US20010018468A1 - Nonionic cellulose ether with improved thickening properties - Google Patents
Nonionic cellulose ether with improved thickening properties Download PDFInfo
- Publication number
- US20010018468A1 US20010018468A1 US09/808,892 US80889201A US2001018468A1 US 20010018468 A1 US20010018468 A1 US 20010018468A1 US 80889201 A US80889201 A US 80889201A US 2001018468 A1 US2001018468 A1 US 2001018468A1
- Authority
- US
- United States
- Prior art keywords
- cellulose
- cellulose ether
- ether
- viscosity
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 *OCCC(O)CC.C.C Chemical compound *OCCC(O)CC.C.C 0.000 description 6
- BHLRFBCMAYNJNO-UHFFFAOYSA-N C.C.C=CCCC.COC Chemical compound C.C.C=CCCC.COC BHLRFBCMAYNJNO-UHFFFAOYSA-N 0.000 description 4
- FLQHTWPISNRZBP-UHFFFAOYSA-N C.C.CCCCOC Chemical compound C.C.CCCCOC FLQHTWPISNRZBP-UHFFFAOYSA-N 0.000 description 3
- MCZOHQKOPOKLBF-UHFFFAOYSA-N C.C.CCCC(O)CC Chemical compound C.C.CCCC(O)CC MCZOHQKOPOKLBF-UHFFFAOYSA-N 0.000 description 2
- MRNQSQSHFCUOQV-HSFVYJADSA-N C.C.C.C.C.C.C=CCCOC/C=C/CC.COC Chemical compound C.C.C.C.C.C.C=CCCOC/C=C/CC.COC MRNQSQSHFCUOQV-HSFVYJADSA-N 0.000 description 1
- HJPVYYAMBDCBHV-XDVHOFEZSA-N C.C.C.C.C.C.CC/C=C/COCCCOC Chemical compound C.C.C.C.C.C.CC/C=C/COCCCOC HJPVYYAMBDCBHV-XDVHOFEZSA-N 0.000 description 1
- JTNJFEWPCVGJES-UHFFFAOYSA-N C.C.CCOCC(O)CC Chemical compound C.C.CCOCC(O)CC JTNJFEWPCVGJES-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N COC Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B11/00—Preparation of cellulose ethers
- C08B11/193—Mixed ethers, i.e. ethers with two or more different etherifying groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/43—Thickening agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
- C08L1/28—Alkyl ethers
- C08L1/284—Alkyl ethers with hydroxylated hydrocarbon radicals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S516/00—Colloid systems and wetting agents; subcombinations thereof; processes of
- Y10S516/905—Agent composition per se for colloid system making or stabilizing, e.g. foaming, emulsifying, dispersing, or gelling
- Y10S516/917—The agent contains organic compound containing oxygen
- Y10S516/92—The compound contains repeating unsubstituted oxyalkylene
Definitions
- This invention relates to new nonionic cellulose ethers with improved thickening effects, especially in paint compositions.
- the improvements depend on the presence of hydrophobic substituents having a poly(oxyethylene) spacer between a large aliphatic group and the linkage to the cellulose ether.
- U.S. Pat. No. 4,228,277 discloses associative water-soluble nonionic cellulose ethers of the so called associative type. They contain as a modifying substituent a C 10 to C 24 long chain alkyl group which may be introduced by reacting a water-soluble cellulose ether and a suitable amount of the corresponding C 10 to C 24 epoxide.
- R is a hydrophobic group containing 8-36 carbon atoms
- A is an alkylenoxy group having 2-3 carbon atoms
- n is a number from 0 to 6.
- the present invention generally relates to nonionic cellulose ethers having improved thickening effects compared to the prior art.
- the improvements depend on the presence of hydrophobic substituents having a poly(oxyethylene) spacer between a large aliphatic group and the linkage to the cellulose ether.
- the invention also relates to a thickener which comprises the nonionic cellulose ethers of the present invention.
- the present invention generally relates to nonionic cellulose ethers having improved thickening effects compared to the prior art.
- the properties of the present nonionic cellulose ethers are improved by introducing into the nonionic cellulose ether a hydrophobic modifying group of the general formula
- R is an aliphatic group of 12-22 carbon atoms and n is a number from 3 to 7 with a degree of substitution of 0.003-0.102.
- the hydrophobically modified cellulose ether may have a viscosity of 20-15000 mPa ⁇ s, preferably 100-12000 mPa ⁇ s, and more preferably 150-4000 mPa ⁇ s, measured in a 1% by weight water solution with a StressTech rheometer from Rheologica, equipped with a 4 cm 1° cone and plate system, at 20° C. + or ⁇ 0.1° C. The rheometer was put in the constant shear mode and all viscosities were measured at the Newtonian plateau, characterized by a shear rate independent viscosity.
- R is an aliphatic group of 14- 20 carbon atoms and n is a number from 3 to 5. Even if larger aliphatic groups and higher values of n will further improve the viscosity, such high viscosities will normally not be required.
- the cellulose ether may contain lower alkyl substituents such as methyl, ethyl or propyl, or hydroxyalkyl substituents as hydroxyethyl, hydroxypropyl or hydroxybutyl or combinations thereof.
- the substituent and the degree of substitution are chosen so that the associative cellulose ethers of the invention become water-soluble or water-dispersable.
- cellulose ethers substituted with a group of the formula I and having a low degree of polymerisation, have remarkably favourable properties. These cellulose ethers have a unique combination of high associative thickening effect, high hydrophilicity and comparatively low thickening effect depending on the length of the cellulose chain. The unique combination of properties depends on the fact that the hydrophilicity of the large spacer of the group I increases the hydrophilicity of the cellulose ether and at the same time the associative thickening effect of the group I. The unique properties of these cellulose ethers can for example be utilized to improve the levelling, sagging and spatter of paint compositions.
- the differences in DP between cellulose ethers may easily be measured by determining the DP viscosity in a blend of diethylene glycol monobutylether and water in a weight ratio of 20:80. In such a blend all hydrophobic associations are broken and the viscosity depends on the length of the cellulose chain.
- the DP viscosity means the viscosity of 1% by weight of cellulose ether dissolved in the blend divided by 2.7.
- the DP viscosity value indicates an average DP value of the cellulose ether.
- the cellulose ethers normally have a DP viscosity of 15-200 mPa ⁇ s.
- the DP viscosity of the cellulose ethers are preferably 20-100 mPa ⁇ s.
- the cellulose ethers of the invention may be prepared by using known process steps. For example an alkali cellulose and suitable reactants can be reacted in the presence of an alkaline catalyst in order to introduce low alkyl groups and/or hydroxyalkyl groups in such amounts that the intermediate cellulose ethers obtained are water soluble.
- Suitable water-soluble ethers to which the hydrophobic group is added include, but are not limited to alkyl cellulose, alkyl hydroxyalkyl cellulose and hydroxyalkyl cellulose.
- Specific examples of such cellulose ethers include methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, hydroxyethyl cellulose, methyl cellulose, hydroxyethyl hydroxypropyl cellulose, ethyl hydroxyethyl cellulose, methyl ethyl hydroxyethyl cellulose and methyl hydroxyethyl hydroxypropyl cellulose.
- Preferred cellulose ethers are alkyl hydroxyalkyl celluloses, such as methyl hydroxyethyl cellulose, methyl ethyl hydroxyethyl cellulose and ethyl hydroxyethyl cellulose; and hydroxyethyl cellulose.
- the hydrophobically modified cellulose ethers of the invention may advantageously be used as a colloid stabilizer, thickener or reology modifier.
- Typical application areas are aqueous paint formulations, such as latex paints; cosmetics, such as shampoos and conditioners; detergent compositions, such as surface cleaners and compositions for laundry; and paper coating compositions.
- the cellulose ethers may advantageously be used in water-based flat, semi-flat and semi-gloss paints.
- the amounts added of the cellulose ethers vary depending on both the composition of the paints and the substitution and viscosity of the cellulose ethers, but normally the addition is 0.2-1% by weight of the paints.
- Suitable binders are emulsion binders, such as alkyd resins, and latex binders, such as polyvinyl acetate, copolymers of vinyl acetate and acrylate, copolymers of vinyl acetate and ethylene, copolymers of vinyl acetate, ethylene and vinyl chloride and copolymers of styrene and acrylate.
- the latex binders are often stabilized with anionic surfactants.
- the present cellulose ethers are much more versatile thickeners than earlier known associative nonionic cellulose ethers.
- the paint formulator has the possibility to affect the final paint properties to a very high extent.
- the present cellulose ethers can be used in all types of paints ranging from low to high PVC, and for interior as well as exterior use. They contribute to the following paint properties:
- Example A was repeated but the tetradecanol ethoxylate had 5 moles of ethylene oxide per mole of tetradecanol.
- the tetradecanol ethoxylate and epichlorohydrin were reacted and a glycidyl ether of the formula
- Example A was repeated, but a hexadecanol ethoxylate with 2 moles of ethylene oxide per mole of hexadecanol was used instead of the tetradecanol ethoxylate.
- the hexadecanol ethoxylate and epichlorohydrin were reacted and a glycidyl ether of the formula
- Example B was repeated but hexadecanol ethoxylate with 5 moles of ethylene oxide per mole of hexadecanol was used instead of the tetradecanol ethoxylate.
- the hexadecanol ethoxylate and epichlorohydrin were reacted and a glycidyl ether of the formula
- Example A was repeated but an oleylalcohol ethoxylate with 2 moles of ethylene oxide per mole of oleylalcohol was used instead of the tetradecanol ethoxylate.
- the oleylalcohol ethoxylate and epichlorohydrin were reacted and a glycidyl ether of the formula
- Example B was repeated but an oleylalcohol ethoxylate with 5 moles of ethylene oxide per mole of oleylalcohol was used instead of the tetradecanol ethoxylate.
- the oleyalcohol ethoxylate and epichlorohydrin were reacted and a glycidyl ether of the formula
- Example B was repeated but an adduct mixture of 2-octyldecanol, 2-hexyldodecanol, 2-octyldodecanol, 2-hexyldecanol and 2 moles of ethylene oxide per mole of the alcohol mixture was used instead of the tetradecanol ethoxylate.
- the adduct mixture and epichlorohydrin were reacted and a glycidyl ether of the formula
- Example B was repeated but an adduct mixture of 2-octyldecanol, 2-hexyldodecanol, 2-octyldodecanol, 2-hexyldecanol and 5 moles of ethylene oxide per mole of the alcohol mixture was used instead of the tetradecanol ethoxylate.
- the adduct mixture and epichlorohydrin were reacted and a glycidyl ether of the formula
- Example A was repeated but tetradecanol and epichlorohydrin were directly reacted and a glycidyl ether of the formula
- a cellulose ether solution containing 1% by weight of any one of the cellulose ethers in Examples A-I in deionised and distilled water were prepared.
- the viscosities of the solutions were measured with a StressTech rheometer from Rheologica equipped with a 4 cm 1° cone and plate system at 20° C. + or ⁇ 0.1° C. rheometer was put in the constant shear mode and all the visosities were measured at the Newtonian plateau, characterized by the shear rate independent viscosity. The following results were obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Paints Or Removers (AREA)
Abstract
The present invention relates to associative cellulose ethers with improved thickening effects, especially in paint. The improvement depends on the presence of a hydrophobic modifying group of the general formula
where R is an aliphatic group of 12-22 carbon atoms and n is a number from 3 to 7. The DS of the hydrophobic group is 0.003 to 0.012.
Description
- This invention relates to new nonionic cellulose ethers with improved thickening effects, especially in paint compositions. The improvements depend on the presence of hydrophobic substituents having a poly(oxyethylene) spacer between a large aliphatic group and the linkage to the cellulose ether.
- U.S. Pat. No. 4,228,277 discloses associative water-soluble nonionic cellulose ethers of the so called associative type. They contain as a modifying substituent a C10 to C24 long chain alkyl group which may be introduced by reacting a water-soluble cellulose ether and a suitable amount of the corresponding C10 to C24 epoxide.
-
-
- The degree of substitution of this group is 0.016.
- It has now been found that the properties of the prior art nonionic cellulose ethers can be improved by the present nonionic cellulose ethers which have improved thickening effects, especially in paint compositions.
- The present invention generally relates to nonionic cellulose ethers having improved thickening effects compared to the prior art. The improvements depend on the presence of hydrophobic substituents having a poly(oxyethylene) spacer between a large aliphatic group and the linkage to the cellulose ether. The invention also relates to a thickener which comprises the nonionic cellulose ethers of the present invention.
- The present invention generally relates to nonionic cellulose ethers having improved thickening effects compared to the prior art. The properties of the present nonionic cellulose ethers are improved by introducing into the nonionic cellulose ether a hydrophobic modifying group of the general formula
- where R is an aliphatic group of 12-22 carbon atoms and n is a number from 3 to 7 with a degree of substitution of 0.003-0.102. The hydrophobically modified cellulose ether may have a viscosity of 20-15000 mPa·s, preferably 100-12000 mPa·s, and more preferably 150-4000 mPa·s, measured in a 1% by weight water solution with a StressTech rheometer from Rheologica, equipped with a 4 cm 1° cone and plate system, at 20° C. + or −0.1° C. The rheometer was put in the constant shear mode and all viscosities were measured at the Newtonian plateau, characterized by a shear rate independent viscosity.
-
-
- Very surprising is also the fact that the thickening effect of the long spacer is more pronounced the larger the aliphatic group is. Preferably R is an aliphatic group of 14- 20 carbon atoms and n is a number from 3 to 5. Even if larger aliphatic groups and higher values of n will further improve the viscosity, such high viscosities will normally not be required.
- Besides the hydrophobic group the cellulose ether may contain lower alkyl substituents such as methyl, ethyl or propyl, or hydroxyalkyl substituents as hydroxyethyl, hydroxypropyl or hydroxybutyl or combinations thereof. The substituent and the degree of substitution are chosen so that the associative cellulose ethers of the invention become water-soluble or water-dispersable.
- It has also been found that cellulose ethers, substituted with a group of the formula I and having a low degree of polymerisation, have remarkably favourable properties. These cellulose ethers have a unique combination of high associative thickening effect, high hydrophilicity and comparatively low thickening effect depending on the length of the cellulose chain. The unique combination of properties depends on the fact that the hydrophilicity of the large spacer of the group I increases the hydrophilicity of the cellulose ether and at the same time the associative thickening effect of the group I. The unique properties of these cellulose ethers can for example be utilized to improve the levelling, sagging and spatter of paint compositions.
- The differences in DP between cellulose ethers may easily be measured by determining the DP viscosity in a blend of diethylene glycol monobutylether and water in a weight ratio of 20:80. In such a blend all hydrophobic associations are broken and the viscosity depends on the length of the cellulose chain. In this context the DP viscosity means the viscosity of 1% by weight of cellulose ether dissolved in the blend divided by 2.7. The DP viscosity value indicates an average DP value of the cellulose ether. According to the invention the cellulose ethers normally have a DP viscosity of 15-200 mPa·s. In paint compositions the DP viscosity of the cellulose ethers are preferably 20-100 mPa·s.
- The cellulose ethers of the invention may be prepared by using known process steps. For example an alkali cellulose and suitable reactants can be reacted in the presence of an alkaline catalyst in order to introduce low alkyl groups and/or hydroxyalkyl groups in such amounts that the intermediate cellulose ethers obtained are water soluble. This intermediate cellulose ether product and a reactant having the formula
- in which R and n have the meaning mentioned above, at elevated temperature and in the presence of an alkaline catalyst, to form a cellulose ether according to the invention.
- Suitable water-soluble ethers to which the hydrophobic group is added include, but are not limited to alkyl cellulose, alkyl hydroxyalkyl cellulose and hydroxyalkyl cellulose. Specific examples of such cellulose ethers include methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, hydroxyethyl cellulose, methyl cellulose, hydroxyethyl hydroxypropyl cellulose, ethyl hydroxyethyl cellulose, methyl ethyl hydroxyethyl cellulose and methyl hydroxyethyl hydroxypropyl cellulose. Preferred cellulose ethers are alkyl hydroxyalkyl celluloses, such as methyl hydroxyethyl cellulose, methyl ethyl hydroxyethyl cellulose and ethyl hydroxyethyl cellulose; and hydroxyethyl cellulose.
- The hydrophobically modified cellulose ethers of the invention may advantageously be used as a colloid stabilizer, thickener or reology modifier. Typical application areas are aqueous paint formulations, such as latex paints; cosmetics, such as shampoos and conditioners; detergent compositions, such as surface cleaners and compositions for laundry; and paper coating compositions.
- The cellulose ethers may advantageously be used in water-based flat, semi-flat and semi-gloss paints. The amounts added of the cellulose ethers vary depending on both the composition of the paints and the substitution and viscosity of the cellulose ethers, but normally the addition is 0.2-1% by weight of the paints. Suitable binders are emulsion binders, such as alkyd resins, and latex binders, such as polyvinyl acetate, copolymers of vinyl acetate and acrylate, copolymers of vinyl acetate and ethylene, copolymers of vinyl acetate, ethylene and vinyl chloride and copolymers of styrene and acrylate. The latex binders are often stabilized with anionic surfactants.
- The present cellulose ethers are much more versatile thickeners than earlier known associative nonionic cellulose ethers. The paint formulator has the possibility to affect the final paint properties to a very high extent. The present cellulose ethers can be used in all types of paints ranging from low to high PVC, and for interior as well as exterior use. They contribute to the following paint properties:
- low spatter
- good film build
- good flow and levelling
- low sag
- The present invention and the advantages of the present cellulose ethers are further illustrated by the following examples.
- One mole of tetradecanol ethoxylated with 2 moles of ethylene oxide per mole of tetradecanol and one mole of epichlorohydrin were reacted in the presence of tin tetrachloride at a temperature of 60 to 70° C. and a glycidyl ether was obtained. A solution of 30% sodium hydroxide in water was added at 80° C. After 30 minutes under vigorous stirring at 80° C., the resulting glycidyl ether was separated from the water phase. It had the structure
- Powder of dissolving wood pulp was added to a reactor. After evacuation of the air, 0.7 g of sodium hydroxide (50% w/w in water) were first added per gram of wood pulp followed by addition of 0.84 g of ethylene oxide, 1.5 g of ethyl chloride and 0.040 g of the glycidyl ether calculated on one gram of wood pulp. After the additions the temperature in the reactor was increased to 55° C. and held there for 50 minutes. The temperature was then increased to 105° C. and maintained for 50 minutes. The cellulose ether obtained was washed with boiling water and neutralised with acetic acid. The cellulose ether had a MShydroxyethyl=2.1, a DSethyl=0.8, and a DSR=0.008, where R is the group
- C14H29O(—C2H4O—)2CH2CH(OH)CH2—
-
- was obtained. In the production of the cellulose ether the amount of glycidyl ether was 0.055 g per g of wood pulp. The cellulose ether obtained had a
- MShydroxyethyl=2.1, a DSethyl=0.8, and a DSR=0.007, where R is the group
- C14H29O(—C2H4O—)5CH2CH(OH)CH2—
-
- was obtained. In the production of the cellulose ether the amount of glycidyl ether was 0.042 g per g of wood pulp. The cellulose ether obtained had a MShydroxyethyl=2.1, DSethyl=0.8, and a DSR =O.008, where R is the group
- C16H33O(—C2H4O—)2CH2CH(OH)CH2—
-
- was obtained. In the production of the cellulose ether the amount of glycidyl ether was 0.058 g per g of wood pulp. The cellulose ether obtained had a
- MShydroxyethyl=2.1, a DSethyl=0.8, and a DSR =O.008, where R is the group
- C16H33O(—C2H4O—)5CH2CH(OH)CH2—
-
- was obtained. In the production of the cellulose ether the amount of glycidyl ether was 0.053 g per g of wood pulp. The cellulose ether obtained had a MShydroxyethyl=2.1, a DSethyl=0.8, and a DSR =O.008, where R is the group
- CH3(—CH2—)7CH═CH(—CH2—)8O(—C2H4O—)2CH(OH)CH2—
-
- was obtained. In the production of the cellulose ether the amount of glycidyl ether was 0.065 g per g of wood pulp. The cellulose ether obtained had a MShydroxyethyl=2.1, a DSethyl=0.8, and a DSR=0.008, where R is the group
- CH3(—CH2—)7CH═CH(—CH2—)8O(—C2H4O—)5CH2CH(OH)CH2—
- Example B was repeated but an adduct mixture of 2-octyldecanol, 2-hexyldodecanol, 2-octyldodecanol, 2-hexyldecanol and 2 moles of ethylene oxide per mole of the alcohol mixture was used instead of the tetradecanol ethoxylate. The adduct mixture and epichlorohydrin were reacted and a glycidyl ether of the formula
- where p is 6-8 and m is 8-10
-
- where p and m have meanings mentioned above.
- Example B was repeated but an adduct mixture of 2-octyldecanol, 2-hexyldodecanol, 2-octyldodecanol, 2-hexyldecanol and 5 moles of ethylene oxide per mole of the alcohol mixture was used instead of the tetradecanol ethoxylate. The adduct mixture and epichlorohydrin were reacted and a glycidyl ether of the formula
- where p is 6-8 and m is 8-10 was obtained. In the production of the cellulose ether the amount of glycidyl ether was 0.065 g per g of wood pulp. The cellulose ether obtained had a MShydroxyethyl=2.1, a DSethyl=0.8, and a DSR=0.004, where R is the group
- CpH2p+1(CmH2m+1)CHCH2O(—C2H4O—)CH2(OH)CH2—
- where p and m have meanings mentioned above.
-
- was obtained. In the production of the cellulose ether the amount of the glycidyl ether was 0.029 g per g of wood pulp. The cellulose ether obtained had a MShdroxyethyl=2.1, a DSethyl=0.8, and a DSR=0.09, where R is the group
- C14H13OCH2CH(OH)CH2
- A cellulose ether solution containing 1% by weight of any one of the cellulose ethers in Examples A-I in deionised and distilled water were prepared. The viscosities of the solutions were measured with a StressTech rheometer from Rheologica equipped with a 4 cm 1° cone and plate system at 20° C. + or − 0.1° C. rheometer was put in the constant shear mode and all the visosities were measured at the Newtonian plateau, characterized by the shear rate independent viscosity. The following results were obtained.
Cellulose ether Test Alipatic Viscosity DP Viscosity No Example group n DSR mPa.s mPa.s 1 A C14H29- 2 0.008 1660 47 2 B C14H29- 5 0.007 2851 52 3 C C16H33- 2 0.008 561 55 4 D C16H33- 5 0.008 721 54 5 E Oleyl 2 0.008 3172 54 6 F Oleyl 5 0.008 4415 54 7 G (1) 2 0.006 2333 41 8 H (1) 5 0.004 2565 46 9 I C14H29- 0 0.009 1300 92 - (1)=CpH2p+1(CmH2m+1)CHCH2—, where p is 6-8 and m is 8-10.
- From the results it is evident that the thickening efficiency of the cellulose ethers increases with the length of the spacers. The low viscosities of the water solution of the cellulose ethers C and D depend on the fact that phase separation occurs at 20° C.
- Semi-gloss latex paints were prepared and one of the cellulose ethers in examples A-I was added in such an amount that a latex paint of a Stormer viscosity of 110 KU was obtained. The latex paints had the following composition.
Ingredient Parts by weight Water 243.5 - x Cellulose ether x Bactericide 1 Dispersing agent 6.5 Defoamer 5 Titanium dioxide 180 Calcium carbonate 110 Latex (Vinamul 3650) 454 - The amounts of cellulose ether needed to obtain a Stormer viscosity of 110 were as follows.
Test Cellulose ether Spacer Amount No Example n parts by weight 10 A 2 4.0 11 B 5 3.5 12 C 2 4.1 13 D 5 3.7 14 E 2 3.0 15 F 5 2.8 16 G 2 4.0 17 H 5 3.5 18 I 0 4.0 - From the results it is evident that the cellulose ethers with the longer ethylene oxide spacer (Tests 11, 13, 15 and 17) give a latex paint with a Stormer viscosity of 110 KU at a lower amount of addition than the cellulose ethers with shorter spacers. In the paint formulation the cellulose ethers of Examples C and D do not cause any phase separations.
Claims (17)
2. The cellulose ether of wherein having a viscosity of 20-15000 mPa·s in a 1% water solution at 20° C.
claim 1
3. The cellulose ether of having a DP viscosity of 15-200 mPa·s.
claim 1
4. The cellulose ether of having a degree of substitution of from 0.003 to 0.012.
claim 3
5. The cellulose ether of wherein the cellulose ether is a modified water-soluble alkyl cellulose, hydroxyalkyl cellulose or alkyl hydroxyalkyl cellulose.
claim 1
6. The cellulose ether of wherein the cellulose ether is a modified methyl hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, methyl ethyl hydroxyethyl cellulose, or hydroxyethyl cellulose.
claim 5
7. The cellulose ether of having a DP viscosity of 20-100 mPa·s.
claim 1
8. The cellulose ether of having a viscosity of 100-12000 mPa·s measured in 1% water solution at 20° C.
claim 1
9. A paint composition which comprises a film forming latex and an aqueous phase thickened with a nonionic associative cellulose ether comprising a modifying hydrophobic group of the formula
wherein R is an aliphatic group of 12-22 carbon atoms and n is a number from 3 to 7, with a degree of substitution of 0.003 to 0.012.
10. The paint composition of wherein the cellulose ether has a viscosity of 20-15000 mpa·s in a 1% water solution at 20° C.
claim 9
11. The paint composition of wherein the cellulose ether has a DP viscosity of 15-200 mPa·s.
claim 9
12. The paint composition of wherein the cellulose ether has a degree of substitution of from 0.003 to 0.012.
claim 9
13. The paint composition of wherein the cellulose ether is a modified water-soluble alkyl cellulose, hydroxyalkyl cellulose or alkyl hydroxyalkyl cellulose.
claim 9
14. The paint composition of wherein the cellulose ether is a modified methyl hydroxyethyl cellulose, an ethyl hydroxyethyl cellulose, methyl ethyl hydroxyethyl cellulose, or hydroxyethyl cellulose.
claim 9
15. A colloid stabilizer which comprises at least one of the cellulose ethers of .
claim 1
16. A thickener which comprises at least one of the cellulose ethers of .
claim 1
17. A reology modifier which comprises at least one of the cellulose ethers of .
claim 1
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/808,892 US6362238B2 (en) | 1998-08-06 | 2001-03-15 | Nonionic cellulose ether with improved thickening properties |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9802676 | 1998-08-06 | ||
SE9802676A SE514347C2 (en) | 1998-08-06 | 1998-08-06 | Non-ionic cellulose ether and its use as a thickener in paint compositions |
SE9802676-8 | 1998-08-06 | ||
US9759798P | 1998-08-24 | 1998-08-24 | |
US09/356,624 US6248880B1 (en) | 1998-08-06 | 1999-07-19 | Nonionic cellulose ether with improve thickening properties |
US09/808,892 US6362238B2 (en) | 1998-08-06 | 2001-03-15 | Nonionic cellulose ether with improved thickening properties |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/356,624 Division US6248880B1 (en) | 1998-08-06 | 1999-07-19 | Nonionic cellulose ether with improve thickening properties |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010018468A1 true US20010018468A1 (en) | 2001-08-30 |
US6362238B2 US6362238B2 (en) | 2002-03-26 |
Family
ID=27355933
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/356,624 Expired - Lifetime US6248880B1 (en) | 1998-08-06 | 1999-07-19 | Nonionic cellulose ether with improve thickening properties |
US09/808,892 Expired - Lifetime US6362238B2 (en) | 1998-08-06 | 2001-03-15 | Nonionic cellulose ether with improved thickening properties |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/356,624 Expired - Lifetime US6248880B1 (en) | 1998-08-06 | 1999-07-19 | Nonionic cellulose ether with improve thickening properties |
Country Status (1)
Country | Link |
---|---|
US (2) | US6248880B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10738169B2 (en) | 2015-09-07 | 2020-08-11 | Kao Corporation | Resin composition |
US10906993B2 (en) | 2015-09-07 | 2021-02-02 | Kao Corporation | Modified cellulose fibers |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0300235D0 (en) * | 2003-01-31 | 2003-01-31 | Akzo Nobel Nv | A nonionic cellulose ether and its use |
SE526356C2 (en) * | 2003-12-15 | 2005-08-30 | Akzo Nobel Nv | Associative water-soluble cellulose ethers |
US7703456B2 (en) * | 2003-12-18 | 2010-04-27 | Kimberly-Clark Worldwide, Inc. | Facemasks containing an anti-fog / anti-glare composition |
JP2006005246A (en) * | 2004-06-18 | 2006-01-05 | Fujimi Inc | Rinsing composition and rinsing method using the same |
US7707655B2 (en) * | 2006-12-15 | 2010-05-04 | Kimberly-Clark Worldwide, Inc. | Self warming mask |
US7725992B2 (en) * | 2006-12-29 | 2010-06-01 | Kimberly-Clark Worldwide, Inc. | Mechanical fastener |
US20080227892A1 (en) * | 2007-03-13 | 2008-09-18 | Van Der Wielen Maarten | Paint formulations comprising cellulose ether/network building polymer fluid gel thickeners |
US20100069536A1 (en) * | 2008-07-17 | 2010-03-18 | Sau Arjun C | Process for tailoring water-borne coating compositions |
AU2011344351B2 (en) | 2010-12-16 | 2015-06-11 | Akzo Nobel Chemicals International B.V. | Hydrophobically modified polysaccharide ethers as deposition enhancers for agriculturall active ingredients |
US9320656B2 (en) | 2013-11-27 | 2016-04-26 | Kimberly-Clark Worldwide, Inc. | Water-dispersible thermoplastic injection molded composition |
US9339580B2 (en) | 2013-11-27 | 2016-05-17 | Kimberly-Clark Worldwide, Inc. | Flushable tampon applicator |
US9456931B2 (en) | 2013-11-27 | 2016-10-04 | Kimberly-Clark Worldwide, Inc. | Thermoplastic and water-dispersible injection moldable materials and articles |
US10028899B2 (en) | 2014-07-31 | 2018-07-24 | Kimberly-Clark Worldwide, Inc. | Anti-adherent alcohol-based composition |
WO2016018475A1 (en) | 2014-07-31 | 2016-02-04 | Kimberly-Clark Worldwide, Inc. | Anti-adherent composition |
KR102501943B1 (en) | 2014-07-31 | 2023-03-15 | 킴벌리-클라크 월드와이드, 인크. | Anti-adherent composition |
KR102401730B1 (en) | 2015-04-01 | 2022-05-26 | 킴벌리-클라크 월드와이드, 인크. | Fiber base for trapping Gram-negative bacteria |
WO2017131691A1 (en) | 2016-01-28 | 2017-08-03 | Kimberly-Clark Worldwide, Inc. | Anti-adherent composition against dna viruses and method of inhibiting the adherence of dna viruses to a surface |
US11168287B2 (en) | 2016-05-26 | 2021-11-09 | Kimberly-Clark Worldwide, Inc. | Anti-adherent compositions and methods of inhibiting the adherence of microbes to a surface |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4228277A (en) | 1979-02-12 | 1980-10-14 | Hercules Incorporated | Modified nonionic cellulose ethers |
SE463313B (en) | 1989-03-10 | 1990-11-05 | Berol Nobel Stenungssund Ab | WATER-SOLUBLE, NON-NONIC CELLULOSETERS AND THEIR APPLICATION IN MAIL ARRIVALS |
-
1999
- 1999-07-19 US US09/356,624 patent/US6248880B1/en not_active Expired - Lifetime
-
2001
- 2001-03-15 US US09/808,892 patent/US6362238B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10738169B2 (en) | 2015-09-07 | 2020-08-11 | Kao Corporation | Resin composition |
US10906993B2 (en) | 2015-09-07 | 2021-02-02 | Kao Corporation | Modified cellulose fibers |
Also Published As
Publication number | Publication date |
---|---|
US6362238B2 (en) | 2002-03-26 |
US6248880B1 (en) | 2001-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6248880B1 (en) | Nonionic cellulose ether with improve thickening properties | |
EP1117694B1 (en) | Non-ionic cellulose ether with improved thickening properties | |
US5140099A (en) | Water soluble nonionic cellulose ethers and their use in paints | |
US4826970A (en) | Carboxymethyl hydrophobically modified hydroxyethylcellulose | |
DE69010350T2 (en) | Polysaccharides with alkaryl or aralkyl hydrophobes and latex compositions containing the polysaccharides. | |
US8487089B2 (en) | Associative water-soluble cellulose ethers | |
US4904772A (en) | Mixed hydrophobe polymers | |
US7319146B2 (en) | Nonionic cellulose ether and its use | |
US7504498B2 (en) | Process for the manufacture of methyl cellulose ether | |
AU8056698A (en) | Cross-linked reaction products of alkoxylated alcohols and alkylene glycols |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |