US20010023869A1 - Regulated electro-welding device - Google Patents

Regulated electro-welding device Download PDF

Info

Publication number
US20010023869A1
US20010023869A1 US09/769,726 US76972601A US2001023869A1 US 20010023869 A1 US20010023869 A1 US 20010023869A1 US 76972601 A US76972601 A US 76972601A US 2001023869 A1 US2001023869 A1 US 2001023869A1
Authority
US
United States
Prior art keywords
electrical
heating
switching
signal
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/769,726
Other versions
US6407370B2 (en
Inventor
Jean Sauron
Gil Gaunt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOSEPH SAURON MATERIAL INDUSTRIEL ZI LES BORDES Ste
Original Assignee
JOSEPH SAURON MATERIAL INDUSTRIEL ZI LES BORDES Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOSEPH SAURON MATERIAL INDUSTRIEL ZI LES BORDES Ste filed Critical JOSEPH SAURON MATERIAL INDUSTRIEL ZI LES BORDES Ste
Assigned to SOCIETE JOSEPH SAURON MATERIAL INDUSTRIEL Z.I. LES BORDES reassignment SOCIETE JOSEPH SAURON MATERIAL INDUSTRIEL Z.I. LES BORDES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAUNT, GIL, SAURON, JEAN
Publication of US20010023869A1 publication Critical patent/US20010023869A1/en
Application granted granted Critical
Publication of US6407370B2 publication Critical patent/US6407370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/362Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/364Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint being a woven or non-woven fabric or being a mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3676Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/861Hand-held tools
    • B29C66/8618Hand-held tools being battery operated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/944Measuring or controlling the joining process by measuring or controlling the time by controlling or regulating the time
    • B29C66/9441Measuring or controlling the joining process by measuring or controlling the time by controlling or regulating the time the time being controlled or regulated as a function of another parameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/967Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes
    • B29C66/9672Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes involving special data inputs, e.g. involving barcodes, RFID tags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings

Definitions

  • the invention relates to electro-welding, or electro-fusing, elements made of plastic material, especially thermoplastics, for welding those elements together.
  • Such apparatuses comprise:
  • a power source for generating an electrical signal, and for having an AC current in circulation
  • heating means electrically connected to the converter for heating the weldable elements, at least locally, up to a temperature which is sufficient for fusing those elements and welding them, together.
  • Such an apparatus is notably disclosed in FR-A-2 572 326 or U.S. Pat. No. 5 138 136.
  • Another problem is to be solved for adapting the welding apparatuses to the various elements to be welded, in relation to the compatibility between the apparatuses provided with one electrical resistance (such as an electrical resistance embedded within an electro-weldable connector made of plastic materials) and those apparatuses which are provided with heating means adapted for being heated by induction.
  • one electrical resistance such as an electrical resistance embedded within an electro-weldable connector made of plastic materials
  • a further problem which is to be solved by the present invention relates to designing the welding apparatus so that it can operate as well as an ⁇ inverter >> (supplied by a battery for having a direct, or unidirectional, DC current in circulation), or as an induction welding apparatus.
  • U DC input electrical voltage of the regulating means (voltage just upstream the regulation),
  • U RMS variable output electrical voltage of the regulating means corresponding to the electrical current supplied to the heating means
  • t 1 time interval for each non-passing phase of the switch
  • t 2 time interval for each passing phase of the switch.
  • Another feature of the invention relates to interposing an electrical accumulator between the DC output of the converter and the regulating means.
  • variable output voltage of the regulating means is a stepped (or crenelled) voltage which is periodically nul, during each non-passing phase (t 1 ) of the switch.
  • Another feature of the invention recommends that the commutating rhythm ( ⁇ period) of the switching means is variable, so that the electrical signal frequency delivered to the heating means is also variable, together with the heating frequency.
  • FIG. 1 diagrammatically shows an electro-welding apparatus having an electrical wire connection with the heating means of a connector, for welding together two plastic pipes,
  • FIG. 2 shows internal details of the electro-welding machine
  • FIG. 3 shows further details of a circuitry adapted to be used on the AC/DC conversion stage
  • FIG. 4 shows a FET (Field Effect Transistor) adapted to be used on a switching/regulating means
  • FIG. 5 diagrammatically shows the evolution of the output voltage (U RMS ) for supplying the heating means, as a function of the time (t).
  • the invention can be used for welding various elements, such as for example, thermoplastic tubes by means of a saddle.
  • two pipes 1 , 3 made of a plastic material, for example polyethylene, are to be connected by means of a plastic sleeve 5 (for example made of polyethylene) adapted to be heat-welded round the terminal ends of pipes 1 , 3 which are disposed end to end, coaxially.
  • a plastic sleeve 5 for example made of polyethylene
  • the sleeve 5 comprises an electrical winding 6 embedded in the immediate vicinity of the internal wall of the sleeve.
  • the two ends of the electrical resistance can be connected, through two electrical supplying terminals 7 , 9 .
  • the heat-welding of sleeve 5 round pipes 1 , 3 is operated by passing a determined electrical energy between the terminals 7 , 9 , during a predetermined time interval, for increasing the temperature of the above-referenced sleeve and pipes as high as required for welding them together.
  • said electrical energy and time interval are dependant from the diameter of the sleeve 5 , the thickness of its wall, the electrical resistance of the winding, the length of the sleeve, the quality of the plastic material, etc.
  • Those data can be incorporated in a bar-code card, (or a magnetic code, an electronic chip, etc.).
  • the selected bar-code card is fixed to the pipes or to the coupling element 5 .
  • Said bar-code card is adapted to be read, for example by means of an optical pencil 15 connected to the apparatus 11 for providing an electronic card 17 with the data as read.
  • Such an electronic card manages the interface with the operator, through a display unit 19 and a keyboard 21 , along with the automated acquisitions of data by an electronic reader 15 (for example a visual scanner).
  • the electronic card 17 is connected to memories and further manages the communicating outputs (parallel, series connections . . . ).
  • the electronic card 17 further stores and processes data addressed to the card by a heating probe, such as the probe illustrated in 23 , which can provide the card with temperature measurements corresponding to the temperature of the elements to be welded and/or to the ambient temperature, which temperature typically has an influence on the welding conditions (variations of the ⁇ quantity >> of electrical energy to be supplied and/or of the duration of the electrical supply, especially).
  • the apparatus 11 further comprises an AC/DC converter 29 which controls the electrical supplying of the electronic card 17 , through the line 31 .
  • the converter 29 is provided with an alternative primary supplying voltage (alternative current AC) 33 , from the power source 32 (such as a battery on site, for example), through an on/off switch 35 typically comprising apparatus protecting means 11 .
  • AC alternative current
  • the AC/DC converter 29 is further connected to a electronic switch circuit 37 (also called ⁇ regulating means >>) to which the AC/DC converter delivers a direct electronic signal (also called ⁇ rectified unidirectional signal >>) DC, such as especially an electronic voltage, through the line 39 .
  • a direct electronic signal also called ⁇ rectified unidirectional signal >>
  • DC such as especially an electronic voltage
  • an accumulator or a battery, 41 can be connected in parallel for enabling the apparatus to operate in mode ⁇ battery >>, so that the electrical energy is stored in the accumulator 41 , said electrical energy (DC current) being thus ready to be supplied to the elements to be heated.
  • the switch circuit 37 is further controlled by the electronic card 17 which delivers to the circuit 37 the regulating instructions of the electrical signal to be delivered to the sleeve 5 .
  • Those regulating instructions are previously calculated in the card 17 , as a function of:
  • the switch circuit 37 is provided with the electrical input signal, through the line 39 .
  • Said electrical input signal is to be periodically inverted/regulated by the switch circuit 37 , as a function of the switching/regulating instructions addressed through the cable line 33 , 43 , under the control of the electronic card 17 .
  • the switched/regulated electrical signal is further delivered to the coupling element 5 , through the connecting line 27 .
  • the AC/DC converter 29 can be manufactured as diagramatically illustrated on FIG. 3.
  • Its input portion comprises at first electrical rectifying means 29 a , followed by electrical lower means 29 b.
  • the input AC signal addressed in 47 and 49 passes through a diode rectifier (or diode bridge) 51 .
  • a capacitance 53 is connected in parallel to the output of the diode bridge 51 , between the positive (+) and negative ( ⁇ ) pole lines respectively referenced 55 and 57 .
  • the earth (or ground) is referenced 59 .
  • the rectified electrical signal is addressed to the electrical signal limiter 29 b which comprises an on/off (passing/non passing) switch means 73 , the output of which addresses a square electrical signal diagrammatically referenced in 65 .
  • a diode 67 is connected downstream the switch 63 , between the pole lines 55 and 57 .
  • a self-inductance 69 defines the threshhold for lowering the electrical signal, and a capacitance 71 is connected, at the output, between the pole lines 55 and 57 .
  • the output signal delivered at the output of the rectifier/voltage limiter 29 is a rectified electrical signal (DC) and said signal is addressed on the electrical line 39 .
  • FIG. 4 shows a main component of the switching circuit 37 .
  • Said component, referenced 73 and also called ⁇ switching means >> is a FET 73 .
  • the input 75 of the transistor receives the corresponding signal from the line 39 .
  • the second input 77 is connected to the line 43 (through which is addressed the switching/regulating instructions issued from the electronic card 17 .
  • the output 79 of the FET delivers a changed-over signal to the line 27 .
  • U DC as the input voltage signal received by the transistor 73 , before regulating said signal in the regulating/switch circuit 37
  • U RMS is the output voltage signal delivered by the circuit 37 to the heating means of the coupling element 5
  • t 1 and t 2 as the time intervals of the respective non-passing (off) and passing (on) phase of the switch, viz. the on/off switching time intervals of the input signal.
  • the above-mentioned first and second data have an influence on the cyclic ratio between the periodically changed-over output signal and the input signal of circuit 37 .
  • the output electrical signal (presently U RMS ) corresponds to a so-called ⁇ shopped >> signal, viz. a signal having a value liable to vary.
  • FIG. 5 diagrammatically shows the output signal U RMS (supposed to be an electrical voltage) delivered for a determined switched period ⁇ (said period being controlled by the electronic card 17 ).
  • the switching rhythm (viz., the time intervals of the successive passing and non-passing periods of the switch 37 ) and the value of the input signal determine the frequency and the amplitude of the output signal.
  • a steady crenelled signal can be obtained if the switching period (rhythm) is constant. Said crenelled signal is periodically nul (non-passing phases of the switch), whereas said output signal (presently the output voltage signal) U RMS is periodically maximum during all the time interval of each passing phase of the switch 37 .
  • a range of voltages comprised between 8 Volts and 44 Volts is typically selected for the most well-known electro-welding machines.
  • the value of said voltage is especially a function of the working conditions, and so is a function of the measures delivered by any probe, or is a function of input data entered by the operator, through the keyboard.
  • such an electro-welding apparatus is adapted to operate either at a constant frequency in a ⁇ direct >> supplying mode, without any battery 41 (welding apparatus comprising an ⁇ inverter >>), or in an ⁇ indirect >> supplying mode, through the battery 41 .
  • ⁇ battery welding apparatus the electrical energy is stored in an electrical accumulator.
  • the steady frequency (rhythm) f is typically of about 100 Hz.
  • the frequency is of about 15 to 25 kHz (for example 20 kHz), because the electronic components for the regulation are operated at such a high frequency.
  • the dimensions and the heating conditions of the electrical transformer are reduced, and the transformer can often be integrated in the switch/regulating circuit 37 .
  • the electro-welding machine of the invention is also adapted for heating a coupling element 5 by induction, at a variable switching frequency.
  • Those variations in the frequency of the changed-over signal delivered at the output of the regulating/switch circuit 37 depend on the switching rhythm of the FET 73 . If required, the cyclic ratio is also ready to have a variable value, as above-mentioned (time interval of the passing/non passing phases of the transistor . . . ).
  • the heating element can be a grid or a hollow cylindrical cage made of a metallic alloy adapted to the frequency (or the frequency range) of the induced vibrations.
  • the electrical energy is not necessarily stored in an electric accumulator.
  • the DC input voltage is elevated for reducing the electrical current and the corresponding induction frequency. If an electrical current is to be regulated/switched-over, as a function of the U RMS voltage and the electrical charge), the cyclic ratio can be calculated as above-mentioned.
  • the operating frequency is high, in a range between a hundred of kHz and several tens (or hundreds) of MHz.
  • the frequency depends on the selected vibratory heating element.
  • the cable line 27 is no more useful.
  • an emitter 81 which emits the required magnetic field towards the corresponding receptive heating element, at the required frequency (see FIG. 2).
  • FIGS. 2 and 3 of FR-A-2 572 326 For any further details of the elements and components of the welding machine (said elements or components being not included in the present invention), attention is drawn to FIGS. 2 and 3 of FR-A-2 572 326 and the corresponding description.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Arc Welding Control (AREA)

Abstract

An electro-welding device for electrically welding plastic elements together, comprising: a power source for having an AC current in circulation, an electrical converter AC/DC, heating means electrically connected to the converter for heating the weldable elements, electrical regulating means interposed between the electrical converter and the heating means, the electrical regulating means comprising switching means having successive electrically passing and electrically non-passing phases, the electrical regulating means being subjected to the switch-over rhythm of said switching means for generating a switched over electrical signal.

Description

  • The invention relates to electro-welding, or electro-fusing, elements made of plastic material, especially thermoplastics, for welding those elements together. [0001]
  • BACKGROUND OF THE INVENTION
  • Apparatuses for electro-welding such elements are already known. [0002]
  • Typically, such apparatuses comprise: [0003]
  • a power source for generating an electrical signal, and for having an AC current in circulation, [0004]
  • an electrical converter AC/DC, [0005]
  • heating means, electrically connected to the converter for heating the weldable elements, at least locally, up to a temperature which is sufficient for fusing those elements and welding them, together. [0006]
  • Such an apparatus is notably disclosed in FR-A-2 572 326 or U.S. Pat. No. 5 138 136. [0007]
  • However, the welding apparatuses of the prior art are not designed for being efficiently adapted to outdoor working conditions, especially in relation to the temperature. [0008]
  • Another problem is to be solved for adapting the welding apparatuses to the various elements to be welded, in relation to the compatibility between the apparatuses provided with one electrical resistance (such as an electrical resistance embedded within an electro-weldable connector made of plastic materials) and those apparatuses which are provided with heating means adapted for being heated by induction. [0009]
  • A further problem which is to be solved by the present invention relates to designing the welding apparatus so that it can operate as well as an <<inverter >> (supplied by a battery for having a direct, or unidirectional, DC current in circulation), or as an induction welding apparatus. [0010]
  • SUMMARY OF THE INVENTION
  • For improving the operating conditions of the existing apparatus and for solving at least a portion of the above-mentioned problems, an important feature of the invention consists in interposing electrical regulating means between the electrical converter and the heating means, those electrical regulating means being subjected to the commutating (or the switch-over) rhythm of switching means (also called <<switch >>) for generating a commutated electrical signal having a cyclic ratio (α) which is variable, with [0011] α = U RMS 2 U DC 2 and α = t 2 t 1 + t 2 ,
    Figure US20010023869A1-20010927-M00001
  • U[0012] DC: input electrical voltage of the regulating means (voltage just upstream the regulation),
  • U[0013] RMS: variable output electrical voltage of the regulating means corresponding to the electrical current supplied to the heating means,
  • t[0014] 1: time interval for each non-passing phase of the switch,
  • t[0015] 2: time interval for each passing phase of the switch.
  • For enlarging the use of the welding apparatus of the invention and avoiding difficulties in electrically supplying said apparatus with electrical energy, another feature of the invention relates to interposing an electrical accumulator between the DC output of the converter and the regulating means. [0016]
  • Further, for improving the efficiency and reliability of the electro-welding (temperature, swiftness . . . ) during the fusing phase, another feature of the invention recommends that the variable output voltage of the regulating means is a stepped (or crenelled) voltage which is periodically nul, during each non-passing phase (t[0017] 1) of the switch.
  • Furthermore, especially for allowing the welding apparatus of the invention to operate for heating by induction the elements to be welded, another feature of the invention recommends that the commutating rhythm (δ period) of the switching means is variable, so that the electrical signal frequency delivered to the heating means is also variable, together with the heating frequency.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more detailed description of the invention is following, with reference to the drawings in which: [0019]
  • FIG. 1 diagrammatically shows an electro-welding apparatus having an electrical wire connection with the heating means of a connector, for welding together two plastic pipes, [0020]
  • FIG. 2 shows internal details of the electro-welding machine, [0021]
  • FIG. 3 shows further details of a circuitry adapted to be used on the AC/DC conversion stage, [0022]
  • FIG. 4 shows a FET (Field Effect Transistor) adapted to be used on a switching/regulating means, [0023]
  • and FIG. 5 diagrammatically shows the evolution of the output voltage (U[0024] RMS) for supplying the heating means, as a function of the time (t).
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • In what follows, reference will only be made to the example of welding together two pipes, by means of a sleeve (also called <<coupling element >>). [0025]
  • However, the invention can be used for welding various elements, such as for example, thermoplastic tubes by means of a saddle. [0026]
  • On FIG. 1, two [0027] pipes 1, 3 made of a plastic material, for example polyethylene, are to be connected by means of a plastic sleeve 5 (for example made of polyethylene) adapted to be heat-welded round the terminal ends of pipes 1, 3 which are disposed end to end, coaxially.
  • The [0028] sleeve 5 comprises an electrical winding 6 embedded in the immediate vicinity of the internal wall of the sleeve. The two ends of the electrical resistance can be connected, through two electrical supplying terminals 7, 9.
  • As already known, the heat-welding of [0029] sleeve 5 round pipes 1, 3 is operated by passing a determined electrical energy between the terminals 7, 9, during a predetermined time interval, for increasing the temperature of the above-referenced sleeve and pipes as high as required for welding them together.
  • Especially, said electrical energy and time interval are dependant from the diameter of the [0030] sleeve 5, the thickness of its wall, the electrical resistance of the winding, the length of the sleeve, the quality of the plastic material, etc.
  • As already described in FR-A-2 572 326, such parameters on which the welding software is based, within the apparatus [0031] 11 (viz. essentially the time interval and the electrical power source energy, power, intensity and/or voltage to be delivered to the several electrical resistance) are indicated on an identification plate, such as 13 or 13′ (see FIG. 2).
  • Those data can be incorporated in a bar-code card, (or a magnetic code, an electronic chip, etc.). [0032]
  • The selected bar-code card is fixed to the pipes or to the [0033] coupling element 5. Said bar-code card is adapted to be read, for example by means of an optical pencil 15 connected to the apparatus 11 for providing an electronic card 17 with the data as read.
  • Such an electronic card manages the interface with the operator, through a [0034] display unit 19 and a keyboard 21, along with the automated acquisitions of data by an electronic reader 15 (for example a visual scanner). The electronic card 17 is connected to memories and further manages the communicating outputs (parallel, series connections . . . ).
  • The [0035] electronic card 17 further stores and processes data addressed to the card by a heating probe, such as the probe illustrated in 23, which can provide the card with temperature measurements corresponding to the temperature of the elements to be welded and/or to the ambient temperature, which temperature typically has an influence on the welding conditions (variations of the <<quantity >> of electrical energy to be supplied and/or of the duration of the electrical supply, especially).
  • If an ohmic measurement of the [0036] coupling element 5 is required, as disclosed in FRA-2 609 933, such a measurement data is stored and processed within the electronic card which further calculates and supplies the coupling element 5 with the corresponding voltage and/or electrical current and/or energy and/or power, along with the time interval and the welding frequency required for connecting the pipes 1, 3 together.
  • The [0037] apparatus 11 further comprises an AC/DC converter 29 which controls the electrical supplying of the electronic card 17, through the line 31.
  • The [0038] converter 29 is provided with an alternative primary supplying voltage (alternative current AC) 33, from the power source 32 (such as a battery on site, for example), through an on/off switch 35 typically comprising apparatus protecting means 11.
  • According to the invention, the AC/[0039] DC converter 29 is further connected to a electronic switch circuit 37 (also called <<regulating means >>) to which the AC/DC converter delivers a direct electronic signal (also called <<rectified unidirectional signal >>) DC, such as especially an electronic voltage, through the line 39.
  • On the [0040] line 39, an accumulator or a battery, 41, can be connected in parallel for enabling the apparatus to operate in mode <<battery >>, so that the electrical energy is stored in the accumulator 41, said electrical energy (DC current) being thus ready to be supplied to the elements to be heated.
  • The [0041] switch circuit 37 is further controlled by the electronic card 17 which delivers to the circuit 37 the regulating instructions of the electrical signal to be delivered to the sleeve 5. Those regulating instructions are previously calculated in the card 17, as a function of:
  • (a) the electrical signal delivered in the line [0042] 39 (which signal depends on the signal supplied through the line 31),
  • (b)[0043] 1 the measurements operated by the probe(s) (temperature readings, ohm readings, . . . ),
  • (c) an electrical internal calculation, as above-mentioned (voltage and/or current and/or energy and/or power) operated concomitant with the calculation of the heating time interval and the heating frequency to be applied for heating the resistance of the [0044] coupling element 5.
  • Thus, the [0045] switch circuit 37 is provided with the electrical input signal, through the line 39. Said electrical input signal is to be periodically inverted/regulated by the switch circuit 37, as a function of the switching/regulating instructions addressed through the cable line 33, 43, under the control of the electronic card 17.
  • The switched/regulated electrical signal is further delivered to the [0046] coupling element 5, through the connecting line 27. The AC/DC converter 29 can be manufactured as diagramatically illustrated on FIG. 3.
  • Its input portion comprises at first electrical rectifying means [0047] 29 a, followed by electrical lower means 29 b.
  • The input AC signal addressed in [0048] 47 and 49 passes through a diode rectifier (or diode bridge) 51. A capacitance 53 is connected in parallel to the output of the diode bridge 51, between the positive (+) and negative (−) pole lines respectively referenced 55 and 57. The earth (or ground) is referenced 59. At the output of the rectifier 29 a, the rectified electrical signal is addressed to the electrical signal limiter 29 b which comprises an on/off (passing/non passing) switch means 73, the output of which addresses a square electrical signal diagrammatically referenced in 65. A diode 67 is connected downstream the switch 63, between the pole lines 55 and 57. A self-inductance 69 defines the threshhold for lowering the electrical signal, and a capacitance 71 is connected, at the output, between the pole lines 55 and 57.
  • Thus, the output signal delivered at the output of the rectifier/[0049] voltage limiter 29 is a rectified electrical signal (DC) and said signal is addressed on the electrical line 39.
  • FIG. 4 shows a main component of the switching [0050] circuit 37. Said component, referenced 73 and also called <<switching means >> is a FET 73. The input 75 of the transistor receives the corresponding signal from the line 39. The second input 77 is connected to the line 43 (through which is addressed the switching/regulating instructions issued from the electronic card 17.
  • The [0051] output 79 of the FET delivers a changed-over signal to the line 27.
  • Let us consider U[0052] DC as the input voltage signal received by the transistor 73, before regulating said signal in the regulating/switch circuit 37, URMS is the output voltage signal delivered by the circuit 37 to the heating means of the coupling element 5, and t1 and t2 as the time intervals of the respective non-passing (off) and passing (on) phase of the switch, viz. the on/off switching time intervals of the input signal.
  • With such an input signal (which is supposed to be the voltage signal UDC) the [0053] circuit 37 generates an output signal URMS between the resistance terminals, with a cyclic ratio γ such as a = α = U RMS 2 U DC 2
    Figure US20010023869A1-20010927-M00002
  • under the control of the commutating rhythm (t[0054] 1, t2) determined by the switching means 73 which is itself controlled by the electrical impulses addressed by the electronic card 17.
  • From the above, it is to be understood that the specifications for welding the above-mentioned elements, including the so-called <<first data >> at least partially contained within the [0055] code 13, 13′, are read by the visual reader 15 and are thus acquired within the electronic card 17. Said card 17 also acquires second data transmitted by the measuring means (probes 23, 25 especially).
  • The above-mentioned first and second data have an influence on the cyclic ratio between the periodically changed-over output signal and the input signal of [0056] circuit 37. So, the output electrical signal (presently URMS) corresponds to a so-called <<shopped >> signal, viz. a signal having a value liable to vary.
  • FIG. 5 diagrammatically shows the output signal U[0057] RMS (supposed to be an electrical voltage) delivered for a determined switched period α (said period being controlled by the electronic card 17).
  • The cyclic ratio a is the ratio between the time intervals t[0058] 1 and t2 shown on FIG. 5, with α = t 2 t 1 + t 2 .
    Figure US20010023869A1-20010927-M00003
  • The switching rhythm (viz., the time intervals of the successive passing and non-passing periods of the switch [0059] 37) and the value of the input signal determine the frequency and the amplitude of the output signal.
  • As shown on FIG. 5, a steady crenelled signal can be obtained if the switching period (rhythm) is constant. Said crenelled signal is periodically nul (non-passing phases of the switch), whereas said output signal (presently the output voltage signal) U[0060] RMS is periodically maximum during all the time interval of each passing phase of the switch 37.
  • Nowadays, a range of voltages comprised between 8 Volts and 44 Volts is typically selected for the most well-known electro-welding machines. The value of said voltage is especially a function of the working conditions, and so is a function of the measures delivered by any probe, or is a function of input data entered by the operator, through the keyboard. [0061]
  • According to the invention, such an electro-welding apparatus is adapted to operate either at a constant frequency in a <<direct >> supplying mode, without any battery [0062] 41 (welding apparatus comprising an <<inverter >>), or in an <<indirect >> supplying mode, through the battery 41.
  • In a so-called <<battery welding apparatus >> the electrical energy is stored in an electrical accumulator. A <<direct >> voltage (corresponding to a unidirectional DC current) of U[0063] DC=48 V is typically applied. If the output voltage (URMS) is to be set at 24 V, then the cyclic ratio α is 0.25, whereas said ratio is 0.677 for an output voltage of 39.5 V. The steady frequency (rhythm) f is typically of about 100 Hz.
  • On a machine of the <<inverter >> type, the electrical energy is not stored in an accumulator. The input voltage in the switch/regulating circuit 37 (U[0064] DC) is typically of about 200 to 250 V (for example 230 V). If the output voltage (URMS) is to be set at 24 V, then the cyclic ratio is α=0.0108, whereas α=0.0455 for URMS=39,5 V.
  • For such a type of machine, the frequency is of about 15 to 25 kHz (for example 20 kHz), because the electronic components for the regulation are operated at such a high frequency. Thus, the dimensions and the heating conditions of the electrical transformer (non illustrated) are reduced, and the transformer can often be integrated in the switch/regulating [0065] circuit 37.
  • However, the electro-welding machine of the invention is also adapted for heating a [0066] coupling element 5 by induction, at a variable switching frequency.
  • Those variations in the frequency of the changed-over signal delivered at the output of the regulating/[0067] switch circuit 37 depend on the switching rhythm of the FET 73. If required, the cyclic ratio is also ready to have a variable value, as above-mentioned (time interval of the passing/non passing phases of the transistor . . . ).
  • So, for typical operating frequencies of the DC signal comprised between about a hundred of kHz and some tens of MHz, a wireless heating is obtained, induced by the resonance of the heating element, through a magnetic field. The variation of the magnetic induction flux passing through the heating element produces the fusing of the [0068] coupling element 5 together with the pipes to be welded. The heating element can be a grid or a hollow cylindrical cage made of a metallic alloy adapted to the frequency (or the frequency range) of the induced vibrations.
  • For such machines of the <<induction >> type, the electrical energy is not necessarily stored in an electric accumulator. Typically, the DC input voltage is elevated for reducing the electrical current and the corresponding induction frequency. If an electrical current is to be regulated/switched-over, as a function of the U[0069] RMS voltage and the electrical charge), the cyclic ratio can be calculated as above-mentioned.
  • It is to be noted that in a so-called <<induction >> electro-welding machine, the operating frequency is high, in a range between a hundred of kHz and several tens (or hundreds) of MHz. The frequency depends on the selected vibratory heating element. [0070]
  • On such a machine, the [0071] cable line 27 is no more useful.
  • In place of said [0072] line 27, is an emitter 81 which emits the required magnetic field towards the corresponding receptive heating element, at the required frequency (see FIG. 2).
  • For any further details of the elements and components of the welding machine (said elements or components being not included in the present invention), attention is drawn to FIGS. 2 and 3 of FR-A-2 572 326 and the corresponding description. [0073]

Claims (4)

1. An electro-welding device for electrically welding plastic elements together, the device comprising:
a power source for generating an electrical signal, and for having an AC current in circulation,
an electrical converter AC/DC,
heating means, electrically connected to the converter for heating the weldable elements, at least locally, up to a temperature which is sufficient for fusing those elements and welding them, together,
electrical regulating means interposed between the electrical converter and the heating means, the electrical regulating means comprising switching means having successive electrically passing and electrically non-passing phases, the electrical regulating means being subjected to the switch-over rhythm of said switching means for generating a switched over electrical signal having a cyclic ratio (a) which is variable, with α = U RMS 2 U DC 2 and α = t 2 t 1 + t 2 ,
Figure US20010023869A1-20010927-M00004
UDC: input electrical voltage of the regulating means,
URMS: variable output electrical voltage of the regulating means corresponding to the electrical current supplied to the heating means,
t1: time interval for each non-passing phase of the switching means,
t2: time interval for each passing phase of the switching means.
2. The device of
claim 1
, wherein the variable output electrical voltage of the regulating means is a stepped voltage which is periodically nul, during each non-passing phase (t1) of the switching means.
3. The device of
claim 1
, wherein an electrical accumulator is interposed between the converter and the regulating means.
4. The device of
claim 1
, wherein the switching-over rhythm of the switching means is variable for delivering a switching-over signal having a variable frequency towards the heating means and thus, for inducing a heating of said plastic elements by induction.
US09/769,726 2000-01-28 2001-01-26 Regulated electro-welding device Expired - Fee Related US6407370B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0001117 2000-01-28
FR0001117A FR2804366B1 (en) 2000-01-28 2000-01-28 ELECTRO-WELDING DEVICE WITH REGULATED OUTPUT SIGNAL

Publications (2)

Publication Number Publication Date
US20010023869A1 true US20010023869A1 (en) 2001-09-27
US6407370B2 US6407370B2 (en) 2002-06-18

Family

ID=8846426

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/769,726 Expired - Fee Related US6407370B2 (en) 2000-01-28 2001-01-26 Regulated electro-welding device

Country Status (3)

Country Link
US (1) US6407370B2 (en)
EP (1) EP1125722A3 (en)
FR (1) FR2804366B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1495863A1 (en) * 2003-07-11 2005-01-12 Infineon Technologies AG Method and apparatus for producing a flat product
US20090256349A1 (en) * 2006-05-05 2009-10-15 Pierre Strubin Method and device for connecting tubes made out of thermoplastic material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301541B2 (en) * 1995-08-16 2007-11-27 Microunity Systems Engineering, Inc. Programmable processor and method with wide operations
US6870143B2 (en) * 2002-04-18 2005-03-22 Basic Resources, Inc. System and method for encapsulating a pipe
FR2874415B1 (en) * 2004-08-20 2006-11-24 Gaz De France METHOD FOR IN SITU REPAIR OF A THERMOFUSIBLE CONDUIT OR RESERVOIR AND DISPOSITF FOR CARRYING OUT SAID METHOD
US20060202471A1 (en) * 2005-03-07 2006-09-14 Weisbond Bradley K Electro-fusion joining system for thermoplastic piping systems
RU2450202C2 (en) * 2010-07-19 2012-05-10 Учреждение Российской академии наук Институт проблем нефти и газа Сибирского отделения Российской академии наук Procedure for socket welding of polymer pipes
US20140352891A1 (en) * 2012-01-17 2014-12-04 Sika Technology Ag Electromagnetic induction heater

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2572326B1 (en) 1984-10-31 1987-03-20 Gaz De France METHOD AND MACHINE FOR PRODUCING AUTOMATIC WELDING OF PLASTIC PARTS WITH INTEGRATED WINDING.
FR2609933B1 (en) 1986-12-23 1989-06-09 Gaz De France METHOD FOR CONDUCTING AND CONTROLLING THE TEMPERATURE RISE OF ELECTRICALLY HEATED ROOMS
FR2618097B1 (en) * 1987-07-15 1989-11-10 Gaz De France METHOD AND MACHINE FOR INTER-WELDING OF PLASTIC WORKPIECES WITH INTEGRATED WINDING
DE3810795C2 (en) * 1988-03-30 1994-04-21 Huerner Gmbh Electric welding machine for automatic welding of heating coil fittings
FR2656950B1 (en) 1990-01-11 1993-12-17 Gaz De France METHOD FOR SUPPLYING ELECTRICAL ENERGY TO A RESISTOR, PROVIDED ELECTRICAL CIRCUIT AND USES OF THE CIRCUIT.
FR2691666B1 (en) * 1992-06-01 1997-07-04 Gaz De France METHOD FOR BUTTON-TO-END WELDING OF TWO PLASTIC PIECES WITH IDENTIFICATION CODE, USING AN ELECTRICALLY WELDING MACHINE WITH AUTOMATIC CONTROL.
US5466916A (en) * 1993-09-24 1995-11-14 Hidec Co., Ltd. Method and apparatus for joint resin pipes using high-frequency electric induction heating
US5414247A (en) * 1993-12-29 1995-05-09 The Boeing Company Hot melt induction heater and method
US6011235A (en) * 1996-09-11 2000-01-04 Miyachi Technos Corporation Method and apparatus for controlling resistance welding
FR2762540B1 (en) * 1997-04-23 1999-06-11 Gaz De France IMPROVEMENT IN A BUTTON-TO-BUTT WELDING PROCESS
US5908575A (en) * 1997-05-16 1999-06-01 Gas Research Institute Method of inductively fusion joining plastic pipes
AU7441198A (en) * 1997-05-16 1998-12-11 Uponor Aldyl Company Fusion joining apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1495863A1 (en) * 2003-07-11 2005-01-12 Infineon Technologies AG Method and apparatus for producing a flat product
US20050008811A1 (en) * 2003-07-11 2005-01-13 Infineon Technologies Ag Method and apparatus for producing a sheet-like structure
US20090256349A1 (en) * 2006-05-05 2009-10-15 Pierre Strubin Method and device for connecting tubes made out of thermoplastic material

Also Published As

Publication number Publication date
FR2804366B1 (en) 2002-04-26
US6407370B2 (en) 2002-06-18
FR2804366A1 (en) 2001-08-03
EP1125722A2 (en) 2001-08-22
EP1125722A3 (en) 2004-01-02

Similar Documents

Publication Publication Date Title
CN100421341C (en) Switching regulator and image forming apparatus and its control method
US7310245B2 (en) Electric power transmission device and electric power transmission method
US6621272B2 (en) Programmable current exciter for measuring AC immittance of cells and batteries
US5793624A (en) Apparatus and method for charging a DC battery
EP0923182B1 (en) Non-contact power transmitting device
US6816395B2 (en) Switching power source device
EP0230589B1 (en) Ultrasonic wave type fuel atomizing apparatus for internal combustion engine
US20040218410A1 (en) Switching power supply, and a method of driving the same
US20010023869A1 (en) Regulated electro-welding device
US20040046543A1 (en) Apparatus for and method of measuring power consumption
US4757177A (en) High-frequency induction heating system with circuit protective feature
US4973815A (en) Resistance welder using an inverter
GB2314470A (en) Battery charging arrangement with inductively coupled charging device and rechargeable battery device
US4163278A (en) Voltage supply circuit responsive to plural possible DC input levels
EP0056481A2 (en) Transistor inverter device
EP0261328A1 (en) Seam welder
TW569481B (en) Driving method and driving circuit for piezoelectric transformer, cold cathode tube emission device, liquid crystal panel and liquid crystal panel built-in apparatus
KR100249348B1 (en) Pipe junction method and apparatus
JP2006121797A (en) Charger
JP3928769B2 (en) Power supply for simple electrophoresis device
US8653424B2 (en) Compensation for induction heating in coil welding equipment
US6178105B1 (en) Circuit arrangement for accurately detecting a direct current derived from clocked electric input values
KR980006748A (en) A power supply
KR0168475B1 (en) Automatic voltage regulator tester for generator
US3441708A (en) Welding

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOCIETE JOSEPH SAURON MATERIAL INDUSTRIEL Z.I. LES

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAURON, JEAN;GAUNT, GIL;REEL/FRAME:011679/0612

Effective date: 20010316

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362