US20010018973A1 - Cementing wells with crack and shatter resistant cement - Google Patents
Cementing wells with crack and shatter resistant cement Download PDFInfo
- Publication number
- US20010018973A1 US20010018973A1 US09/417,551 US41755199A US2001018973A1 US 20010018973 A1 US20010018973 A1 US 20010018973A1 US 41755199 A US41755199 A US 41755199A US 2001018973 A1 US2001018973 A1 US 2001018973A1
- Authority
- US
- United States
- Prior art keywords
- cement
- composition
- fibers
- cements
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
- C04B16/0616—Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B16/0625—Polyalkenes, e.g. polyethylene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/34—Non-shrinking or non-cracking materials
- C04B2111/343—Crack resistant materials
Definitions
- the present invention relates generally to cementing subterranean zones penetrated by well bores, and more particularly, to such methods whereby cement compositions which are crack and shatter resistant are utilized.
- Hydraulic cement compositions are commonly utilized in subterranean well completion and remedial operations.
- hydraulic cement compositions are used in primary cementing operations whereby pipe strings such as casings and liners are cemented in well bores.
- a hydraulic cement composition is pumped into the annular space between the walls of a well bore and the exterior surfaces of a pipe string disposed therein.
- the cement composition is permitted to set in the annular space thereby forming an annular sheath of hard substantially impermeable cement therein.
- the cement sheath physically supports and positions the pipe string in the well bore and bonds the exterior surfaces of the pipe string to the walls of the well bore whereby the undesirable migration of fluids between zones or formations penetrated by the well bore is prevented.
- Multi-lateral wells have recently been developed which include vertical or deviated principal well bores having one or more ancillary laterally extending well bores connected thereto. Drilling and completion equipment is available which allows multiple laterals to be drilled from a principal cased and cemented well bore. Each of the lateral well bores can include a liner cemented therein which is tied into the principal well bore. The lateral well bores can be drilled into predetermined producing formations or zones at any time in the productive life cycle of the well.
- the cement compositions utilized for cementing casings or liners in the well bores must have sufficient ductility and toughness to resist cracking or shattering as a result of pipe movements, impacts and/or shocks subsequently generated by drilling and other well operations.
- Set cement in wells, and particularly, a set cement sheath in the annulus between a pipe string and the walls of a well bore often fails by cracking or shattering during perforating and/or drilling operations. When the set cement cracks or shatters, rubble is often produced in the well or annulus.
- Fibers have been utilized in construction cement compositions heretofore including fibers formed of glass, steel, graphite, polyesters, polyamides and polyolefins.
- Polyolefin fibers are generally the most preferred in that they are readily available, are low in cost and have high resistance to corrosion and degradation.
- Fibrillated net-shaped polyolefin fibers are particularly suitable for use in cement compositions because they resist being pulled out of the set cement.
- the fibers function to control shrinkage cracking in the early stages of the cement setting process, and after setting, the fibers provide ductility and toughness to the cement composition whereby it resists cracking or shattering. When cracking or shattering does occur, the fibers hold the cracked or shattered set cement together and prevent the formation of rubble.
- a problem heretofore experienced in the use of fibers in well cement compositions is that the fibers are hydrophobic and are difficult to dry blend with cement.
- the fibers agglomerate in the dry cement when it is conveyed causing plugging to occur, and when the cement and fibers are combined with mixing water, the fibers form mats which prevent their dispersion into and throughout the cement slurry.
- the lack of dispersion of the fibers in the cement slurry make it difficult to pump.
- cement compositions contain fibrillated fibers which can be easily mixed and conveyed with dry cement and subsequently dispersed in the aqueous cement slurries formed.
- the present invention provides improved cement compositions and methods of cementing a subterranean zone which meet the needs described above and overcome the deficiencies of the prior art.
- the methods of the invention are basically comprised of the steps of introducing a crack and shatter resistant cement composition into a subterranean zone to be cemented and allowing the cement composition to set therein.
- the crack and shatter resistant cement compositions utilized in accordance with this invention are basically comprised of a hydraulic cement, sufficient hydrophilic fibers to make the cement composition crack and shatter resistant upon setting and sufficient water to form a pumpable slurry of the cement and fibers.
- the hydrophilic fibers utilized in accordance with this invention are preferably hydrophilic fibrillated polyolefin fibers.
- the methods of this invention are particularly suitable for cementing a pipe string such as casing or a liner in a well bore whereby the set cement can withstand the formation of perforations therein as well as other impacts and shocks subsequently generated by drilling and other well operations without cracking or shattering and forming rubble.
- Such methods are basically comprised of the following steps.
- a crack and shatter resistant cement composition of this invention is pumped into the annulus between the pipe string and the walls of the well bore.
- the cement composition is then allowed to set into a hard crack and shatter resistant impermeable mass having ductility and toughness.
- the present invention provides improved crack and shatter resistant cement compositions and methods of cementing subterranean zones using the compositions.
- the improved crack and shatter resistant cement compositions are basically comprised of a hydraulic cement, sufficient hydrophilic fibers to make the cement composition crack and shatter resistant upon setting and sufficient water to form a pumpable slurry of the cement and fibers.
- the methods are basically comprised of the steps of introducing a crack and shatter resistant cement composition of this invention into the zone by way of the well bore and then allowing the cement composition to set in the zone.
- cement and shatter resistant cement composition is used herein to mean a cement composition that sets into a hard impermeable mass having ductility and toughness and that resists cracking and/or shattering as a result of perforating operations, pipe movements, impacts, shocks and the like. If cracking or shattering does occur, the pieces formed are held together by the hydrophilic fibers in the cement composition.
- cement compositions and methods of this invention are useful in a variety of well completion and remedial operations, they are particularly useful in primary cementing, i.e., cementing casings and liners in well bores.
- primary cementing i.e., cementing casings and liners in well bores.
- the crack and shatter resistant cement compositions of this invention are readily and easily prepared without the conveying, mixing, fiber dispersal and pumping problems encountered heretofore.
- a variety of hydraulic cements can be utilized in the crack and shatter resistant cement compositions of this invention including those comprised of calcium, aluminum, silicon, oxygen and/or sulfur which set and harden by reaction with water.
- Such hydraulic cements include Portland cements, pozzolana cements, gypsum cements, high aluminum content cements, silica cements and high alkalinity cements.
- Portland cements are generally preferred for use in accordance with the present invention.
- Portland cements of the types defined and described in the API Specification For Materials And Testing For Well Cements, API Specification 10, Fifth Edition, dated Jul. 1, 1990 of the American Petroleum Institute are particularly suitable.
- Preferred API Portland cements include classes A, B, C, G and H, with API classes G and H being the most preferred.
- fibers formed of various materials can be utilized in accordance with the present invention, the fibers utilized must resist degradation in a hydraulic cement composition.
- fibers formed of polyesters, polyamides and glass suffer from the disadvantage that they degrade in the presence of hydrated lime. Hydrated lime is released in a cement composition as the cement therein is hydrated.
- Polyolefin fibers are suitable for use in cement compositions in that polyolefin fibers do not degrade or otherwise loose their strength over time in a set cement composition.
- fibers formed from polyolefins are hydrophobic and are very difficult to dry blend with hydraulic cements and disperse in water. Because they are hydrophobic, the polyolefin fibers cluster together when mixed with water and do not disperse therein. When cement slurries containing such non-dispersed fibers are pumped in high pressure pumps, difficulties are encountered due to the fiber clusters plugging off lines, valves and the like.
- hydrophilic polyolefin fibers are included in the crack and shatter resistant cement compositions.
- the hydrophilic polyolefin fibers do not degrade in cement compositions and are readily dry mixed with cement and dispersed in the cement mixing water.
- Particularly suitable such hydrophilic polyolefin fibers are commercially available from the Forta Corporation of Grove City, Pa.
- the preferred polyolefin fibers are polypropylene or polyethylene fibers which are in a fibrillated net configuration which maximizes the long term durability and toughness of a cement composition including the fibers.
- the fibrillated net-shaped fibers function exceptionally well in preventing cracking or shattering of cement compositions containing them, and if cracking or shattering does occur, in holding the cracked or shattered cement together, i.e., the individual pieces produced are held together by the fibers thereby preventing rubble formation.
- the normally hydrophobic polyolefin fibers are converted to hydrophilic fibers by treating the hydrophobic fibers with a surface active agent.
- the most preferred hydrophilic fibers for use in accordance with the present invention are hydrophilic polypropylene fibrillated net-shaped fibers having lengths in the range of from about 0.5 inch to about 1.5 inches.
- hydrophilic fibers utilized are included in a cement composition of this invention in an amount in the range of from about 0.1% to about 1% by weight of hydraulic cement in the composition, more preferably in an amount in the range of from about 0.125% to about 0.5%.
- the water utilized in the cement compositions of this invention can be fresh water, unsaturated aqueous salt solutions or saturated aqueous salt solutions such as brine or seawater.
- the water is generally present in the cement compositions in an amount in the range of from about 30% to about 100% by weight of hydraulic cement in the compositions, more preferably in an amount in the range of from about 35% to about 60%.
- the crack and shatter resistant cement compositions of this invention can include a variety of additives for improving or changing the properties of the cement compositions.
- additives include, but are not limited to, set retarding agents, fluid loss control agents, dispersing agents, set accelerating agents and formation conditioning agents.
- Set retarding agents are included in the cement compositions when it is necessary to extend the time in which the cement compositions can be pumped so that they will not thicken or set prior to being placed at a desired location in a well.
- set retarding agents include, but are not limited to, lignosulfonates such as calcium and sodium lignosulfonate, organic acids such as tartaric acid and gluconic acid, copolymers and others.
- the proper amount of set retarding agent required for particular conditions can be determined by conducting a “thickening time test” for the particular retarder and cement composition. Such tests are described in the API Specification 10 mentioned above.
- a particularly preferred set retarder for use in accordance with the present invention is a copolymer or copolymer salt of 2-acrylamido-2-methylpropane sulfonic acid and acrylic acid.
- the copolymer comprises from about 40 to about 60 mole percent 2-acrylamido-2-methylpropane sulfonic acid with the balance comprising acrylic acid, and the copolymer or salt thereof preferably has an average molecular weight below about 5,000.
- a set retarder is included in the cement composition of this invention in an amount in the range of from about 0.1% to about 2% by weight of hydraulic cement in the composition.
- fluid loss control agents examples include, but are not limited to, cellulose derivatives, modified polysaccharides, polyacrylamides, guar gum derivatives, 2-acrylamido-2-methylpropane sulfonic acid copolymers, polyethyleneimine and the like.
- An example of a dispersing agent which can be utilized is comprised of the condensation polymer product of an aliphatic ketone, an aliphatic aldehyde and a compound which introduces acid groups into the polymer, e.g., sodium bisulfite.
- a dispersing agent is described in U.S. Pat. No. 4,557,763 issued to George et al. on Dec. 10, 1985.
- Examples of set accelerating agents which can be utilized include, but are not limited to, calcium chloride, zinc formate and triethanolamine, and examples of formation conditioning agents include, but are not limited to, potassium chloride and sodium chloride.
- a method of the present invention for cementing a subterranean zone penetrated by a well bore comprises the steps of:
- a more preferred method of cementing a subterranean zone penetrated by a well bore comprises the steps of:
- a preferred method of this invention for cementing a pipe string, such as casing or a liner, in a well bore whereby the set cement can withstand the formation of perforations therein as well as other impacts and shocks subsequently generated by drilling or other well operations without cracking or shattering and forming rubble is comprised of the steps of:
- a crack and shatter resistant cement composition into the annulus between the pipe string and the walls of the well bore, the cement composition comprising Portland API Class G or H cement, hydrophilic polyethylene fibrillated net-shaped fibers present in an amount in the range of from about 0.125% to about 0.5% by weight of cement in the composition and water present in an amount in the range of from about 38% to about 46% by weight of cement in the composition; and
- a base cement composition comprised of Portland API Class H cement and fresh water present in an amount of about 38% by weight of the cement having a density of 16.4 pounds per gallon was prepared.
- a portion of the base cement composition without fibers as well as portions thereof with hydrophobic polypropylene fibers and hydrophilic polypropylene fibers were tested for mechanical properties in accordance with API RP 10B.
- the fibers utilized and their quantities along with the results of the tests are set forth in the Table below.
- test cement portions containing hydrophilic fibers are essentially the same as the test cement portions containing hydrophobic polypropylene fibers.
- hydrophilic fibers were easily dry blended with the cement and readily dispersed in the mixing water while the hydrophobic fibers were not.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Improved cement compositions and methods of cementing subterranean zones penetrated by well bores are provided. In accordance with the methods, a crack and shatter resistant cement composition is introduced into a subterranean zone by way of the well bore penetrating it comprised of a hydraulic cement, sufficient hydrophilic fibers to make the cement composition crack and shatter resistant upon setting and sufficient water to form a pumpable slurry. Thereafter, the cement composition is allowed to set in the subterranean zone.
Description
- 1. Field of the Invention
- The present invention relates generally to cementing subterranean zones penetrated by well bores, and more particularly, to such methods whereby cement compositions which are crack and shatter resistant are utilized.
- 2. Description of the Prior Art
- Hydraulic cement compositions are commonly utilized in subterranean well completion and remedial operations. For example, hydraulic cement compositions are used in primary cementing operations whereby pipe strings such as casings and liners are cemented in well bores. In performing primary cementing, a hydraulic cement composition is pumped into the annular space between the walls of a well bore and the exterior surfaces of a pipe string disposed therein. The cement composition is permitted to set in the annular space thereby forming an annular sheath of hard substantially impermeable cement therein. The cement sheath physically supports and positions the pipe string in the well bore and bonds the exterior surfaces of the pipe string to the walls of the well bore whereby the undesirable migration of fluids between zones or formations penetrated by the well bore is prevented.
- Multi-lateral wells have recently been developed which include vertical or deviated principal well bores having one or more ancillary laterally extending well bores connected thereto. Drilling and completion equipment is available which allows multiple laterals to be drilled from a principal cased and cemented well bore. Each of the lateral well bores can include a liner cemented therein which is tied into the principal well bore. The lateral well bores can be drilled into predetermined producing formations or zones at any time in the productive life cycle of the well.
- In both conventional wells having single well bores and multi-lateral wells having several bores, the cement compositions utilized for cementing casings or liners in the well bores must have sufficient ductility and toughness to resist cracking or shattering as a result of pipe movements, impacts and/or shocks subsequently generated by drilling and other well operations. Set cement in wells, and particularly, a set cement sheath in the annulus between a pipe string and the walls of a well bore often fails by cracking or shattering during perforating and/or drilling operations. When the set cement cracks or shatters, rubble is often produced in the well or annulus.
- Various types of fibers have been utilized in construction cement compositions heretofore including fibers formed of glass, steel, graphite, polyesters, polyamides and polyolefins. Polyolefin fibers are generally the most preferred in that they are readily available, are low in cost and have high resistance to corrosion and degradation. Fibrillated net-shaped polyolefin fibers are particularly suitable for use in cement compositions because they resist being pulled out of the set cement. The fibers function to control shrinkage cracking in the early stages of the cement setting process, and after setting, the fibers provide ductility and toughness to the cement composition whereby it resists cracking or shattering. When cracking or shattering does occur, the fibers hold the cracked or shattered set cement together and prevent the formation of rubble.
- A problem heretofore experienced in the use of fibers in well cement compositions is that the fibers are hydrophobic and are difficult to dry blend with cement. The fibers agglomerate in the dry cement when it is conveyed causing plugging to occur, and when the cement and fibers are combined with mixing water, the fibers form mats which prevent their dispersion into and throughout the cement slurry. The lack of dispersion of the fibers in the cement slurry make it difficult to pump.
- Thus, there are needs for improved well cement compositions and methods wherein the cement compositions contain fibrillated fibers which can be easily mixed and conveyed with dry cement and subsequently dispersed in the aqueous cement slurries formed.
- The present invention provides improved cement compositions and methods of cementing a subterranean zone which meet the needs described above and overcome the deficiencies of the prior art. The methods of the invention are basically comprised of the steps of introducing a crack and shatter resistant cement composition into a subterranean zone to be cemented and allowing the cement composition to set therein. The crack and shatter resistant cement compositions utilized in accordance with this invention are basically comprised of a hydraulic cement, sufficient hydrophilic fibers to make the cement composition crack and shatter resistant upon setting and sufficient water to form a pumpable slurry of the cement and fibers. The hydrophilic fibers utilized in accordance with this invention are preferably hydrophilic fibrillated polyolefin fibers.
- The methods of this invention are particularly suitable for cementing a pipe string such as casing or a liner in a well bore whereby the set cement can withstand the formation of perforations therein as well as other impacts and shocks subsequently generated by drilling and other well operations without cracking or shattering and forming rubble. Such methods are basically comprised of the following steps. A crack and shatter resistant cement composition of this invention is pumped into the annulus between the pipe string and the walls of the well bore. The cement composition is then allowed to set into a hard crack and shatter resistant impermeable mass having ductility and toughness.
- It is, therefore, a general object of the present invention to provide improved cement compositions and methods of cementing subterranean zones penetrated by well bores using the cement compositions.
- Other and further objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.
- The present invention provides improved crack and shatter resistant cement compositions and methods of cementing subterranean zones using the compositions. The improved crack and shatter resistant cement compositions are basically comprised of a hydraulic cement, sufficient hydrophilic fibers to make the cement composition crack and shatter resistant upon setting and sufficient water to form a pumpable slurry of the cement and fibers. The methods are basically comprised of the steps of introducing a crack and shatter resistant cement composition of this invention into the zone by way of the well bore and then allowing the cement composition to set in the zone.
- The term “crack and shatter resistant cement composition” is used herein to mean a cement composition that sets into a hard impermeable mass having ductility and toughness and that resists cracking and/or shattering as a result of perforating operations, pipe movements, impacts, shocks and the like. If cracking or shattering does occur, the pieces formed are held together by the hydrophilic fibers in the cement composition.
- While the cement compositions and methods of this invention are useful in a variety of well completion and remedial operations, they are particularly useful in primary cementing, i.e., cementing casings and liners in well bores. The crack and shatter resistant cement compositions of this invention are readily and easily prepared without the conveying, mixing, fiber dispersal and pumping problems encountered heretofore.
- A variety of hydraulic cements can be utilized in the crack and shatter resistant cement compositions of this invention including those comprised of calcium, aluminum, silicon, oxygen and/or sulfur which set and harden by reaction with water. Such hydraulic cements include Portland cements, pozzolana cements, gypsum cements, high aluminum content cements, silica cements and high alkalinity cements. Portland cements are generally preferred for use in accordance with the present invention. Portland cements of the types defined and described in theAPI Specification For Materials And Testing For Well Cements, API Specification 10, Fifth Edition, dated Jul. 1, 1990 of the American Petroleum Institute are particularly suitable. Preferred API Portland cements include classes A, B, C, G and H, with API classes G and H being the most preferred.
- While fibers formed of various materials can be utilized in accordance with the present invention, the fibers utilized must resist degradation in a hydraulic cement composition. For example, fibers formed of polyesters, polyamides and glass suffer from the disadvantage that they degrade in the presence of hydrated lime. Hydrated lime is released in a cement composition as the cement therein is hydrated. Polyolefin fibers are suitable for use in cement compositions in that polyolefin fibers do not degrade or otherwise loose their strength over time in a set cement composition. However, fibers formed from polyolefins are hydrophobic and are very difficult to dry blend with hydraulic cements and disperse in water. Because they are hydrophobic, the polyolefin fibers cluster together when mixed with water and do not disperse therein. When cement slurries containing such non-dispersed fibers are pumped in high pressure pumps, difficulties are encountered due to the fiber clusters plugging off lines, valves and the like.
- In accordance with the present invention, hydrophilic polyolefin fibers are included in the crack and shatter resistant cement compositions. The hydrophilic polyolefin fibers do not degrade in cement compositions and are readily dry mixed with cement and dispersed in the cement mixing water. Particularly suitable such hydrophilic polyolefin fibers are commercially available from the Forta Corporation of Grove City, Pa.
- The preferred polyolefin fibers are polypropylene or polyethylene fibers which are in a fibrillated net configuration which maximizes the long term durability and toughness of a cement composition including the fibers. The fibrillated net-shaped fibers function exceptionally well in preventing cracking or shattering of cement compositions containing them, and if cracking or shattering does occur, in holding the cracked or shattered cement together, i.e., the individual pieces produced are held together by the fibers thereby preventing rubble formation.
- The normally hydrophobic polyolefin fibers are converted to hydrophilic fibers by treating the hydrophobic fibers with a surface active agent. The most preferred hydrophilic fibers for use in accordance with the present invention are hydrophilic polypropylene fibrillated net-shaped fibers having lengths in the range of from about 0.5 inch to about 1.5 inches.
- Generally, the hydrophilic fibers utilized are included in a cement composition of this invention in an amount in the range of from about 0.1% to about 1% by weight of hydraulic cement in the composition, more preferably in an amount in the range of from about 0.125% to about 0.5%.
- The water utilized in the cement compositions of this invention can be fresh water, unsaturated aqueous salt solutions or saturated aqueous salt solutions such as brine or seawater. The water is generally present in the cement compositions in an amount in the range of from about 30% to about 100% by weight of hydraulic cement in the compositions, more preferably in an amount in the range of from about 35% to about 60%.
- As will be understood by those skilled in the art, the crack and shatter resistant cement compositions of this invention can include a variety of additives for improving or changing the properties of the cement compositions. Examples of such additives include, but are not limited to, set retarding agents, fluid loss control agents, dispersing agents, set accelerating agents and formation conditioning agents.
- Set retarding agents are included in the cement compositions when it is necessary to extend the time in which the cement compositions can be pumped so that they will not thicken or set prior to being placed at a desired location in a well. Examples of set retarding agents which can be used include, but are not limited to, lignosulfonates such as calcium and sodium lignosulfonate, organic acids such as tartaric acid and gluconic acid, copolymers and others. The proper amount of set retarding agent required for particular conditions can be determined by conducting a “thickening time test” for the particular retarder and cement composition. Such tests are described in the API Specification 10 mentioned above. A particularly preferred set retarder for use in accordance with the present invention is a copolymer or copolymer salt of 2-acrylamido-2-methylpropane sulfonic acid and acrylic acid. The copolymer comprises from about 40 to about 60 mole percent 2-acrylamido-2-methylpropane sulfonic acid with the balance comprising acrylic acid, and the copolymer or salt thereof preferably has an average molecular weight below about 5,000. When used, a set retarder is included in the cement composition of this invention in an amount in the range of from about 0.1% to about 2% by weight of hydraulic cement in the composition.
- Examples of fluid loss control agents which can be used include, but are not limited to, cellulose derivatives, modified polysaccharides, polyacrylamides, guar gum derivatives, 2-acrylamido-2-methylpropane sulfonic acid copolymers, polyethyleneimine and the like.
- An example of a dispersing agent which can be utilized is comprised of the condensation polymer product of an aliphatic ketone, an aliphatic aldehyde and a compound which introduces acid groups into the polymer, e.g., sodium bisulfite. Such a dispersant is described in U.S. Pat. No. 4,557,763 issued to George et al. on Dec. 10, 1985.
- Examples of set accelerating agents which can be utilized include, but are not limited to, calcium chloride, zinc formate and triethanolamine, and examples of formation conditioning agents include, but are not limited to, potassium chloride and sodium chloride.
- A method of the present invention for cementing a subterranean zone penetrated by a well bore comprises the steps of:
- (a) introducing a crack and shatter resistant cement composition into the zone by way of the well bore, the cement composition comprising a hydraulic cement, sufficient hydrophilic fibers to make the cement composition crack and shatter resistant upon setting and sufficient water to form a pumpable slurry of the cement and fibers; and
- (b) allowing the cement composition to set in the zone.
- A more preferred method of cementing a subterranean zone penetrated by a well bore comprises the steps of:
- (a) pumping a crack and shatter resistant cement composition into the zone by way of the well bore, the cement composition comprising Portland cement, sufficient hydrophilic polyethylene fibrillated net-shaped fibers to make the cement composition crack and shatter resistant upon setting and sufficient water to form a pumpable slurry of the cement and fibers; and
- (b) allowing the cement composition to set in the zone.
- A preferred method of this invention for cementing a pipe string, such as casing or a liner, in a well bore whereby the set cement can withstand the formation of perforations therein as well as other impacts and shocks subsequently generated by drilling or other well operations without cracking or shattering and forming rubble is comprised of the steps of:
- (a) pumping a crack and shatter resistant cement composition into the annulus between the pipe string and the walls of the well bore, the cement composition comprising Portland API Class G or H cement, hydrophilic polyethylene fibrillated net-shaped fibers present in an amount in the range of from about 0.125% to about 0.5% by weight of cement in the composition and water present in an amount in the range of from about 38% to about 46% by weight of cement in the composition; and
- (b) allowing the cement composition to set into a hard crack and shatter resistant impermeable mass having ductility and toughness.
- In order to further illustrate the methods of the present invention the following example is given.
- A base cement composition comprised of Portland API Class H cement and fresh water present in an amount of about 38% by weight of the cement having a density of 16.4 pounds per gallon was prepared. A portion of the base cement composition without fibers as well as portions thereof with hydrophobic polypropylene fibers and hydrophilic polypropylene fibers were tested for mechanical properties in accordance with API RP 10B. The fibers utilized and their quantities along with the results of the tests are set forth in the Table below.
TABLE Mechanical Properties1 Of Fiber Containing Cement Compositions Quantity of Plastic Failure Tests Fibers, % by 1000 psi Brazilian Young's Test Type of weight of Compressive Tensile Unconfined Confined Tensile Modulus Poisson's No. Fibers cement Strength, psi Strength2, psi Strength, psi Strength, psi Strength, psi (Ex 106) Ratio 1 None — 4120 467 6910 8286 292 1.91 0.193 2 Hydrophobic 0.125 3610 504 6639 8541 837 1.67 0.138 Polypropylene 3 Hydrophobic 0.25 3590 512 6006 7972 635 1.48 0.14 Polypropylene 4 Hydrophobic 0.5 3760 492 5523 7444 645 1.47 0.11 Polypropylene 5 Hydrophilic 0.125 3970 556 5523 8605 727 1.5 0.13 Polypropylene 6 Hydrophilic 0.25 3750 493 5373 7623 705 1.45 0.124 Polypropylene 7 Hydrophilic 0.5 3280 456 4933 7025 669 1.53 0.117 Polypropylene - From the Table it can be seen that the mechanical properties of the test cement portions containing hydrophilic fibers are essentially the same as the test cement portions containing hydrophobic polypropylene fibers. In addition, the hydrophilic fibers were easily dry blended with the cement and readily dispersed in the mixing water while the hydrophobic fibers were not.
- Thus, the present invention is well adapted to attain the objects and advantages mentioned as well as those which are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.
Claims (30)
1. An improved crack and shatter resistant cement composition comprising:
a hydraulic cement;
sufficient hydrophilic fibers to make said cement composition crack and shatter resistant upon setting; and
sufficient water to form a pumpable slurry of said cement and fibers.
2. The method of wherein said hydraulic cement in said composition is selected from the group consisting of Portland cements, pozzolana cements, gypsum cements, slag cements, silica cements and high aluminum content cements.
claim 1
3. The method of wherein said hydraulic cement in said composition is Portland cement.
claim 1
4. The method of wherein said hydrophilic fibers in said composition are polyolefin fibers coated with a hydrophilic surface active agent.
claim 1
5. The method of wherein said polyolefin fibers are selected from the group consisting of polypropylene fibers and polyethylene fibers.
claim 4
6. The method of wherein said hydrophilic fibers in said composition are fibrillated net-shaped fibers.
claim 1
7. The method of wherein said hydrophilic fibers are present in said cement composition in an amount in the range of from about 0.1% to about 1% by weight of hydraulic cement in said composition.
claim 1
8. The method of wherein said water in said composition is selected from the group of fresh water, unsaturated aqueous salt solutions and saturated aqueous salt solutions.
claim 1
9. The method of wherein said water is present in said cement composition in an amount in the range of from about 30% to about 100% by weight of said hydraulic cement in said composition.
claim 1
10. The method of wherein said cement composition further comprises one or more additives selected from the group consisting of set retarding agents, fluid loss control agents, set accelerating agents, dispersing agents and formation conditioning agents.
claim 1
11. An improved method of cementing a subterranean zone penetrated by a well bore comprising the steps of:
(a) introducing a crack and shatter resistant cement composition into said zone by way of said well bore, said cement composition comprising a hydraulic cement, sufficient hydrophilic fibers to make said cement composition crack and shatter resistant upon setting and sufficient water to form a pumpable slurry of said cement and fibers; and
(b) allowing said cement composition to set in said zone.
12. The method of wherein said hydraulic cement in said composition is selected from the group consisting of Portland cements, pozzolana cements, gypsum cements, slag cements, silica cements and high aluminum content cements.
claim 11
13. The method of wherein said hydraulic cement in said composition is Portland cement.
claim 11
14. The method of wherein said hydrophilic fibers in said composition are polyolefin fibers coated with a hydrophilic surface active agent.
claim 11
15. The method of wherein said polyolefin fibers are selected from the group consisting of polypropylene fibers and polyethylene fibers.
claim 14
16. The method of wherein said hydrophilic fibers in said composition are fibrillated net-shaped fibers.
claim 11
17. The method of wherein said hydrophilic fibers are present in said cement composition in an amount in the range of from about 0.1% to about 1% by weight of hydraulic cement in said composition.
claim 11
18. The method of wherein said water in said composition is selected from the group of fresh water, unsaturated aqueous salt solutions and saturated aqueous salt solutions.
claim 11
19. The method of wherein said water is present in said cement composition in an amount in the range of from about 30% to about 100% by weight of said hydraulic cement in said composition.
claim 11
20. The method of wherein said cement composition further comprises one or more additives selected from the group consisting of set retarding agents, fluid loss control agents, set accelerating agents, dispersing agents and formation conditioning agents.
claim 11
21. An improved method of cementing a pipe string in a well bore whereby the set cement can withstand the formation of perforations therein as well as other impacts and shocks subsequently generated by drilling and other well operations without cracking or shattering and forming rubble comprising the steps of:
(a) pumping a cracking and shatter resistant cement composition into the annulus between said pipe string and the walls of said well bore, said cement composition comprising a hydraulic cement, sufficient hydrophilic fibers to make said cement composition shatter resistant upon setting and sufficient water to form a pumpable slurry of said hydraulic cement and said fibers; and
(b) allowing said cement composition to set into a hard crack and shatter resistant impermeable mass having ductility and toughness.
22. The method of wherein said hydraulic cement in said composition is selected from the group consisting of Portland cements, pozzolana cements, gypsum cements, slag cements, silica cements and high aluminum content cements.
claim 21
23. The method of wherein said hydraulic cement in said composition is Portland cement.
claim 21
24. The method of wherein said hydrophilic fibers in said composition are polyolefin fibers coated with a hydrophilic surface active agent.
claim 21
25. The method of wherein said polyolefin fibers are selected from the group consisting of polypropylene fibers and polyethylene fibers.
claim 24
26. The method of wherein said hydrophilic fibers in said composition are fibrillated net-shaped fibers.
claim 21
27. The method of wherein said hydrophilic fibers are present in said cement composition in an amount in the range of from about 0.1% to about 1% by weight of hydraulic cement in said composition.
claim 21
28. The method of wherein said water in said composition is selected from the group of fresh water, unsaturated aqueous salt solutions and saturated aqueous salt solutions.
claim 21
29. The method of wherein said water is present in said cement composition in an amount in the range of from about 30% to about 100% by weight of said hydraulic cement in said composition.
claim 21
30. The method of wherein said cement composition further comprises one or more additives selected from the group consisting of set retarding agents, fluid loss control agents, set accelerating agents, dispersing agents and formation conditioning agents.
claim 21
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/417,551 US6308777B2 (en) | 1999-10-13 | 1999-10-13 | Cementing wells with crack and shatter resistant cement |
DE60040956T DE60040956D1 (en) | 1999-10-13 | 2000-09-18 | Crack and shatter resistant borehole cement |
EP00308115A EP1092693B1 (en) | 1999-10-13 | 2000-09-18 | Crack and shatter resistant well cement |
CA002322937A CA2322937C (en) | 1999-10-13 | 2000-10-11 | Cementing wells with crack and shatter resistant cement |
NO20005127A NO330054B1 (en) | 1999-10-13 | 2000-10-12 | Cement composition, method of cementing an underground zone and use of the composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/417,551 US6308777B2 (en) | 1999-10-13 | 1999-10-13 | Cementing wells with crack and shatter resistant cement |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010018973A1 true US20010018973A1 (en) | 2001-09-06 |
US6308777B2 US6308777B2 (en) | 2001-10-30 |
Family
ID=23654440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/417,551 Expired - Lifetime US6308777B2 (en) | 1999-10-13 | 1999-10-13 | Cementing wells with crack and shatter resistant cement |
Country Status (5)
Country | Link |
---|---|
US (1) | US6308777B2 (en) |
EP (1) | EP1092693B1 (en) |
CA (1) | CA2322937C (en) |
DE (1) | DE60040956D1 (en) |
NO (1) | NO330054B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060258545A1 (en) * | 2003-03-21 | 2006-11-16 | Jiten Chatterji | Well completion spacer fluids containing fibers |
WO2012083400A1 (en) | 2010-12-20 | 2012-06-28 | Inovamat- Inovação Em Materiais Ltda Empresa Brasileira | Process of in situ nucleation and growth of calcium silicate-based nanocrystals in cement materials, calcium silicate-based nanocrystals and uses of said calcium silicate-based nanocrystals |
WO2012155951A1 (en) * | 2011-05-13 | 2012-11-22 | Valeo Schalter Und Sensoren Gmbh | Camera arrangement for a vehicle and method for calibrating a camera and for operating a camera arrangement |
WO2015061420A1 (en) * | 2013-10-22 | 2015-04-30 | 3M Innovative Properties Company | Well cement composition including multi-component fibers and method of cementing using the same |
US20160068738A1 (en) * | 2014-09-10 | 2016-03-10 | Kuwait Institute For Scientific Research | Gelling agent for water shut-off in oil and gas wells |
WO2016077634A1 (en) * | 2014-11-13 | 2016-05-19 | Schlumberger Canada Limited | Cement slurry compositions and methods |
Families Citing this family (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2787441B1 (en) * | 1998-12-21 | 2001-01-12 | Dowell Schlumberger Services | CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE |
DE60135322D1 (en) * | 2001-08-06 | 2008-09-25 | Schlumberger Technology Bv | Low density fiber reinforced cement composition |
US7141284B2 (en) | 2002-03-20 | 2006-11-28 | Saint-Gobain Technical Fabrics Canada, Ltd. | Drywall tape and joint |
US7311964B2 (en) | 2002-07-30 | 2007-12-25 | Saint-Gobain Technical Fabrics Canada, Ltd. | Inorganic matrix-fabric system and method |
GB2392682B (en) * | 2002-09-05 | 2005-10-26 | Schlumberger Holdings | Cement slurries containing fibers |
US6962201B2 (en) * | 2003-02-25 | 2005-11-08 | Halliburton Energy Services, Inc. | Cement compositions with improved mechanical properties and methods of cementing in subterranean formations |
US7217441B2 (en) * | 2003-03-28 | 2007-05-15 | Halliburton Energy Services, Inc. | Methods for coating pipe comprising using cement compositions comprising high tensile strength fibers and/or a multi-purpose cement additive |
US7147055B2 (en) * | 2003-04-24 | 2006-12-12 | Halliburton Energy Services, Inc. | Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations |
US7273100B2 (en) * | 2003-04-15 | 2007-09-25 | Halliburton Energy Services, Inc. | Biodegradable dispersants for cement compositions and methods of cementing in subterranean formations |
US6957702B2 (en) * | 2003-04-16 | 2005-10-25 | Halliburton Energy Services, Inc. | Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation |
US6904971B2 (en) * | 2003-04-24 | 2005-06-14 | Halliburton Energy Services, Inc. | Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations |
US7441600B2 (en) | 2003-05-09 | 2008-10-28 | Halliburton Energy Services, Inc. | Cement compositions with improved mechanical properties and methods of cementing in subterranean formations |
US6908508B2 (en) | 2003-06-04 | 2005-06-21 | Halliburton Energy Services, Inc. | Settable fluids and methods for use in subterranean formations |
US6689208B1 (en) | 2003-06-04 | 2004-02-10 | Halliburton Energy Services, Inc. | Lightweight cement compositions and methods of cementing in subterranean formations |
DE10341393B3 (en) | 2003-09-05 | 2004-09-23 | Pierburg Gmbh | Air induction port system for internal combustion engines has exhaust gas return passage made in one piece with casing, and exhaust gas return valve and throttle valve are constructed as cartridge valve for insertion in holes in casing |
US7178597B2 (en) | 2004-07-02 | 2007-02-20 | Halliburton Energy Services, Inc. | Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations |
US7055603B2 (en) * | 2003-09-24 | 2006-06-06 | Halliburton Energy Services, Inc. | Cement compositions comprising strength-enhancing lost circulation materials and methods of cementing in subterranean formations |
US20050109507A1 (en) * | 2003-11-21 | 2005-05-26 | Halliburton Energy Services, Inc. | Methods of using cement compositions having long-term slurry-state stability |
US7036586B2 (en) | 2004-01-30 | 2006-05-02 | Halliburton Energy Services, Inc. | Methods of cementing in subterranean formations using crack resistant cement compositions |
US7607482B2 (en) | 2005-09-09 | 2009-10-27 | Halliburton Energy Services, Inc. | Settable compositions comprising cement kiln dust and swellable particles |
US6902002B1 (en) * | 2004-03-17 | 2005-06-07 | Halliburton Energy Services, Inc. | Cement compositions comprising improved lost circulation materials and methods of use in subterranean formations |
US6990698B2 (en) * | 2004-05-12 | 2006-01-31 | Wall Sr Daniel P | UPS shippable adjustable articulating bed |
US20060157244A1 (en) | 2004-07-02 | 2006-07-20 | Halliburton Energy Services, Inc. | Compositions comprising melt-processed inorganic fibers and methods of using such compositions |
US7537054B2 (en) | 2004-07-02 | 2009-05-26 | Halliburton Energy Services, Inc. | Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations |
US7004256B1 (en) | 2004-10-11 | 2006-02-28 | Halliburton Energy Services, Inc. | Set retarder compositions, cement compositions, and associated methods |
US6978835B1 (en) | 2004-10-11 | 2005-12-27 | Halliburton Energy Services, Inc. | Methods of cementing in subterranean formations |
US7350573B2 (en) * | 2005-02-09 | 2008-04-01 | Halliburton Energy Services, Inc. | Servicing a wellbore with wellbore fluids comprising perlite |
US7264053B2 (en) * | 2005-03-24 | 2007-09-04 | Halliburton Energy Services, Inc. | Methods of using wellbore servicing fluids comprising resilient material |
US20060217270A1 (en) * | 2005-03-24 | 2006-09-28 | Halliburton Energy Services, Inc. | Wellbore servicing fluids comprising resilient material |
US7174961B2 (en) * | 2005-03-25 | 2007-02-13 | Halliburton Energy Services, Inc. | Methods of cementing using cement compositions comprising basalt fibers |
US7607484B2 (en) | 2005-09-09 | 2009-10-27 | Halliburton Energy Services, Inc. | Foamed cement compositions comprising oil-swellable particles and methods of use |
US8333240B2 (en) | 2005-09-09 | 2012-12-18 | Halliburton Energy Services, Inc. | Reduced carbon footprint settable compositions for use in subterranean formations |
US8609595B2 (en) | 2005-09-09 | 2013-12-17 | Halliburton Energy Services, Inc. | Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use |
US8950486B2 (en) | 2005-09-09 | 2015-02-10 | Halliburton Energy Services, Inc. | Acid-soluble cement compositions comprising cement kiln dust and methods of use |
US9809737B2 (en) | 2005-09-09 | 2017-11-07 | Halliburton Energy Services, Inc. | Compositions containing kiln dust and/or biowaste ash and methods of use |
US9051505B2 (en) | 2005-09-09 | 2015-06-09 | Halliburton Energy Services, Inc. | Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly |
US9676989B2 (en) | 2005-09-09 | 2017-06-13 | Halliburton Energy Services, Inc. | Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use |
US8327939B2 (en) | 2005-09-09 | 2012-12-11 | Halliburton Energy Services, Inc. | Settable compositions comprising cement kiln dust and rice husk ash and methods of use |
US8307899B2 (en) | 2005-09-09 | 2012-11-13 | Halliburton Energy Services, Inc. | Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite |
US8505630B2 (en) | 2005-09-09 | 2013-08-13 | Halliburton Energy Services, Inc. | Consolidating spacer fluids and methods of use |
US8281859B2 (en) | 2005-09-09 | 2012-10-09 | Halliburton Energy Services Inc. | Methods and compositions comprising cement kiln dust having an altered particle size |
US7743828B2 (en) | 2005-09-09 | 2010-06-29 | Halliburton Energy Services, Inc. | Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content |
US8505629B2 (en) | 2005-09-09 | 2013-08-13 | Halliburton Energy Services, Inc. | Foamed spacer fluids containing cement kiln dust and methods of use |
US8403045B2 (en) | 2005-09-09 | 2013-03-26 | Halliburton Energy Services, Inc. | Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations |
US8555967B2 (en) | 2005-09-09 | 2013-10-15 | Halliburton Energy Services, Inc. | Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition |
US7789150B2 (en) | 2005-09-09 | 2010-09-07 | Halliburton Energy Services Inc. | Latex compositions comprising pozzolan and/or cement kiln dust and methods of use |
US9006155B2 (en) | 2005-09-09 | 2015-04-14 | Halliburton Energy Services, Inc. | Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly |
US9150773B2 (en) | 2005-09-09 | 2015-10-06 | Halliburton Energy Services, Inc. | Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations |
US7478675B2 (en) * | 2005-09-09 | 2009-01-20 | Halliburton Energy Services, Inc. | Extended settable compositions comprising cement kiln dust and associated methods |
US9023150B2 (en) | 2005-09-09 | 2015-05-05 | Halliburton Energy Services, Inc. | Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use |
US8672028B2 (en) | 2010-12-21 | 2014-03-18 | Halliburton Energy Services, Inc. | Settable compositions comprising interground perlite and hydraulic cement |
US8522873B2 (en) | 2005-09-09 | 2013-09-03 | Halliburton Energy Services, Inc. | Spacer fluids containing cement kiln dust and methods of use |
US8297357B2 (en) | 2005-09-09 | 2012-10-30 | Halliburton Energy Services Inc. | Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use |
US7913757B2 (en) * | 2005-09-16 | 2011-03-29 | Halliburton Energy Services. Inc. | Methods of formulating a cement composition |
US7650940B2 (en) * | 2005-12-29 | 2010-01-26 | Halliburton Energy Services Inc. | Cement compositions comprising particulate carboxylated elastomers and associated methods |
US7645817B2 (en) * | 2005-12-29 | 2010-01-12 | Halliburton Energy Services, Inc. | Cement compositions comprising particulate carboxylated elastomers and associated methods |
US7712530B1 (en) | 2007-08-09 | 2010-05-11 | Superior Energy Services, L.L.C. | Pre-stressed annular sealant and method of creating a durable seal in a well bore annulus |
US7530396B1 (en) | 2008-01-24 | 2009-05-12 | Halliburton Energy Services, Inc. | Self repairing cement compositions and methods of using same |
US7762329B1 (en) | 2009-01-27 | 2010-07-27 | Halliburton Energy Services, Inc. | Methods for servicing well bores with hardenable resin compositions |
US20100212892A1 (en) * | 2009-02-26 | 2010-08-26 | Halliburton Energy Services, Inc. | Methods of formulating a cement composition |
US8408303B2 (en) * | 2009-09-24 | 2013-04-02 | Halliburton Energy Services, Inc. | Compositions for improving thermal conductivity of cement systems |
US9228122B2 (en) * | 2013-06-05 | 2016-01-05 | Halliburton Energy Services, Inc. | Methods and cement compositions utilizing treated polyolefin fibers |
US10066146B2 (en) | 2013-06-21 | 2018-09-04 | Halliburton Energy Services, Inc. | Wellbore servicing compositions and methods of making and using same |
US10131579B2 (en) | 2015-12-30 | 2018-11-20 | Exxonmobil Research And Engineering Company | Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement |
US10717673B2 (en) | 2015-12-30 | 2020-07-21 | Exxonmobil Research And Engineering Company | Polymer fibers for concrete reinforcement |
US10472555B2 (en) | 2016-04-08 | 2019-11-12 | Schlumberger Technology Corporation | Polymer gel for water control applications |
US10689559B2 (en) | 2018-03-19 | 2020-06-23 | Saudi Arabian Oil Company | Flexible durable cement |
US10655044B2 (en) | 2018-04-27 | 2020-05-19 | Saudi Arabian Oil Company | Self-healing durable cement |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3363689A (en) | 1965-03-11 | 1968-01-16 | Halliburton Co | Well cementing |
DE1239255B (en) | 1966-06-04 | 1967-04-27 | Halliburton Co | Deep drilling cement mixture with improved perforation properties |
US3774683A (en) | 1972-05-23 | 1973-11-27 | Halliburton Co | Method for stabilizing bore holes |
FI67072C (en) * | 1979-02-09 | 1985-01-10 | Amiantus Ag | FOER FARING FOER FRAMSTAELLNING AV FIBERFOERSTAERKT HYDRAULISKT BINDANDE MATERIAL |
DE2933689A1 (en) * | 1979-08-20 | 1981-04-09 | Lentia GmbH Chem. u. pharm. Erzeugnisse - Industriebedarf, 8000 München | POLYOLEFINE FIBERS OR FEDERS, A METHOD FOR THE PRODUCTION THEREOF AND COMPONENTS |
SU1006713A1 (en) * | 1981-05-28 | 1983-03-23 | Московский Ордена Трудового Красного Знамени Институт Нефтехимической И Газовой Промышленности Им.И.М.Губкина | Disperse reinforced plugging mix for well cementing and method for preparing the same |
US4557763A (en) | 1984-05-30 | 1985-12-10 | Halliburton Company | Dispersant and fluid loss additives for oil field cements |
DK695688D0 (en) * | 1988-12-14 | 1988-12-14 | Danaklon As | FIBERS AND MATERIALS CONTAINING THE SAME |
US4927462A (en) | 1988-12-23 | 1990-05-22 | Associated Universities, Inc. | Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems |
US5421409A (en) * | 1994-03-30 | 1995-06-06 | Bj Services Company | Slag-based well cementing compositions and methods |
US5795924A (en) | 1996-07-01 | 1998-08-18 | Halliburton Company | Resilient well cement compositions and methods |
JP3517330B2 (en) * | 1997-02-28 | 2004-04-12 | 萩原工業株式会社 | Polypropylene fiber for cement reinforcement |
US6016872A (en) | 1997-03-17 | 2000-01-25 | Forta Corporation | Method for removing debris from a well-bore |
US6059036A (en) | 1997-11-26 | 2000-05-09 | Halliburton Energy Services, Inc. | Methods and compositions for sealing subterranean zones |
JP3274402B2 (en) * | 1997-12-25 | 2002-04-15 | チッソ株式会社 | Fiber for reinforcing concrete impact strength and concrete molding using the same |
US6059035A (en) | 1998-07-20 | 2000-05-09 | Halliburton Energy Services, Inc. | Subterranean zone sealing methods and compositions |
-
1999
- 1999-10-13 US US09/417,551 patent/US6308777B2/en not_active Expired - Lifetime
-
2000
- 2000-09-18 DE DE60040956T patent/DE60040956D1/en not_active Expired - Lifetime
- 2000-09-18 EP EP00308115A patent/EP1092693B1/en not_active Expired - Lifetime
- 2000-10-11 CA CA002322937A patent/CA2322937C/en not_active Expired - Fee Related
- 2000-10-12 NO NO20005127A patent/NO330054B1/en not_active IP Right Cessation
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060258545A1 (en) * | 2003-03-21 | 2006-11-16 | Jiten Chatterji | Well completion spacer fluids containing fibers |
WO2012083400A1 (en) | 2010-12-20 | 2012-06-28 | Inovamat- Inovação Em Materiais Ltda Empresa Brasileira | Process of in situ nucleation and growth of calcium silicate-based nanocrystals in cement materials, calcium silicate-based nanocrystals and uses of said calcium silicate-based nanocrystals |
WO2012155951A1 (en) * | 2011-05-13 | 2012-11-22 | Valeo Schalter Und Sensoren Gmbh | Camera arrangement for a vehicle and method for calibrating a camera and for operating a camera arrangement |
US10079979B2 (en) | 2011-05-13 | 2018-09-18 | Valeo Schalter Und Sensoren Gmbh | Camera arrangement for a vehicle and method for calibrating a camera and for operating a camera arrangement |
WO2015061420A1 (en) * | 2013-10-22 | 2015-04-30 | 3M Innovative Properties Company | Well cement composition including multi-component fibers and method of cementing using the same |
US20160068738A1 (en) * | 2014-09-10 | 2016-03-10 | Kuwait Institute For Scientific Research | Gelling agent for water shut-off in oil and gas wells |
US9518208B2 (en) * | 2014-09-10 | 2016-12-13 | Kuwait Institute For Scientific Research | Gelling agent for water shut-off in oil and gas wells |
WO2016077634A1 (en) * | 2014-11-13 | 2016-05-19 | Schlumberger Canada Limited | Cement slurry compositions and methods |
Also Published As
Publication number | Publication date |
---|---|
CA2322937C (en) | 2008-02-19 |
EP1092693A2 (en) | 2001-04-18 |
CA2322937A1 (en) | 2001-04-13 |
EP1092693B1 (en) | 2008-12-03 |
EP1092693A3 (en) | 2001-05-02 |
NO20005127D0 (en) | 2000-10-12 |
DE60040956D1 (en) | 2009-01-15 |
US6308777B2 (en) | 2001-10-30 |
NO330054B1 (en) | 2011-02-14 |
NO20005127L (en) | 2001-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6308777B2 (en) | Cementing wells with crack and shatter resistant cement | |
US6500252B1 (en) | High strength foamed well cement compositions and methods | |
US6138759A (en) | Settable spotting fluid compositions and methods | |
EP1348831B1 (en) | Water-microsphere suspensions for use in well cements | |
US6776237B2 (en) | Lightweight well cement compositions and methods | |
US7351279B2 (en) | Cement compositions with improved mechanical properties and methods of cementing in subterranean formations | |
US6601647B2 (en) | Methods, well cement compositions and lightweight additives therefor | |
US7172022B2 (en) | Cement compositions containing degradable materials and methods of cementing in subterranean formations | |
US5458195A (en) | Cementitious compositions and methods | |
US7493968B2 (en) | Compositions comprising melt-processed inorganic fibers and methods of using such compositions | |
US6811603B2 (en) | Methods, well cement compositions and lightweight additives therefor | |
EP1814829B1 (en) | Biodegradable retarder for cementing applications | |
EP0712816A1 (en) | Set retarded downhole cement composition | |
MX2013013234A (en) | Settable compositions containing metakaolin having reduced portland cement content. | |
US20130341024A1 (en) | Method of treating a subterranean formation with a mortar slurry designed to form a permeable mortar | |
EP0816300B1 (en) | Well cement compositions | |
EP1483220B1 (en) | Lightweight well cement compositions and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHATTERJI, JITEN;CROMWELL, ROGER S.;CROOK, RONALD J.;AND OTHERS;REEL/FRAME:010314/0547 Effective date: 19991011 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |