US20010018906A1 - Method for detecting combustion misfires in an internal combustion engine - Google Patents

Method for detecting combustion misfires in an internal combustion engine Download PDF

Info

Publication number
US20010018906A1
US20010018906A1 US09/797,953 US79795301A US2001018906A1 US 20010018906 A1 US20010018906 A1 US 20010018906A1 US 79795301 A US79795301 A US 79795301A US 2001018906 A1 US2001018906 A1 US 2001018906A1
Authority
US
United States
Prior art keywords
threshold value
rough
cylinder
running values
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/797,953
Other versions
US6439198B2 (en
Inventor
Michael Lehner
Andrea Lohmann
Stephan Uhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UHL, STEPHAN, LOHMANN, ANDREA, LEHNER, MICHAEL
Publication of US20010018906A1 publication Critical patent/US20010018906A1/en
Application granted granted Critical
Publication of US6439198B2 publication Critical patent/US6439198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the method of the invention runs with the originally set values until again, after elapse of a time span ⁇ T, a reduction of the threshold value SW 1 takes place.
  • the computed rough-running values LUT lie below the level of the second threshold value SW 2 and, at the same time, the engine is in an operating region in which misfires can be detected with certainty by means of the original threshold value SW 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The invention relates to a method for combustion misfire detection in multi-cylinder internal combustion engines. In the method, rough-running values for each cylinder of the engine are determined individually for each crankshaft rotation by measuring the segment times. The segment times include the times corresponding to the piston movement of each cylinder to be measured during which times the crankshaft passes through a corresponding circular segment angular region and, on the basis of filtered rough-running values, equalization or corrective factors are computed for each cylinder in an evaluation unit for influencing injection times or injection time points of each individual cylinder. The determined rough-running values (LUT) or the filtered rough-running values (FLUT) are compared in a desired value comparison to a threshold value (SW2) which is pregiven in value significantly less than the threshold value (SW1) for misfire detection. A reduction of the threshold value (SW1) for misfire detection to a lower level is effected by the continuous dropping below the second threshold value (SW2) within a pregiven time interval (Δt) or during a specific number of engine revolutions (Δu).

Description

    BACKGROUND OF THE INVENTION
  • Methods for detecting combustion misfires are utilized in spark-injection engines in order, on the one hand, to detect an uneven running of the engine and to minimize this uneven running by suitable control arrangements while, on the other hand, most of all, to avoid a deterioration of the exhaust-gas values caused by misfires and to protect the exhaust-gas catalytic converter. The uneven running of the engine can be caused, for example, by valve coking or by quality scattering of characteristic values of the injection valves for direct injection. [0001]
  • Methods of this kind utilize the recognition that a non-occurring combustion within a cylinder of an engine is associated with characteristic changes of the torque trace of the engine compared to the normal operation. One can distinguish between normal operation of the engine without misfires and an operation with misfires via the comparison of the torque traces. An operation with misfires in one or several cylinders contributes to the total torque course of the engine with a lesser contribution and this contribution can be determined from a detection of the actual torques of the cylinders via an evaluation of the time-dependent trace of the crankshaft rotation or camshaft rotation. [0002]
  • In a known method, a specific region of the piston movement of each cylinder is assigned a crankshaft angle region identified as a segment. The segments, which belong to each cylinder are, for example, realized by markings on a transducer wheel coupled to the crankshaft. The segment time, that is, the time in which the crankshaft passes through the corresponding angular region of the segment, is essentially dependent upon the energy converted in the combustion stroke. Misfires lead to an increase of the ignition-synchronously detected segment times as a consequence of the insufficient torque contribution. These detected segment times are determined for each cylinder by scanning the markings on the transducer wheel via a suitable sensor. The more even the engine runs, the lesser are the differences between the segment times of the individual cylinders. [0003]
  • A method is disclosed, for example, in German patent publication 4,138,765 (corresponding to U.S. patent application Ser. No. 07/818,884, filed Jan. 10, 1992, now abandoned) wherein an index for the rough running of the engine is computed from differences of the segment times and wherein general conditions, for example, the increase of the engine rpm in a vehicle acceleration, are compensated by computation. The through-running value which is computed in this manner for each ignition is, in a next method step, ignition-synchronously compared to a threshold value in a desired value comparison. If the determined rough-running value exceeds the threshold value, which is dependent, if required, on operating parameters such as load and rpm, then this is evaluated as a misfire of the particular cylinder. If misfires are determined, a suitable warning device can provide an indication of this irregularity when a certain misfire rate is exceeded. [0004]
  • Alternatively, and in a further method step, a cylinder equalization can take place after detection of the misfire operation. For this purpose, equalization or corrective factors are formed individually for each cylinder in an evaluation unit and, with the aid of these factors, injection times or ignition time points of the individual cylinders, which are affected by the misfires, can be influenced. Thus, a change of the ignition time point can, for example, eliminate the incomplete combustion of the gas mixture within a cylinder so that this cylinder again can provide the full contribution to the total torque of the engine. Furthermore, the differences in the injection performance of injection valves can be compensated by influencing the injection times and the injection duration. [0005]
  • From the foregoing, it becomes clear that a reliable detection of engine misfires contributes to compliance with statutory provisions and the detection of engine defects. The detection is dependent, inter alia, essentially on the desired value comparison of the determined rough-running values with the pregiven threshold values. Depending upon the setting of this threshold value, a reliable detection of misfires takes place or individual misfires are not detected. Accordingly, the setting of the threshold values for the determined rough-running values by the engine manufacturer is of great significance because, only by recognizing misfire operation, can a corresponding adaptation of injection times and ignition time points take place and the rough-running values can be reduced or the vehicle user can be made aware of an engine defect. [0006]
  • SUMMARY OF THE INVENTION
  • The method of the invention for detecting combustion misfires in multi-cylinder engines affords the advantage with respect to the known state of the art that the detection quality of combustion misfires is significantly improved so that a considerably better assurance is provided as to erroneous detections of misfires, that is, an assurance is provided against normal combustions being evaluated as combustion misfires. This advantage is achieved in that the determined rough-running values LUT or filtered rough-running values FLUT are compared in a desired value comparison to a threshold value SW[0007] 2, which is pregiven in value considerably less than the threshold value SW1 for detecting misfires. A reduction of the threshold value SW1 for detecting misfires to a lower level results when there is a persistent drop below the second threshold value SW2 within a pregiven time interval Δt or during a specific number of engine revolutions Δu.
  • With this feature of the invention, the equalization of cylinders (that is, the smooth running of the engine) is utilized to increase the disturbance intervals of the misfire detection. More specifically, the equalization is achieved as a consequence of influencing the combustion operations in individual cylinders by changing injection times and ignition time points for these cylinders. The relevant threshold value, which is applied to detect misfires, can be adjusted to be so sensitive that as many misfires as possible are detected. This sensitivity is achieved because of the smaller rough-running values which are determined over a longer time span. Accordingly, for a relatively good smooth running of the engine (that is, at low rough-running values), the threshold value does not have to be insensitive as is usual in the state of the art which causes a poor detection quality of the combustion misfires to result. [0008]
  • In connection with the change of the threshold value necessary to detect combustion misfires, it has been shown to be especially practical to set this threshold value to the value of an available lower threshold value stored in the control system. This affords advantages especially for programming the electronic evaluation circuits. [0009]
  • Furthermore, it has been shown to be advantageous that exceeding the threshold value SW[0010] 2 effects a raising of the threshold value SW1. Notwithstanding a continuously executed equalization of cylinders, it cannot be precluded that, for special reasons, individual cylinders temporarily provide a changed contribution to the overall torque of the engine. For this reason, an erroneous estimate of combustion misfires is avoided by the measures described. The resetting effects essentially a reestablishment of the method parameters to the start of the “learn effect” of the method of the invention and leads to the situation that a reduction of the threshold value for combustion misfire detection can take place when the cylinder equalization again brings about an increased smooth running of the engine. This is achieved with a renewed comparison of the rough-running values to the lower threshold value with the comparison being carried out over a certain time span.
  • The threshold value is purposefully reset to the original value established at the start of the method. [0011]
  • For specific areas of application, it can be advantageous to carry out the reduction of the threshold value for combustion misfire detection to a lower level in several stages. The individual threshold values lie between the magnitude of the threshold value for combustion misfire detection and the reduced threshold value. In this way, a slow approach of the combustion misfire detection can take place to an especially low threshold value level and, at the same time, the problem is avoided of evaluating an essentially proper combustion as a combustion misfire because the corresponding threshold value, which is applied as a desired value comparison, is to be viewed as being too sensitive. [0012]
  • For the practical realization of the method as well as a compact configuration of the necessary components, it can be advantageous to store the equalization or corrective factors after each desired/actual comparison of the rough-running values in a precontrol characteristic field and, after reducing the first threshold value to a lower level, the last stored equalization or corrective factors are left unchanged. The equalization or corrective factors are determined for each cylinder individually from the rough-running values. In this way, the precontrol characteristic field contains the equalization or corrective factors, which are necessary for optimal equalization of the individual cylinders, only after a corresponding learn phase, that is, after a time interval in which the rough-running values are at so low a level that, in principle, a misfire-free operation can be assumed. [0013]
  • BRIEF DESCRIPTION OF THE DRAWING
  • The method of the invention will now be described with respect to the single figure (FIG. 1) of the drawing wherein the sequence of method steps is explained in greater detail with respect to a function block diagram. [0014]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
  • The method of the invention is shown in FIG. 1 for one cylinder of a multi-cylinder internal combustion engine by way of example for reasons of clarity. The sequence of the method steps for the remaining cylinders takes place in the same manner as shown in the block circuit diagram. [0015]
  • The engine M is provided with a transducer wheel connected to the camshaft or crankshaft of the engine and individual segments are applied to the transducer wheel. First, a cylinder-individual segment time t[0016] s is determined with the aid of the transducer wheel. This segment time can be lengthened compared to the normal operation of the engine in the event that an incomplete combustion or a combustion misfire takes place in the corresponding cylinder. The segment time ts is determined via suitable sensors by means of the transducer wheel and is thereafter supplied to a block 1.1. The block 1.1 computes cylinder-individual rough-running values LUT from the segment times. A filter block 1.2 is connected downstream of the block 1.1 and the determined rough-running values LUT are subjected to filtering in the filter block 1.2.
  • The rough-running values LUT are subjected to a desired value comparison to a threshold value SW[0017] 1 in a block 2.1. If the desired value comparison yields that the rough-running value LUT is greater than the threshold value SW1, then misfires are detected. The filtered rough-running values FLUT are computed in block 1.2 by filtering the rough-running value LUT and are a direct index for the control deviation of the cylinder equalization. The FLUT values are transmitted to a PI-controller 3.1 for cylinder equalization.
  • The PI controller [0018] 3.1 determines, in stratified operation, equalization or corrective factors GL for the affected cylinder from the control deviation. The equalization or corrective values GL are supplied as output quantities of the block 3.1 to a further block 3.2 which undertakes an adaptation of the injection time and/or of the ignition time point of the cylinders whose FLUT values indicate a control deviation in order to effect a return of the cylinder operation to the normal state. To this extent, the method steps explained above correspond to the methods for cylinder equalization known from the state of the art.
  • If the desired value comparison of the rough-running value LUT with the threshold value SW[0019] 1 shows that the rough-running value LUT lies below the threshold value level, then this is evaluated as a misfire-free operation. The method of the invention is characterized in that a desired value comparison in an evaluation unit 2.2 is undertaken after carrying out the desired value comparison of LUT with SW1. An inquiry takes place in evaluation unit 2.2 as to whether the cylinder-individual determined rough-running value LUT is less than a pregiven threshold value SW2. If the rough-running value LUT is less than the pregiven threshold value SW2. then the result is supplied to a storage unit 2.3. This storage unit is provided with a time span count value ΔT.
  • In addition to storing the desired/actual value comparison results E[0020] 1, E2, et cetera, the block 2.3 has the task of deciding whether all rough-running values LUT were below the threshold value SW2 during the time span Δt or during a specific number of revolutions Δu and whether, at the same time, the engine was in an operating range in which misfires could be detected with certainty by means of the threshold value SW1. If this inquiry is positive, then the outputted torques of the individual cylinders are deemed as equalized. In this case, the originally set threshold value SW1 is set within the block 2.1 to a new value which has a lesser value SW1new referred to the level than the original fixed value SW1.
  • Based on the newly fixed threshold value SW[0021] 1new, the inquiry within block 2.1 as to whether the rough-running values LUT lie below the threshold value SW1 takes place at a much more sensitive level than before the reduction of the threshold value SW1 so that a much more precise misfire detection can take place. If it should result in the context of the engine operation that, because of special circumstances, the rough-running values LUT exceed the level of the threshold value SW2 and, at the same time, the engine is in an operating range in which misfires can be detected with certainty by means of the original threshold value SW1, then the threshold value SW1new, which is at a low level, is reset to its original value SW1. In this way, the method of the invention runs with the originally set values until again, after elapse of a time span ΔT, a reduction of the threshold value SW1 takes place. In the time span ΔT, the computed rough-running values LUT lie below the level of the second threshold value SW2 and, at the same time, the engine is in an operating region in which misfires can be detected with certainty by means of the original threshold value SW1.
  • The reduction of the threshold value SW[0022] 1 can, as described above, also take place in several stages and the individual stage values purposefully lie between the level of the threshold value SW1 and the level of the threshold value SW2. Furthermore, it can be purposeful that the PI controller 3.1 has a precontrol characteristic field 4.1 which is adaptively supplied with values for optimal cylinder equalization. Within the precontrol characteristic field, the cylinder-individual differences are reflected in the high pressure injection valves. After reduction of the threshold value SW1, the precontrol characteristic field has the values GL which are necessary for optimal equalization and which are dependent upon the individual high pressure injection valves.
  • It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims. [0023]

Claims (7)

What is claimed is:
1. A method for detecting combustion misfires in a multi-cylinder engine wherein, for each crankshaft rotation, segment times elapse during operation of the engine and each segment time corresponds to a piston movement of a cylinder to be measured and is the time in which the crankshaft passes through a circular segment angular region, the method comprising the steps of:
individually determining the rough-running values (LUT) for each cylinder of the engine by measuring the segment times;
detecting combustion misfires on the basis of said rough-running values;
pregiving a first threshold value (SW1) for detecting combustion misfires;
comparing the determined rough-running values (LUT) in a desired value comparison to a second threshold value (SW2) which is, in value, substantially less than the first threshold value (SW1) pregiven for detecting misfires;
reducing the first threshold value (SW1) to a lower level when:
(a) when there is a regular drop below the second threshold value (SW2) within a pregiven time interval (Δt); or,
(b) during a specific number of engine revolutions (Δu).
2. The method of
claim 1
, comprising the further steps of:
filtering said rough running values (LUT) to obtain filtered rough running values (FLUT);
computing cylinder-individual equalization or correction factors for influencing injection times or ignition time points of the individual cylinders in an evaluation unit on the basis of the filtered rough running values;
comparing the determined rough running values (LUT) or the filtered rough running values (FLUT) in a desired value comparison to a second threshold value (SW2) which is, in value, substantially less than the first threshold value (SW1) pregiven for detecting misfires;
reducing the first threshold value (SW1) to a lower level when:
(a) when there is a regular drop below the second threshold value (SW2) within a pregiven time interval (Δt); or,
(b) during a specific number of engine revolutions (Δu).
3. The method of
claim 2
, comprising the further step of decreasing the first threshold value (SW1) pregiven for detecting misfires to the value of the lower second threshold value (SW2).
4. The method of
claim 3
, wherein an increase of the first threshold value (SW1) for misfire detection is effected by the second threshold value (SW2) being exceeded after the threshold value for detecting misfires is reduced to a lower level by the determined rough running values (LUT, FLUT).
5. The method of
claim 4
, wherein the threshold value (SW1) for misfire detection is increased to its original value at the start of the method.
6. The method of
claim 5
, wherein the reduction of the first threshold value (SW1) for misfire detection is to a lower level takes place in several stages with the magnitude of the individual threshold values lies between the magnitude of the first threshold value (SW1) for misfire detection and the threshold value (SW2).
7. The method of
claim 2
, comprising the further steps of storing the cylinder individual equalization or correction factors (GL) after each desired-actual comparison of the rough running values (LUT) in a precontrol characteristic field; and, keeping the cylinder-individual equalization or correction factors (GL) unchanged after reducing the first threshold value (SW1) for misfire detection to a lower level.
US09/797,953 2000-03-03 2001-03-05 Method for detecting combustion misfires in an internal combustion engine Expired - Fee Related US6439198B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10010459.2 2000-03-03
DE10010459 2000-03-03
DE10010459A DE10010459C1 (en) 2000-03-03 2000-03-03 Misfire detection method for internal combustion engines

Publications (2)

Publication Number Publication Date
US20010018906A1 true US20010018906A1 (en) 2001-09-06
US6439198B2 US6439198B2 (en) 2002-08-27

Family

ID=7633422

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/797,953 Expired - Fee Related US6439198B2 (en) 2000-03-03 2001-03-05 Method for detecting combustion misfires in an internal combustion engine

Country Status (4)

Country Link
US (1) US6439198B2 (en)
JP (1) JP2001263154A (en)
DE (1) DE10010459C1 (en)
FR (1) FR2805863B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023210A1 (en) * 2001-09-07 2003-03-20 Siemens Aktiengesellschaft Method for regulating the idle-running of a multi-cylinder internal combustion engine and signal conditioning arrangement therefor
EP1736655A1 (en) * 2005-06-23 2006-12-27 Hitachi, Ltd. Misfire detection system for internal combustion engine
CN102536486A (en) * 2010-10-05 2012-07-04 罗伯特·博世有限公司 Method for identifying interruptions
CN103670745A (en) * 2012-09-14 2014-03-26 罗伯特·博世有限公司 Method for determining identification threshold to stop identification
CN113738554A (en) * 2021-09-22 2021-12-03 潍柴动力股份有限公司 Starting method of diesel engine and related device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10000871A1 (en) * 2000-01-12 2001-08-02 Bosch Gmbh Robert Method for input signal correction and cylinder equalization on an internal combustion engine
DE10254479B4 (en) 2002-11-21 2004-10-28 Siemens Ag Method for detecting misfires in an internal combustion engine
US7142972B1 (en) * 2005-06-13 2006-11-28 Gm Global Technology Operations, Inc. Continuous cylinder misfire detection method
US7383816B2 (en) * 2006-01-09 2008-06-10 Dresser, Inc. Virtual fuel quality sensor
US8108128B2 (en) * 2009-03-31 2012-01-31 Dresser, Inc. Controlling exhaust gas recirculation
DE102009058677B4 (en) * 2009-12-16 2021-09-02 Vitesco Technologies GmbH Method for determining a fuel quality value
DE102013207173A1 (en) * 2013-04-19 2014-10-23 Robert Bosch Gmbh Method for determining segment times of a sensor wheel of an internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472449A (en) * 1990-07-10 1992-03-06 Fuji Heavy Ind Ltd Misfire diagnosis device for engine
DE4138765C2 (en) * 1991-01-10 2002-01-24 Bosch Gmbh Robert Method and device for determining an uneven running value of an internal combustion engine
DE4118580A1 (en) * 1991-06-06 1992-12-10 Bosch Gmbh Robert SYSTEM FOR DETECTING FAILURES IN AN INTERNAL COMBUSTION ENGINE
JP2982381B2 (en) * 1991-06-12 1999-11-22 株式会社デンソー Misfire detection device for internal combustion engine
JPH0781935B2 (en) * 1991-08-29 1995-09-06 トヨタ自動車株式会社 Misfire detection device for multi-cylinder internal combustion engine
DE4316409A1 (en) * 1993-05-17 1994-11-24 Bosch Gmbh Robert Method and device for detecting misfires
JPH08338299A (en) * 1995-06-10 1996-12-24 Robert Bosch Gmbh Misfire detecting method
DE19531845B4 (en) * 1995-08-29 2005-10-20 Bosch Gmbh Robert Misfire detection method
DE19535094B4 (en) * 1995-09-21 2005-06-02 Robert Bosch Gmbh A method of detecting misfire on one or more continuously-deploying cylinders
DE19534996A1 (en) * 1995-09-21 1997-03-27 Bosch Gmbh Robert Process for misfire detection by evaluating speed fluctuations
DE19641916B4 (en) * 1996-10-11 2008-03-06 Robert Bosch Gmbh Method for detecting misfire by evaluating speed fluctuations
US5862507A (en) * 1997-04-07 1999-01-19 Chrysler Corporation Real-time misfire detection for automobile engines with medium data rate crankshaft sampling
US6006154A (en) * 1998-03-02 1999-12-21 Cummins Engine Company, Inc. System and method for cylinder power imbalance prognostics and diagnostics
US5979407A (en) * 1998-06-01 1999-11-09 Cummins Engine Company, Inc. Passive and active misfire diagnosis for internal combustion engines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023210A1 (en) * 2001-09-07 2003-03-20 Siemens Aktiengesellschaft Method for regulating the idle-running of a multi-cylinder internal combustion engine and signal conditioning arrangement therefor
EP1736655A1 (en) * 2005-06-23 2006-12-27 Hitachi, Ltd. Misfire detection system for internal combustion engine
US20060288768A1 (en) * 2005-06-23 2006-12-28 Hitachi, Ltd. Misfire detection system for internal combustion engine
US7293453B2 (en) 2005-06-23 2007-11-13 Hitachi, Ltd. Misfire detection system for internal combustion engine
CN102536486A (en) * 2010-10-05 2012-07-04 罗伯特·博世有限公司 Method for identifying interruptions
CN103670745A (en) * 2012-09-14 2014-03-26 罗伯特·博世有限公司 Method for determining identification threshold to stop identification
CN113738554A (en) * 2021-09-22 2021-12-03 潍柴动力股份有限公司 Starting method of diesel engine and related device

Also Published As

Publication number Publication date
FR2805863B1 (en) 2006-04-14
FR2805863A1 (en) 2001-09-07
US6439198B2 (en) 2002-08-27
JP2001263154A (en) 2001-09-26
DE10010459C1 (en) 2002-04-04

Similar Documents

Publication Publication Date Title
JP3995054B2 (en) Method for detecting misfire in a multi-cylinder internal combustion engine
US6388444B1 (en) Adaptive method for detecting misfire in an internal combustion engines using an engine-mounted accelerometer
US6338326B1 (en) Process and apparatus for detecting exhaust-gas-impairing and catalyst-damaging misfires in the case of internal-combustion engines
US6439198B2 (en) Method for detecting combustion misfires in an internal combustion engine
US6658346B2 (en) Misfire detection apparatus for internal combustion engine
JPH04365958A (en) Misfire detecting device for internal combustion engine
US6155105A (en) Method for detecting RPM especially for detecting combustion misfires
US6457455B2 (en) Method for detecting combustion misfires and cylinder equalization in internal combustion engines with knock control
EP1348856A1 (en) Digital control apparatus for an engine and control method thereof
US5991685A (en) Combustion state detection system for internal combustion engine
US5861553A (en) Method of detecting combustion misfires
US6918288B2 (en) Method for engine misfire detection in multi-cylinder internal combustion engines with multi-cylinder spark ignition
JPH07151010A (en) Combustion condition diagnosis device for multicylinder engine and diagnosis method thereof
US5878366A (en) Method for detecting a powerloss condition of a reciprocating internal combustion engine
JPH0783108A (en) Combustion condition detecting device for internal combustion engine
EP1593825B1 (en) Method to balance the cylinders of a combustion engine with sensors for each cylinder
JPH0663482B2 (en) Knocking control device for internal combustion engine
US5955663A (en) Method of detecting combustion misfires
JPH056028B2 (en)
JP2797608B2 (en) Misfire determination device for internal combustion engine
US6450017B2 (en) Method for detecting combustion misfires in a multi-cylinder internal combustion engine
JP2001132520A (en) Monitoring method and device for fuel metering system
JPH0949454A (en) Combustion condition detecting device for internal combustion engine
JPH07119532A (en) Misfire detection device for internal combustion engine
JP3631004B2 (en) Combustion state detection device for internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEHNER, MICHAEL;LOHMANN, ANDREA;UHL, STEPHAN;REEL/FRAME:011677/0575;SIGNING DATES FROM 20010227 TO 20010303

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100827