential heater to liquefy the material in the bore; [0019]
  • b) compressing the material in the housing with a piston while simultaneously liquefying the material in the head member to thereby discharge a ribbon of material from the tip; [0020]
  • c) transporting the platform in the x and y directions while discharging material thereon to form the cross sectional shape of the element; and [0021]
  • d) transporting the housing and head member in the z direction simultaneously to form the element in elevation. The extrusion occurred in multiple layers of a ribbon of the material discharged from the nozzle of the apparatus layer upon layer so as to form the object. [0022]
  • The polymer material comprising PEO can be used as a support for free formed layers of other material. Further, the method of the present invention can be used to make an article of manufacture that is a free form three-dimensional object comprising a plurality of layers of a ribbon of PEO. The present invention further includes a thermoplastic polymer in the form of an extrudable object comprising a slug of PEO. [0023]
  • At least one inorganic filler can be added to the polymer material comprising PEO. The inorganic filler can be comprised of at least one soluble salt. Examples of soluble salts include alkali or alkaline earth halides (e.g., sodium chloride, magnesium chloride) or their sulfates (e.g., magnesium sulfate). [0024]
  • The PEO can be blended with at least one inert filler. The inert filler can be selected from the polymer filler group consisting of calcium carbonate, glass spheres, graphite, carbon black, carbon fiber, glass fiber, talc, wollastonite, mica, alumina, silica and silicon carbide. [0025]
  • The typical extrusion temperature of the polymer in the head member can be in the range of about 120-410° C., and is preferably in the range of 150-200° C., and most preferably approximately 175° C. The rod is compressed and extruded at a pressure of about 200-1,000 psi, and is preferably compressed and extruded at a pressure in a range of about 500-700 psi. [0026]
  • Tensile test bar specimens were extrusion free-formed in accordance with ASTM D638 testing standard using both 200,000 and 50,000 molecular weight (MW) Aquazol feedrods. These specimens were tested and compared with objects made using similar apparatus. The various objects, i.e., prototype mechanical elements, were then tested and compared one to the other and the test results are reported below. [0027]
  • Mechanical Testing [0028]
  • Mechanical tests were carried out on polymer resins manufactured into test configurations in accordance with the same extrusion freeforming fabrication process previously referred to above. Samples were tensile tested to determine their strengths, moduli and elongation to break values. The polymers tested were the PEO of the present invention, ABS and Nylon- 11. The test results are shown in Table I along with reported test results of other materials. In addition to mechanical testing, sample tensile properties were measured and compared to reported properties of the other materials. [0029]
  • Tensile Testing [0030]
  • Tensile tests were performed as close to standard ASTM D638 as possible. Tensile bars were free formed and tested without further machining or modification. The test specimen geometry was of the typical “dog bone” shape. Machining the bars resulted in damage to the gauge section of some materials. Since tensile testing is very sensitive to notches, machining was not possible. [0031]
  • Samples were tested along the writing direction. This simply denotes the bead direction with respect to the mechanical testing equipment. The equipment used was a model 1011 Instron apparatus with a load cell capacity of 1000 pounds. The 1011 Instron apparatus uses vertical specimen loading and wedge-action type grips. The cross head speed for all specimens was 0.2 inches per minute. [0032]
  • Tensile moduli strength, 0.2% yield strength, and elongation or strain to fracture were calculated. [0033]
  • Discussion of Results [0034]
  • The values contained in Table I resulted from averaging the test samples' measured properties of interest. [0035]
  • The mechanical properties of the materials prepared in this work are compared with other free formed polymer materials in Table I. The PEO is more than 30 percent stronger and between 2 to 3 times stiffer than any of the presently available water soluble polymer materials. These properties represent a substantial improvement in the art. [0036]
    TABLE 1
    Comparison of Materials Properties from Commercial SFF Systems
    σ tensile Ε tensile ε break
    System Material Grade (psi) (ksi) (%)
    3D Epoxy XB5170 2,400 130 9
    DTM Nylon-11 LN4000 5,200 200 32
    Stratasys ABS 5,000 360 50
    ACR PEEK 450 FC 36,374 1195 3
    ACR Poly- Union Carbide 3,000 40-70 500
    ethylene Polyox WSR-
    oxide N80 (200,000
    MW)
    ACR PEO Aquazol 200 4,000 230 1.9
    (200,000 MW)
    ACR PEO Aquazol 50 900 150 0.9
     (50,000 MW)
  • PEO in Filament Applications [0037]
  • PEO has been found to be not only useful as cylindrical feed rod material, but also as filament feed material in yet another preferred embodiment of the present invention. It has been discovered that PEO is an excellent filament feed material that can be free formed using fused deposition modeling processes taught in U.S. Pat. No. 5,340,433 and U.S. Pat. No. 5,121,329 because it is water soluble and can be washed away easily, is a stiff material, is thermally stable, and adheres well to other materials, including other layers of PEO. Therefore, PEO filament feedstock can be used as a support material in fused deposition modeling of polymer prototype parts. [0038]
  • Thus, the present invention includes a method for forming prototype mechanical elements from at least one polymer material on a platform comprising the steps of: [0039]
  • a) placing filament containing said polymer material comprising poly(2-ethyl-2-oxazoline) in a cylindrical housing having a throughbore with a diameter substantially equal to the diameter of the filament, said housing being connected with and attached to a discharge head member having a uniform diameter bore connecting with the throughbore, a discharge tip, a reduced diameter discharge opening in the tip, and a circumferential heater to liquefy the material in the bore; [0040]
  • b) liquefying the material in the head member to thereby discharge a ribbon of material from the tip; [0041]
  • c) transporting the platform in the x and y directions while discharging material thereon to form the cross sectional shape of the element; and [0042]
  • d) transporting the housing and head member in the z direction simultaneously to form the element in elevation. [0043]
  • The polymer material comprising PEO can be used as a support for free formed layers of other material. Further, the method of the present invention can be used to make an article of manufacture that is a free form three-dimensional object comprising a plurality of filament layers of PEO. The present invention further includes a thermoplastic polymer in the form of an extrudable object comprising a filament of PEO. [0044]
  • Further it has now been discovered that PEO can be blended with a variety of polar thermoplastics, fillers, and plasticizers to modify its physical properties. These additives enable the PEO polymer to be extruded into tough, flexible geometries (including Stratasys Fused Deposition Modeller (FDM®) filament form). [0045]
  • The polymer material comprising PEO can also include an inorganic filler, which in turn can be comprised of at least one soluble salt. [0046]
  • The PEO can be blended with at least one inert filler. The inert filler can be selected from the polymer filler group consisting of calcium carbonate, glass spheres, graphite, carbon black, carbon fiber, glass fiber, talc, wollastonite, mica, alumina, silica and silicon carbide. [0047]
  • The typical extrusion temperature of the polymer in the head member can be in the range of about 120-410° C., and is preferably in the range of 150-290° C., and most preferably approximately 180° C. [0048]
  • As a further example, the modulus of PEO can be decreased by the addition an alcohol plasticizer. Preferably the alcohol plasticizer is in an amount of 0.5 to 45 wt. % alcohol plasticizer to the PEO. Preferred alcohol plasticizers are water soluble and have structures composed of multiple hydroxyl groups (i.e., ethylene glycol, glycerol or 200-10,000 MW Union Carbide PEG polyethylene glycols). 600 MW PEG is a preferred plasticizer due to its combination of low viscosity and low melting point. These plasticizers decrease the rigidity of PEO and enable it to be drawn into flexible filament feedstock that can be extruded by a Stratasys Fused Deposition Modeller (FDM(®) machine. Furthermore, PEG plasticizers are miscible with water and are believed to enhance the overall water solubility and dissolution rate of the free formed plasticized PEO material. [0049]
  • PEG plasticized PEO filament is highly tacky in humid atmosphere, which makes it difficult to uniformly spool as feed material through the Stratasys FDM® machine dispensing head. Consequently, its formulation must be modified to decrease its tackiness as well as enhance its strength. Addition of 0.25 -5 wt. % of polar wax has been shown to decrease filament tackiness. The polar wax can be selected from the group consisting of compounds having alcohol, acid, ester or amide functional groups. Thus, in the present invention it is contemplated that among the various compounds that can be used include, but are not limited to amide waxes, including oleamide and stearamide, stearic acid, and stearate/oleate esters. In particular, an ethoxylated fatty alcohol known under the tradename of Unithox 420 (Baker Petrolite Corporation, Tulsa, Okla.) has been found to reduce filament tackiness. The structure of Unithox 420 is given below: [0050]
  • CH3CH2(CH2CH2)xCH2CH2(O CH2CH2)yOH
  • where x/y ranges from 4-10, but the preferred ratio is about 5.2 [0051]
  • Unithox 420 is believed to be uniformly soluble in the PEG plasticized PEO at elevated temperatures but phase separates from the mixture and migrates to the extruded filament surface upon cooling. This leaves a slightly waxy, low tackiness surface upon the cooled filament. [0052]
  • Polar homopolymers and copolymers containing polar functional groups, either pendant to or present in its main chain, can be added to PEG plasticized PEO formulations in order to increase the strength and toughness of the filament. Examples of polar homopolymers and copolymers that can be added to the PEG plasticized poly(2-ethyl-2-oxazoline) include Nylon 12, amorphous nylon copolymer of terephthalamide/isophthalamide/hexamethylenediamide, Nylon 6/Nylon 12 copolymer, polyvinylformal, polyvinylbutyral and polyesters. These polymers also decrease the tendency of the filament to fracture when it is fed through the rollers on the Stratasys FDM® machine head. Examples of polyamides include Nylon 12 (Grilamid L16) and an amorphous nylon copolymer of terephthalamide/isophthalamide/hexamethylenediamide (Grivory G16), both manufactured by EMS American Grilon Inc., Sumter, S.C., and Nylon 6/Nylon 12 Copolymer (Vestamelt 430P-1), made by Huls/Creanova Inc., Somerset, N.J. These polyamides can be present in amounts ranging from 0.5-35 wt. % based upon the total mass of PEG plasticized PEO. [0053]
  • Specific examples of water soluble plasticized PEO compositions that can be extruded into flexible filament and successfully extruded through a Stratasys FDM head presented below: [0054]
    EXAMPLE I
    Calcium Carbonate* 22.3 wt. %
    PEO (200K MW) 65.0
    PEG (600 MW) 8.6
    Grilamid LI 6 4.1
    EXAMPLE II
    Calcium Carbonate* 59.1
    PEO (50K MW) 26.9
    PEG (600 MW) 11.1
    Vestamelt 43OP-1 2.9
    EXAMPLE III
    Calcium Carbonate* 26.1
    PEO (200K MW) 57.5
    PEG (600 MW) 10.-0
    Grilamid LI 6 4.9
    Unithox 1.5
    EXAMPLE IV
    Calcium Carbonate* 22.4
    PEO 50K MW) 60.9
    PEG (600 MW) 6.9
    Grivory G- 16 Nylon 6.7
    Unithox 420 3.1
    EXAMPLE V
    CaCO3 59.25
    PEO (200K MW) 26.25
    PEG (600 MW) 10.80
    Polyvinylbutyral** 3.70
    EXAMPLE VI
    CaCO3 25.98
    PEO (200K MW) 58.96
    PEG (600 MW) 8.35
    Phenoxy PKHM
    301*** 3.70
    Unithox 420 1.52
    EXAMPLE VII
    CaCO3 26.09
    PEO (200K MW) 59.23
    PEG (600 MW) 8.39
    Tyril 125**** 4.76
    Unithox 420 1.53
  • Polyvinylbutyral used is known under the tradename Butvar B-98, made by Monsanto Company of St. Louis, Mo. [0055]
  • Phenoxy PKHM 301 is a linear thermoplastic phenoxy resin oligomer blend obtained from Phenoxy Specialists (Division in InChem Corp.), Rock Hill, S.C. [0056]
  • Tyril 125 is a styrene-acrylonitrile (SAN) copolymer manufactured by Dow Chemical Corp., Midland, Mich. Preferred SAN copolymers have an amount ranging from about 20-40 wt. % acrylonitrile repeat units present in the polymer chains. [0057]
  • Examples VI and VII are believed to provide the most preferred embodiments of the present invention in that they are the easiest to formulate, and both exhibit excellent fluidity characteristics. Thus, it is preferred that the polar polymer added to the PEO is a polar polymer selected from the group consisting of compounds having nitrile functional groups (like Example VII) or compounds having ether and hydroxyl functional groups (like Example VI). Further, the linear thermoplastic phenoxy resin oligomer blend of Example VI and the styrene-acrylonitrile copolymer of Example VII each exhibited a high degree of thermodynamic compatibility with PEO polymers. [0058]
  • Those of skill in the art will recognize various changes to the methods, materials, component ratios, and apparatus are possible without departing from the spirit and scope of the invention. Thus, the invention is to be limited only by the claims and equivalents thereof. [0059]
  • Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. [0060]

Claims (12)

1. A thermoplastic polymer in the form of an extrudable object comprising in combination a filament of poly(2-ethyl-2-oxazoline) and a polar polymer selected from the group consisting of compounds having nitrile functional groups, compounds having ether and hydroxyl functional groups, and mixtures thereof.
2. A thermoplastic composition suitable for three-dimensional modeling, comprising poly(2-ethyl-2-oxazoline) and a polar polymer selected from the group consisting of compounds having nitrile functional groups, compounds having ether and hydroxyl functional groups, and mixtures thereof.
3. The thermoplastic composition of
claim 2
, wherein the polar polymer is selected from the group consisting of a linear thermoplastic phenoxy oligomer blend and a styrene-acrylonitrile copolymer.
4. The thermoplastic composition of
claim 2
, and further comprising a plasticizer.
5. The thermoplastic composition of
claim 4
, wherein the plasticizer is a water-soluble alcohol plasticizer.
6. The thermoplastic composition of
claim 2
, and further comprising an inert filler.
7. The thermoplastic composition of
claim 6
wherein the inert filler is selected from the polymer filler group consisting of calcium carbonate, glass spheres, graphite, carbon black, carbon fiber, glass fiber, talc, wollastonite, mica, alumina, silica and silicon carbide.
8. The thermoplastic composition of
claim 5
, and further comprising an inert filler.
9. The thermoplastic composition of
claim 8
, wherein the inert filler is selected from the polymer filler group consisting of calcium carbonate, glass spheres, graphite, carbon black, carbon fiber, glass fiber, talc, wollastonite, mica, alumina, silica and silicon carbide.
10. The thermoplastic composition of
claim 2
, in the form of an extrudable object.
11. The thermoplastic composition of
claim 10
, wherein the extrudable object is a filament.
12. The thermoplastic composition of
claim 10
, wherein the extrudable object is a slug.
US09/850,179 1997-04-02 2001-05-07 Water soluble rapid prototyping support and mold material Expired - Lifetime US6437034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/850,179 US6437034B2 (en) 1997-04-02 2001-05-07 Water soluble rapid prototyping support and mold material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/825,893 US6067480A (en) 1997-04-02 1997-04-02 Method and apparatus for in-situ formation of three-dimensional solid objects by extrusion of polymeric materials
US09/082,064 US6070107A (en) 1997-04-02 1998-05-20 Water soluble rapid prototyping support and mold material
US09/096,100 US6228923B1 (en) 1997-04-02 1998-06-11 Water soluble rapid prototyping support and mold material
US09/850,179 US6437034B2 (en) 1997-04-02 2001-05-07 Water soluble rapid prototyping support and mold material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/096,100 Division US6228923B1 (en) 1997-04-02 1998-06-11 Water soluble rapid prototyping support and mold material

Publications (2)

Publication Number Publication Date
US20010025073A1 true US20010025073A1 (en) 2001-09-27
US6437034B2 US6437034B2 (en) 2002-08-20

Family

ID=26767003

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/096,100 Expired - Lifetime US6228923B1 (en) 1997-04-02 1998-06-11 Water soluble rapid prototyping support and mold material
US09/850,179 Expired - Lifetime US6437034B2 (en) 1997-04-02 2001-05-07 Water soluble rapid prototyping support and mold material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/096,100 Expired - Lifetime US6228923B1 (en) 1997-04-02 1998-06-11 Water soluble rapid prototyping support and mold material

Country Status (4)

Country Link
US (2) US6228923B1 (en)
EP (1) EP1078327A4 (en)
JP (1) JP4301733B2 (en)
WO (1) WO1999060507A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448377B (en) * 2010-09-17 2014-08-11 史翠塔系統股份有限公司 Semi-crystalline consumable materials for use in extrusion-based additive manufacturing systems
WO2017167691A1 (en) * 2016-04-01 2017-10-05 Solvay Specialty Polymers Usa, Llc Method for manufacturing a three-dimensional object
WO2018034849A1 (en) * 2016-08-19 2018-02-22 The Procter & Gamble Company Polymeric materials and articles manufactured there from
US10632731B2 (en) 2014-05-29 2020-04-28 Mitsubishi Chemical Corporation Support material for laminate shaping, product laminate-shaped by using the same, and laminate-shaped product production method
US10703549B2 (en) 2017-06-30 2020-07-07 The Procter And Gamble Company Water soluble containers and methods of making them
US11607844B2 (en) 2016-10-04 2023-03-21 Tokyo Printing Ink Mfg. Co., Ltd. Treatment agent for additive manufacturing apparatus
US11723875B2 (en) 2018-04-10 2023-08-15 The Procter & Gamble Company Polymeric materials and articles manufactured there from

Families Citing this family (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228923B1 (en) * 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US20050023710A1 (en) * 1998-07-10 2005-02-03 Dmitri Brodkin Solid free-form fabrication methods for the production of dental restorations
US6776602B2 (en) * 1999-04-20 2004-08-17 Stratasys, Inc. Filament cassette and loading system
US7314591B2 (en) * 2001-05-11 2008-01-01 Stratasys, Inc. Method for three-dimensional modeling
EP1194274B1 (en) 1999-04-20 2017-03-22 Stratasys, Inc. Process for three-dimensional modeling
US7754807B2 (en) 1999-04-20 2010-07-13 Stratasys, Inc. Soluble material and process for three-dimensional modeling
US6645412B2 (en) 1999-04-20 2003-11-11 Stratasys, Inc. Process of making a three-dimensional object
US6722872B1 (en) * 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
US7105594B2 (en) * 2001-04-11 2006-09-12 Xerox Corporation Conductive carbon filled polyvinyl butyral adhesive
US6648999B2 (en) * 2001-08-27 2003-11-18 Motorola, Inc. Low pressure laminated ceramic devices and method
US6841116B2 (en) * 2001-10-03 2005-01-11 3D Systems, Inc. Selective deposition modeling with curable phase change materials
KR100480117B1 (en) * 2002-10-04 2005-04-07 엘지전자 주식회사 Stroke conpensation apparatus and method for reciprocating compressor
US7255825B2 (en) * 2004-03-10 2007-08-14 Hewlett-Packard Development Company, L.P. Materials and methods for freeform fabrication of solid three-dimensional objects using fusible, water-containing support materials
US20060159869A1 (en) * 2005-01-14 2006-07-20 Laura Kramer Reactive materials systems and methods for solid freeform fabrication of three-dimensional objects
US7236166B2 (en) * 2005-01-18 2007-06-26 Stratasys, Inc. High-resolution rapid manufacturing
US7341214B2 (en) * 2005-06-30 2008-03-11 Stratasys, Inc. Cassette spool lock
US7384255B2 (en) * 2005-07-01 2008-06-10 Stratasys, Inc. Rapid prototyping system with controlled material feedstock
US7403833B2 (en) 2006-04-03 2008-07-22 Stratasys, Inc. Method for optimizing spatial orientations of computer-aided design models
US7680555B2 (en) * 2006-04-03 2010-03-16 Stratasys, Inc. Auto tip calibration in an extrusion apparatus
US7604470B2 (en) * 2006-04-03 2009-10-20 Stratasys, Inc. Single-motor extrusion head having multiple extrusion lines
US7910041B1 (en) 2006-11-27 2011-03-22 Stratasys, Inc. Build materials containing nanofibers for use with extrusion-based layered depositions systems
US8765045B2 (en) * 2007-01-12 2014-07-01 Stratasys, Inc. Surface-treatment method for rapid-manufactured three-dimensional objects
EP2117793B1 (en) * 2007-02-12 2014-07-16 Stratasys, Inc. Pump system
US20090295032A1 (en) * 2007-03-14 2009-12-03 Stratasys, Inc. Method of building three-dimensional object with modified ABS materials
US8050786B2 (en) * 2007-07-11 2011-11-01 Stratasys, Inc. Method for building three-dimensional objects with thin wall regions
US20090014919A1 (en) * 2007-07-13 2009-01-15 Advanced Ceramics Manufacturing Llc Aggregate-based mandrels for composite part production and composite part production methods
US9314941B2 (en) 2007-07-13 2016-04-19 Advanced Ceramics Manufacturing, Llc Aggregate-based mandrels for composite part production and composite part production methods
US7625200B2 (en) * 2007-07-31 2009-12-01 Stratasys, Inc. Extrusion head for use in extrusion-based layered deposition modeling
US7917243B2 (en) * 2008-01-08 2011-03-29 Stratasys, Inc. Method for building three-dimensional objects containing embedded inserts
US8070473B2 (en) * 2008-01-08 2011-12-06 Stratasys, Inc. System for building three-dimensional objects containing embedded inserts, and method of use thereof
US8858856B2 (en) 2008-01-08 2014-10-14 Stratasys, Inc. Method for building and using three-dimensional objects containing embedded identification-tag inserts
US8403658B2 (en) 2008-01-08 2013-03-26 Stratasys, Inc. Consumable assembly for use in extrusion-based layered deposition systems
US8155775B2 (en) * 2008-10-02 2012-04-10 Stratasys, Inc. Support structure packaging
US8246888B2 (en) * 2008-10-17 2012-08-21 Stratasys, Inc. Support material for digital manufacturing systems
US7938356B2 (en) * 2008-10-22 2011-05-10 Stratasys, Inc. Filament spool
US7938351B2 (en) * 2008-10-22 2011-05-10 Stratasys, Inc. Filament guide mechanism for filament spool container
US8245757B2 (en) 2009-02-02 2012-08-21 Stratasys, Inc. Inorganic ionic support materials for digital manufacturing systems
WO2010108076A2 (en) 2009-03-19 2010-09-23 Jeffrey Jacob Cernohous Biobased polymer compositions
US9138981B1 (en) 2009-07-22 2015-09-22 Stratasys Ltd. Water soluble ink-jet composition for 3D printing
US8404171B2 (en) * 2009-09-04 2013-03-26 Bolson Materials Intl. Use and provision of an amorphous vinyl alcohol polymer for forming a structure
US8349239B2 (en) * 2009-09-23 2013-01-08 Stratasys, Inc. Seam concealment for three-dimensional models
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
US8236227B2 (en) 2009-09-30 2012-08-07 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using tracked filaments
US8439665B2 (en) 2009-09-30 2013-05-14 Stratasys, Inc. Ribbon liquefier for use in extrusion-based digital manufacturing systems
EP2501535B1 (en) * 2009-11-19 2017-11-15 Stratasys, Inc. Encoded consumable filaments for use in additive manufacturing systems
US20110117268A1 (en) * 2009-11-19 2011-05-19 Stratasys, Inc. Consumable materials having encoded markings for use with direct digital manufacturing systems
EP2521625A2 (en) 2010-01-05 2012-11-14 Stratasys, Inc. Support cleaning system
US8983643B2 (en) * 2010-01-15 2015-03-17 Stratasys, Inc. Method for generating and building support structures with deposition-based digital manufacturing systems
US8222908B2 (en) * 2010-02-16 2012-07-17 Stratasys, Inc. Capacitive detector for use in extrusion-based digital manufacturing systems
US9022769B2 (en) 2010-07-22 2015-05-05 Stratasys, Inc. Multiple-zone liquefier assembly for extrusion-based additive manufacturing systems
US8920697B2 (en) 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
US8815141B2 (en) 2010-09-22 2014-08-26 Stratasys, Inc. Method for building three-dimensional models with extrusion-based additive manufacturing systems
US8647098B2 (en) 2010-09-22 2014-02-11 Stratasys, Inc. Liquefier assembly for use in extrusion-based additive manufacturing systems
CN107089004B (en) 2010-10-27 2019-08-16 雷兹公司 For making the technique and equipment of three-dimension object
US8647102B2 (en) 2010-12-22 2014-02-11 Stratasys, Inc. Print head assembly and print head for use in fused deposition modeling system
US8663533B2 (en) 2010-12-22 2014-03-04 Stratasys, Inc. Method of using print head assembly in fused deposition modeling system
US9238329B2 (en) 2010-12-22 2016-01-19 Stratasys, Inc. Voice coil mechanism for use in additive manufacturing system
US8419996B2 (en) 2010-12-22 2013-04-16 Stratasys, Inc. Print head assembly for use in fused deposition modeling system
US8460755B2 (en) 2011-04-07 2013-06-11 Stratasys, Inc. Extrusion-based additive manufacturing process with part annealing
EP2514775A1 (en) * 2011-04-20 2012-10-24 Evonik Röhm GmbH Maleic anhydride copolymers as soluble support material for fused deposition modelling (FDM) printer
US9359499B2 (en) 2011-05-05 2016-06-07 Stratasys, Inc. Radiation curable polymers
US8459280B2 (en) 2011-09-23 2013-06-11 Stratasys, Inc. Support structure removal system
US8985497B2 (en) 2011-12-22 2015-03-24 Stratasys, Inc. Consumable assembly with payout tube for additive manufacturing system
US9321608B2 (en) 2011-12-22 2016-04-26 Stratasys, Inc. Spool assembly with locking mechanism for additive manufacturing system, and methods of use thereof
US9073263B2 (en) 2011-12-22 2015-07-07 Stratasys, Inc. Spool assembly for additive manufacturing system, and methods of manufacture and use thereof
US9050788B2 (en) 2011-12-22 2015-06-09 Stratasys, Inc. Universal adapter for consumable assembly used with additive manufacturing system
US8975305B2 (en) 2012-02-10 2015-03-10 Kimberly-Clark Worldwide, Inc. Rigid renewable polyester compositions having a high impact strength and tensile elongation
US9050753B2 (en) 2012-03-16 2015-06-09 Stratasys, Inc. Liquefier assembly having inlet liner for use in additive manufacturing system
US9364986B1 (en) 2012-05-22 2016-06-14 Rapid Prototype and Manufacturing LLC Method for three-dimensional manufacturing and high density articles produced thereby
US8955558B2 (en) 2012-06-18 2015-02-17 Stratasys, Inc. Hopper valve for extrusion-based additive manufacturing systems, and methods of use thereof
US9708457B2 (en) 2012-06-28 2017-07-18 Stratasys, Inc. Moisture scavenger composition
US9174388B2 (en) 2012-08-16 2015-11-03 Stratasys, Inc. Draw control for extrusion-based additive manufacturing systems
US9327350B2 (en) 2012-08-16 2016-05-03 Stratasys, Inc. Additive manufacturing technique for printing three-dimensional parts with printed receiving surfaces
US9636868B2 (en) 2012-08-16 2017-05-02 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9168697B2 (en) 2012-08-16 2015-10-27 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9511547B2 (en) 2012-08-16 2016-12-06 Stratasys, Inc. Method for printing three-dimensional parts with additive manufacturing systems using scaffolds
US10029415B2 (en) 2012-08-16 2018-07-24 Stratasys, Inc. Print head nozzle for use with additive manufacturing system
US11020899B2 (en) 2012-08-16 2021-06-01 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9527242B2 (en) 2012-11-21 2016-12-27 Stratasys, Inc. Method for printing three-dimensional parts wtih crystallization kinetics control
US12064917B2 (en) 2012-11-21 2024-08-20 Stratasys, Inc. Method for printing three-dimensional parts with cyrstallization kinetics control
US9592530B2 (en) 2012-11-21 2017-03-14 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9744722B2 (en) 2012-11-21 2017-08-29 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9233506B2 (en) 2012-12-07 2016-01-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
US9090428B2 (en) 2012-12-07 2015-07-28 Stratasys, Inc. Coil assembly having permeable hub
US9321609B2 (en) 2012-12-07 2016-04-26 Stratasys, Inc. Filament drive mechanism for use in additive manufacturing system
JP6004269B2 (en) * 2012-12-10 2016-10-05 株式会社リコー 3D modeling method and 3D modeling apparatus
US9216544B2 (en) 2012-12-21 2015-12-22 Stratasys, Inc. Automated additive manufacturing system for printing three-dimensional parts, printing farm thereof, and method of use thereof
US8961167B2 (en) 2012-12-21 2015-02-24 Stratasys, Inc. Automated additive manufacturing system for printing three-dimensional parts, printing farm thereof, and method of use thereof
US10093039B2 (en) 2013-03-08 2018-10-09 Stratasys, Inc. Three-dimensional parts having interconnected Hollow patterns, method of manufacturing and method of producing composite part
US9421713B2 (en) 2013-03-08 2016-08-23 Stratasys, Inc. Additive manufacturing method for printing three-dimensional parts with purge towers
US9399320B2 (en) 2013-03-08 2016-07-26 Stratasys, Inc. Three-dimensional parts having interconnected hollow patterns, and method for generating and printing thereof
US9527240B2 (en) 2013-03-15 2016-12-27 Stratasys, Inc. Additive manufacturing system and method for printing three-dimensional parts using velocimetry
US10562226B1 (en) 2013-03-15 2020-02-18 Southern Methodist University Additive manufacturing of active devices using dielectric, conductive, and magnetic materials
US9802360B2 (en) 2013-06-04 2017-10-31 Stratsys, Inc. Platen planarizing process for additive manufacturing system
US9523934B2 (en) 2013-07-17 2016-12-20 Stratasys, Inc. Engineering-grade consumable materials for electrophotography-based additive manufacturing
US9714318B2 (en) 2013-07-26 2017-07-25 Stratasys, Inc. Polyglycolic acid support material for additive manufacturing systems
US10919229B2 (en) 2013-08-09 2021-02-16 Kimberly-Clark Worldwide, Inc. Polymeric material for three-dimensional printing
SG11201601708QA (en) 2013-08-09 2016-04-28 Kimberly Clark Co Anisotropic polymeric material
CN105408404B (en) 2013-08-09 2019-01-15 金伯利-克拉克环球有限公司 Particle with multimodal pore size distribution
RU2016107432A (en) 2013-08-09 2017-09-04 Кимберли-Кларк Ворлдвайд, Инк. METHOD OF SELECTIVE REGULATION OF POROSITY OF POLYMERIC MATERIAL
BR112016002589B1 (en) 2013-08-09 2021-08-03 Kimberly-Clark Worldwide, Inc MOLDED FLEXIBLE POLYMERIC MATERIAL, TUBULAR MEMBER, E, MOLDING METHOD OF A POLYMERIC MATERIAL
AU2014304189B2 (en) 2013-08-09 2019-03-21 Kimberly-Clark Worldwide, Inc. Delivery system for active agents
US9950474B2 (en) 2013-09-13 2018-04-24 Statasys, Inc. Additive manufacturing system and process with precision substractive technique
US9327447B2 (en) 2013-10-04 2016-05-03 Stratasys, Inc. Liquefier assembly for additive manufacturing systems, and methods of use thereof
US10131131B2 (en) 2013-10-04 2018-11-20 Stratasys, Inc. Liquefier assembly with multiple-zone plate heater assembly
US10086564B2 (en) 2013-10-04 2018-10-02 Stratsys, Inc. Additive manufacturing process with dynamic heat flow control
US10201931B2 (en) 2013-10-04 2019-02-12 Stratasys, Inc. Additive manufacturing system and process with material flow feedback control
WO2015054021A1 (en) * 2013-10-08 2015-04-16 Stratasys, Inc. Consumable filaments having reversible reinforcement for extrusion-based additive manufacturing
EP3068622A4 (en) 2013-11-11 2017-06-21 Imerys Talc America, Inc. Compositions and methods for fused filament fabrication
US9744730B2 (en) 2013-11-22 2017-08-29 Stratasys, Inc. Magnetic platen assembly for additive manufacturing system
KR102303883B1 (en) 2014-01-16 2021-09-24 뉴트리션 & 바이오사이언시즈 유에스에이 1, 엘엘씨 Support materials for 3d printing
WO2015108770A1 (en) 2014-01-16 2015-07-23 Dow Global Technologies Llc Recovery of additive manufacturing support materials
WO2015133641A1 (en) 2014-03-07 2015-09-11 Canon Kabushiki Kaisha Method of producing three-dimensional shaped article
US9636872B2 (en) 2014-03-10 2017-05-02 Stratasys, Inc. Method for printing three-dimensional parts with part strain orientation
EP3148782B1 (en) * 2014-05-30 2019-05-08 3D Systems, Incorporated Water dispersible support materials for 3d printing
JP6657645B2 (en) * 2014-09-04 2020-03-04 株式会社リコー Water-decomposable resin composition, molding support material, and molding
US20160068671A1 (en) * 2014-09-04 2016-03-10 Ricoh Company, Ltd. Water-decomposable resin composition, support material for use in modeling, and modeled product
US10059053B2 (en) 2014-11-04 2018-08-28 Stratasys, Inc. Break-away support material for additive manufacturing
GB201420870D0 (en) 2014-11-24 2015-01-07 Ngf Europ Ltd And Pilkington Group Ltd Printed article and a feedstock
JP6700745B2 (en) 2014-11-28 2020-05-27 キヤノン株式会社 Powder, thermoplastic composition, and method for producing three-dimensional object
US9694545B2 (en) 2014-12-18 2017-07-04 Stratasys, Inc. Remotely-adjustable purge station for use in additive manufacturing systems
US9610733B2 (en) 2015-01-06 2017-04-04 Stratasys, Inc. Additive manufacturing with soluble build sheet and part marking
CN107107461B (en) * 2015-01-26 2022-03-29 科巨希化学股份公司 Active energy ray-curable resin composition for three-dimensional molded support
CA2974719A1 (en) 2015-02-06 2016-08-11 Kao Corporation Three-dimensional-modeling soluble material
CN107533296B (en) 2015-03-11 2021-11-09 斯特拉塔西斯公司 Support material preparation and lamination manufacturing process using the same
WO2016193927A1 (en) * 2015-06-05 2016-12-08 Sabic Global Technologies B.V. Method of sizing carbon fibers, sized carbon fibers, and carbon fiber composites
KR102064816B1 (en) 2015-06-19 2020-01-10 스트래터시스,인코포레이티드 Aqueous Disperse Polymers Used in Additive Manufacturing
EP3328930B1 (en) 2015-07-27 2019-05-29 Dow Global Technologies LLC Method to additive manufacture biocompatible material and articles made by the method
KR20180031802A (en) 2015-08-14 2018-03-28 스트라타시스 엘티디. Detergent composition
US10399326B2 (en) 2015-10-30 2019-09-03 Stratasys, Inc. In-situ part position measurement
US10583646B2 (en) 2015-10-30 2020-03-10 Stratasys, Inc. Starter piece and printing methods for additive manufacturing system
US10532383B2 (en) 2015-10-30 2020-01-14 Canon Kabushiki Kaisha Method of producing three-dimensional object and removing liquid to be used in the production method
WO2017075600A1 (en) 2015-10-30 2017-05-04 Stratasys, Inc. Platen removal for additive manufacturing system
US10471631B2 (en) 2016-01-08 2019-11-12 Stratasys, Inc. Electrohydrodynamic additive manufacturing systems and methods for high temperature modeling
JP6602678B2 (en) * 2016-01-22 2019-11-06 国立大学法人岐阜大学 Manufacturing method of three-dimensional structure
KR101850781B1 (en) 2016-04-28 2018-05-31 한국기계연구원 Composition for reinforcing interlaminar shear stress between carbon-fiber and polymer matrix, composite material using the same amd preparation method thereof
US20200317867A1 (en) * 2016-07-01 2020-10-08 Ube Industries, Ltd. Material for fused deposition modeling 3d printer and filament for fused deposition modeling 3d printer using the same
WO2018139537A1 (en) 2017-01-30 2018-08-02 花王株式会社 Soluble material for three-dimensional molding
US11298871B2 (en) 2017-01-30 2022-04-12 Kao Corporation Soluble material for three-dimensional molding
US20200070404A1 (en) * 2017-03-02 2020-03-05 Bond High Performance 3D Technology B.V. Object made by additive manufacturing and method to produce said object
USD888115S1 (en) 2017-03-16 2020-06-23 Stratasys, Inc. Nozzle
US10435576B2 (en) 2017-05-26 2019-10-08 Infinite Material Solutions, Llc Water soluble polymer compositions
CN111132834A (en) 2017-05-29 2020-05-08 斯特拉塔西斯公司 Method and system for additive manufacturing of peelable sacrificial structures
US11603434B2 (en) 2017-07-14 2023-03-14 Kao Corporation Method for manufacturing thermoplastic resin composition
EP3658073A1 (en) 2017-07-28 2020-06-03 Stratasys Ltd. Method and system for fabricating object featuring properties of a blood vessel
WO2019021294A1 (en) 2017-07-28 2019-01-31 Stratasys Ltd. Additive manufacturing processes employing a material featuring properties of a soft bodily tissue
CN111033378B (en) 2017-07-28 2024-03-19 斯特拉塔西斯公司 Formulation for additive manufacturing of three-dimensional objects made of soft material
EP3658359B1 (en) 2017-07-28 2023-11-15 Stratasys Ltd. Method and system for fabricating object featuring properties of a hard tissue
IL272319B2 (en) 2017-07-28 2024-04-01 Stratasys Ltd Additive manufacturing processes employing formulations that provide a liquid or liquid-like material
US10751909B2 (en) 2017-08-16 2020-08-25 University Of Iowa Research Foundation Support-free additive manufacturing of ceramics
WO2019063740A1 (en) * 2017-09-28 2019-04-04 Rhodia Operations Method for manufacturing a three-dimensional object using polyamide based support material
EP3689585B1 (en) 2017-09-28 2022-02-09 Kao Corporation Soluble material for three-dimensional modeling
EP3694939A1 (en) 2017-10-10 2020-08-19 Stratasys, Inc. Water-dispersible thermoplastic material comprising sulfonated copolymer for use in additive manufacturing
EP3480287B1 (en) 2017-11-03 2020-03-18 Dalli-Werke GmbH & Co. KG Solid water-soluble cleaning composition
JP7195325B2 (en) 2017-12-28 2022-12-23 ストラタシス リミテッド Methods and systems for additive manufacturing of strippable sacrificial structures
CN209869406U (en) 2017-12-29 2019-12-31 斯特塔思有限公司 Additive manufacturing system with extended print volume
IL275770B2 (en) 2017-12-31 2024-07-01 Stratasys Ltd Support material formulations usable in additive manufacturing of three-dimensional objects at low temperatures
US10239218B1 (en) 2018-01-30 2019-03-26 Disney Enterprises, Inc. Structural frame for covered and animated segments of a robotic figure
US11465334B2 (en) 2018-06-28 2022-10-11 Stratasys Ltd. Structure supporting an object during additive manufacturing and method for forming
US11203156B2 (en) 2018-08-20 2021-12-21 NEXA3D Inc. Methods and systems for photo-curing photo-sensitive material for printing and other applications
US11247387B2 (en) 2018-08-30 2022-02-15 Stratasys, Inc. Additive manufacturing system with platen having vacuum and air bearing
CN112714689B (en) 2018-09-27 2022-11-15 斯特拉塔西斯公司 Methods and systems for additive manufacturing with sacrificial structures for easy removal
US11939480B2 (en) 2018-10-10 2024-03-26 Stratasys, Inc. Water dispersible sulfonated thermoplastic copolymer for use in additive manufacturing
WO2020097299A2 (en) 2018-11-09 2020-05-14 NEXA3D Inc. Three-dimensional printing system
CN115943067B (en) 2018-12-31 2024-08-09 斯特拉塔西斯公司 Laminate manufacturing using weak gel-forming material
KR102442534B1 (en) 2019-03-18 2022-09-14 넥사3디 인코포레이티드 Additive Manufacturing Methods and Systems
US10967573B2 (en) 2019-04-02 2021-04-06 NEXA3D Inc. Tank assembly and components thereof for a 3D printing system
CN115151403A (en) 2019-12-17 2022-10-04 提克纳有限责任公司 Three-dimensional printing system using thermotropic liquid crystal polymer
JP2024525043A (en) 2021-06-30 2024-07-09 ストラタシス リミテッド Water-soluble support material formulations suitable for additive manufacturing
US20240262038A1 (en) 2021-06-30 2024-08-08 Stratasys Ltd. Disposal of water soluble waste in additive manufacturing
WO2023084517A1 (en) 2021-11-12 2023-05-19 Polyfos 3D Ltd Vat polymerization process

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078599A (en) 1976-07-26 1978-03-14 National Research Institute For Metals Self-curing and water-soluble mold
US4325903A (en) * 1980-07-15 1982-04-20 Celanese Corporation Processing of melt processible liquid crystal polymer by control of thermal history
US4436867A (en) * 1982-06-17 1984-03-13 Kimberly-Clark Corporation Creping adhesives containing poly 2-ethyl-2-oxazoline
US4547530A (en) * 1983-11-15 1985-10-15 The Dow Chemical Company Miscible polymer blends containing poly(2-alkyl-2-oxazoline)
US4678833A (en) * 1983-11-15 1987-07-07 The Dow Chemical Company Miscible polymer blends containing poly(2-alkyl-2-oxazoline)
DE3686369T2 (en) * 1985-06-13 1993-03-25 American Cyanamid Co EXTENDED MOLD GRANULES AND THEIR USE IN THE INJECTION MOLDING PROCESS.
US4944965A (en) * 1985-06-13 1990-07-31 American Cyanamid Elongated molding granules and injection-molding process employing them
US4818615A (en) * 1986-06-02 1989-04-04 American Cyanamid Company Elongated molding granules and injection-molding process employing them
US4753987A (en) * 1986-06-03 1988-06-28 Arco Chemical Company Carbonamide modified thermoplastic elastomer-polyoxazoline molding compositions
US5158130A (en) 1987-12-08 1992-10-27 Harri Sahari Method for preparation of moulds and cores used in the casting of metals
US4826926A (en) 1988-06-30 1989-05-02 Shell Oil Company Polymer blend of carbon monoxide/olefin copolymer and a poly(2-oxazoline) polymer
IT1223923B (en) 1988-11-22 1990-09-29 Ferrari Engineering Spa PROCEDURE FOR THE CONSTRUCTION OF MONOLITHIC ELEMENTS CABLES IN COMPOSITE MATERIAL, IN PARTICULAR CARBON FIBER
US5032434A (en) * 1989-04-07 1991-07-16 Aluminum Company Of America Compatibilized blend comprising skin polymer, ethylene-vinyl alcohol copolymer, and poly-2-oxazoline
US5204296A (en) * 1989-09-26 1993-04-20 Rockwell International Corporation Process for injection molding ceramics
US5121329A (en) 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
US5136515A (en) 1989-11-07 1992-08-04 Richard Helinski Method and means for constructing three-dimensional articles by particle deposition
US5089186A (en) 1990-07-11 1992-02-18 Advanced Plastics Partnership Process for core removal from molded products
NZ242597A (en) * 1991-05-14 1995-07-26 Grace W R & Co Co-extruded water soluble laminated polymeric film and methods of extruding it
DE4319128C1 (en) 1993-06-09 1995-02-23 Fraunhofer Ges Forschung Method and device for the free-forming production of three-dimensional components of a predetermined shape
US5536505A (en) * 1993-12-15 1996-07-16 Eastman Chemical Company Controlled release matrix system using cellulose acetate/poly-2-ethyl-2-oxazoline blends
JPH07276372A (en) 1994-04-05 1995-10-24 Minnesota Mining & Mfg Co <3M> Core material and its use
US5503785A (en) * 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
US5902441A (en) * 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
US6070107A (en) * 1997-04-02 2000-05-30 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6228923B1 (en) * 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448377B (en) * 2010-09-17 2014-08-11 史翠塔系統股份有限公司 Semi-crystalline consumable materials for use in extrusion-based additive manufacturing systems
US10807353B2 (en) 2014-05-29 2020-10-20 Mitsubishi Chemical Corporation Support material for laminate shaping, product laminate-shaped by using the same, and laminate-shaped product production method
US10632731B2 (en) 2014-05-29 2020-04-28 Mitsubishi Chemical Corporation Support material for laminate shaping, product laminate-shaped by using the same, and laminate-shaped product production method
CN109071802A (en) * 2016-04-01 2018-12-21 索尔维特殊聚合物美国有限责任公司 Method for manufacturing three-dimension object
WO2017167691A1 (en) * 2016-04-01 2017-10-05 Solvay Specialty Polymers Usa, Llc Method for manufacturing a three-dimensional object
US11911954B2 (en) 2016-04-01 2024-02-27 Solvay Specialty Polymers Usa, Llc Method for manufacturing a three-dimensional object
CN109640926A (en) * 2016-08-19 2019-04-16 宝洁公司 Polymer material and the product being made from it
US10543639B2 (en) 2016-08-19 2020-01-28 The Procter & Gamble Company Method for manufacturing a three-dimensional object
WO2018034849A1 (en) * 2016-08-19 2018-02-22 The Procter & Gamble Company Polymeric materials and articles manufactured there from
US11529760B2 (en) 2016-08-19 2022-12-20 The Procter & Gamble Company Polymeric materials and articles manufactured there from
US11607844B2 (en) 2016-10-04 2023-03-21 Tokyo Printing Ink Mfg. Co., Ltd. Treatment agent for additive manufacturing apparatus
US10703549B2 (en) 2017-06-30 2020-07-07 The Procter And Gamble Company Water soluble containers and methods of making them
US11040812B2 (en) 2017-06-30 2021-06-22 The Procter & Gamble Company Water soluble containers and methods of making them
US11723875B2 (en) 2018-04-10 2023-08-15 The Procter & Gamble Company Polymeric materials and articles manufactured there from

Also Published As

Publication number Publication date
JP2002516346A (en) 2002-06-04
EP1078327A4 (en) 2001-09-05
US6228923B1 (en) 2001-05-08
US6437034B2 (en) 2002-08-20
JP4301733B2 (en) 2009-07-22
WO1999060507A1 (en) 1999-11-25
EP1078327A1 (en) 2001-02-28

Similar Documents

Publication Publication Date Title
US6437034B2 (en) Water soluble rapid prototyping support and mold material
EP1105828B1 (en) Method for making water soluble elements
US6067480A (en) Method and apparatus for in-situ formation of three-dimensional solid objects by extrusion of polymeric materials
US11104041B2 (en) Consumable feedstock for 3D printing and method of use
Hanon et al. Influence of the 3D printing process settings on tensile strength of PLA and HT-PLA
JP4224456B2 (en) Method for 3D modeling
Wu et al. Preparation of poly (vinyl alcohol)/poly (lactic acid)/hydroxyapatite bioactive nanocomposites for fused deposition modeling
BRPI0714047A2 (en) binder, thermoplastic composition, use of thermoplastic composition, metal molded body, and processes for producing a thermoplastic composition, for producing molded bodies from a thermoplastic composition
US20190352804A1 (en) Filaments for use as a support material in fused deposition modeling
EP3245255B1 (en) Support material for 3d printing of polymer compounds
KR20090127905A (en) Glass fiber reinforced polyamide resin composition
JP2018526246A (en) Additive manufacturing method of biocompatible material and article made by the method
KR102291562B1 (en) Composition for 3D Printing and Filament for 3D Printer
US11453774B2 (en) Method of making a three-dimensional object using a poly(ether ether ketone) polymeric component
US20220106233A1 (en) Use of a composition comprising a high level of inorganic material(s) and a thermoplastic elastomer in an additive manufacturing process
Roj et al. Mechanical properties of 16 different FDM-plastic types
Hague et al. Rapid prototyping, tooling and manufacturing
CN111187456B (en) High-density polyethylene composition, preparation method thereof, 3D printing material and application thereof
Struebig et al. Influence of filling strategies on the tensile strength and anisotropic properties of droplet-based 3D-printed parts
CN110239083B (en) FDM-based 3D printing method and toughening method
KR102473146B1 (en) Composition for 3D Printing and Filament for 3D Printer
Dydak et al. Studies of the Properties of Materials for Foundry Patterns Used in the Production of High-quality Precision Castings
JP2846260B2 (en) High performance binder / molding agent composition for manufacturing precision metal parts by powder injection molding
Chen et al. Influence of additives on polycarbonate/acrylonitrile-butadiene-styrene blending for fused deposition modeling
WO2024095146A1 (en) Polymeric composition for 3d printing and method of use thereof

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: STRATASYS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOMBARDI, JOHN LANG;POPOVICH, DRAGAN;ARTZ, GREGORY JOHN;REEL/FRAME:027904/0088

Effective date: 19980610

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12