US20010016610A1 - Expandable olefin bead polymers - Google Patents
Expandable olefin bead polymers Download PDFInfo
- Publication number
- US20010016610A1 US20010016610A1 US09/750,760 US75076001A US2001016610A1 US 20010016610 A1 US20010016610 A1 US 20010016610A1 US 75076001 A US75076001 A US 75076001A US 2001016610 A1 US2001016610 A1 US 2001016610A1
- Authority
- US
- United States
- Prior art keywords
- weight
- blowing agent
- expandable
- expandable olefin
- olefin polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
- B29B9/065—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/12—Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
Definitions
- the invention relates to expandable olefin bead polymers which comprise blowing agent and can be expanded to give a moldable foam.
- Moldable polyolefin foams are increasingly used to produce foam moldings in automotive construction, in packaging and in the leisure sector.
- moldable foams are much more voluminous than unfoamed expandable beads, e.g. those based on polystyrene (EPS beads), and this is disadvantageous during transport and in storage, since the space required is large.
- EPS beads polystyrene
- EPS beads can, is as known, be prepared by impregnating polystyrene pellets with a volatile hydrocarbon blowing agent in aqueous suspension, cooling the suspension and isolating the impregnated beads. Since polystyrene has good capabilities for retaining hydrocarbons, these diffuse only very slowly, so that the beads comprising blowing agent can be stored for prolonged periods without loss of blowing agent.
- EP-A 540 271 describes a process for preparing expandable polyblend beads made from polyphenylene ether with a polyolefin.
- minipellets made from a polyphenylene ether/polyolefin blend are impregnated in aqueous dispersion in a pressure vessel with a halogenated hydrocarbon blowing agent, preferably trichlorofluoromethane, the dispersion is cooled and the expandable beads are isolated.
- a disadvantage of the process is that it can apparently only be carried out with halogenated hydrocarbons as blowing agent. But these are environmentally hazardous.
- very large-cell foams are obtained when the expandable beads are foamed.
- the olefin polymers must not comprise any admixed thermoplastics with a glass transition point above 180° C. (Polyphenylene ethers have a glass transition point at about 200° C.). It is preferable for there to be less than 5% by weight of thermoplastics of other types, and in particular for there to be none at all.
- expandable olefin bead polymers which may have been blended with up to 50% by weight, preferably less than 5% by weight, of a thermoplastic with a glass transition point below 180° C. and which comprise from 1 to 40% by weight of an organic blowing agent with a boiling point of from ⁇ 5 to 150° C., based in each case on the weight of the olefin polymer.
- the polymers are characterized by a bulk density above 400 g/l and in that they can be foamed to a bulk density below 200 g/l after storage for one hour at room temperature in free contact with the atmosphere by heating above 100° C. During this, the beads comprising blowing agent should melt at least to some extent, so that the foaming process can proceed to completion.
- the ideal foaming temperature is from 130 to 160° C., preferably 150° C.
- the invention further provides a process for preparing these expandable beads, in which polyolefin pellets are impregnated in suspension in a pressure vessel at elevated temperature with from 2 to 50% by weight of a preferably halogen-free, organic blowing agent, the batch is cooled below 100° C., and the impregnated pellets are isolated and washed.
- EP-A 778 310 describes a process for preparing moldable polyolefin foams, in which a first step prepares partially foamed beads with a bulk density of from 120 to 400 g/l by extruding polyolefin comprising solid blowing agents, and a second step then uses steam to foam these further.
- novel expandable olefin bead polymers are practically unfoamed beads with a bulk density above 400 g/l, preferably above 500 g/l, and can be foamed to a bulk density below 200 g/l, preferably below 150 g/l and in particular below 100 g/l after storage for one hour, at room temperature in free contact with the atmosphere by heating above 100° C., and in the case of propylene polymers preferably at from 130 to 160° C., in particular at 150° C.
- the first condition expresses the fact that the beads practically do not foam when the pressure on the impregnating batch is reduced.
- the olefin polymer pellets used as starting material have, depending on their composition and the shape of their particles, a bulk density of from 450 to 700 g/l.
- the second condition expresses the fact that, even after storage for one hour in free contact with the atmosphere, the beads still comprise sufficient stored blowing agent to be capable of good foaming. This storage for one hour at room temperature in free contact with the atmosphere is therefore significant in practice and is also realistic, since practical treatment and handling of the beads comprising blowing agent prior to their packing and after their removal from the packing prior to their foaming does not take more than one hour in total. Very little blowing agent should escape during this period. As the beads have generally been packed in sealed containers or in gas-tight film sacks when they are stored and transported, the amount of blowing agent which can escape during these stages is also insignificant.
- novel polyolefin beads comprising blowing agent can normally be stored for a number of days without escape of any substantial amount of blowing agent. Prolonged storage in the open should, however, be avoided.
- c) A mixture of a) or b) with from 0.1 to 75% by weight, preferably from 3 to 50% by weight, of a polyolefin elastomer, e.g. an ethylene-propylene block copolymer with from 30 to 70% by weight of propylene.
- a polyolefin elastomer e.g. an ethylene-propylene block copolymer with from 30 to 70% by weight of propylene.
- Olefin polymers prepared using either Ziegler or metallocene catalysts are suitable.
- the crystalline melting point (DSC maximum) of the polyolefins listed under a) to e) is generally from 90 to 170° C., their enthalpy of fusion, determined by DSC, is preferably from 20 to 300 J/g, and the melt index MFR (230° C., 2.16 kp for propylene polymers and 190° C., 2.16 kp for ethylene polymers) is preferably from 0.1 to 100 g/10 min to DIN 53 735.
- Preferred polyolefins are homo- or copolymers of propylene with up to 15% by weight of ethylene and/or 1-butene, particularly preferably propylene-ethylene copolymers with from 1 to 5% by weight of ethylene. They have a melting point of from 130 to 160° C. and a density (at room temperature) of about 900 g/l.
- the olefin polymer may have been blended with up to 50% of its weight of a thermoplastic of a different type and having a glass transition temperature (point of inflection in DSC curve) below 180° C.
- suitable thermoplastics are polyamides in amounts of from 5 to 40% by weight and conventional compatibilizers, e.g. block copolymers, such as Exxelor P 1015 (EXXON), may be added to the mixture here.
- the invention may also be worked without admixing a thermoplastic of a different type. This is preferred insofar as the presence of a foreign thermoplastic impairs the recycleability of the polyolefin and of the foam produced therefrom.
- Elastomeric ethylene-propylene copolymers which may be added for plasticization are not regarded for the purposes of the present invention as being of a different type.
- the polyolefin may comprise the usual additives, such as antioxidants, stabilizers, flame retardants, waxes, nucleating agents, fillers, pigments and dyes.
- the starting material for preparing the novel expandable polyolefin beads is polyolefin pellets, which preferably have average diameters of from 0.2 to 10 mm, in particular from 0.5 to 5 mm. These mostly cylindrical or round minipellets are prepared by extruding the polyolefin, if desired together with the thermoplastic to be admixed and with other additives, and if desired cooling, and pelletizing.
- the minipellets should preferably comprise from 0.001 to 10% by weight of a nucleating agent, preferably from 0.1 to 5% by weight and in particular from 0.5 to 3% by weight.
- a nucleating agent preferably from 0.1 to 5% by weight and in particular from 0.5 to 3% by weight.
- suitable are talc, paraffins and/or waxes, and also carbon black, graphite and pyrogenic silicas, and also naturally occuring or synthetic zeolites and (modified or unmodified) bentonites. They bring about production of a small-cell foam, and in a good many cases foaming is impossible without them.
- suspending agents are water-insoluble inorganic stabilizers, such as tricalcium phosphate, magnesium pyrophosphate and metal carbonates; others are polyvinyl alcohol and surfactants, such as sodium dodecylarylsulfonate. The amounts of these usually used are from 0.05 to 10% by weight.
- the addition of suspension stabilizers may be dispensed with if, as in WO-A 99/10419, the density of the suspension medium is lower than that of the suspended pellets. This is the case, for example, if the suspension medium is ethanol or a mixture of ethanol with up to 50% by weight of water.
- blowing agent is significant for the invention. Its boiling point should be from ⁇ 5 to 150° C., in particular from 25 to 125° C.
- the blowing agent is preferably an alkane, an alkanol, a ketone, an ether or an ester. Particular preference is given to pentanes, hexanes and heptanes, in particular sec-pentane, 3,3-dimethyl-2-butanone and 4-methyl-2-pentanone. It is also possible to use blowing agent mixtures.
- the blowing agent is preferably halogen-free.
- blowing agent mixtures which comprise small amounts, preferably less than 10% by weight, in particular less than 5% by weight, of a halogen-containing blowing agent, e.g. methylene chloride or fluorohydrocarbons, should not be excluded.
- a halogen-containing blowing agent e.g. methylene chloride or fluorohydrocarbons
- the amount of the blowing agent used is preferably from 2 to 50% by weight, in particular from 5 to 30% by weight, based on the pellets.
- the blowing agent may be added prior to, during or after the heating of the reactor contents. It may be introduced all at once or in portions.
- the temperature should be in the vicinity of the softening point of the polyolefin. It may be from 40 to 25° C. above the melting point (crystalline melting point), but should preferably be below the melting point. In the case of polypropylene, preferred impregnating temperatures are from 120 to 150° C.
- the pressure which becomes established in the reactor is generally above 2 bar but not above 40 bar.
- the impregnation times are generally from 0.5 to 10 hours.
- the suspension Prior to pressure reduction and removal from the stirred reactor, the suspension is cooled below 100° C., preferably to 10-50° C., by, for example, passing cooling water through the reactor jacket. Once the pressure has been reduced and the batch discharged from the reactor, the beads comprising blowing agent are isolated from the suspension medium and washed.
- the beads comprising blowing agent may be foamed by conventional methods using hot air or steam in pressure prefoamers.
- the pressures used when foaming with steam are from 2 to 4.5 bar, the foaming times vary from 3 to 30 sec and the temperature during foaming should be above 100° C., and in the case of polypropylene in particular from 130 to 160° C.
- a single foaming gives bulk densities of from 20 to 200 g/l. Technical or economic reasons may also make it expedient to use more than one foaming for low bulk densities.
- the resultant moldable foam may be used to produce foam moldings by known methods.
- the stated amounts of the starting materials are mixed in an extruder, extruded and pelletized.
- the starting materials were placed in a 260 ml stirred autoclave. The batch was heated to 140° C. and held at this temperature for three hours. The autoclave was then cooled to room temperature and the pressure reduced. The impregnated beads were isolated, washed, forced-air-dried and stored in a sealed container.
- the beads were removed from the container and stored for 1 hour at room temperature in free contact with the atmosphere. They were then foamed at 150° C. for 8 sec with steam (steam pressure 3.5 bar) in a conventional pressure prefoamer.
- Table 1 gives the minipellets and blowing agents used, the contents of blowing agent found prior to and after the holding period of one hour and the bulk densities of the beads, together with the nature of the cells in the resultant moldable foam.
- Example 6 c is comparative.
- the starting materials were placed in a 55 liter stirred vessel. Within the heating time given in the table, the mixture was brought to 140° C. and held at that temperature for one hour, followed by cooling to room temperature and pressure release. The impregnated pellets were discharged onto a screen, where they were washed with water, and then stored in sealed drums. Specimens of these material were forced-air-dried and used for the foaming trials (see Table 2).
- the starting materials were placed in a 1.6 m 3 stirred vessel. The mixture was then brought to 140° C. within a period of 5 hours and held at that temperature for one hour, followed by cooling to room temperature and release of pressure. The impregnated pellets were discharged onto a screen, where they were washed with water, and then stored in sealed drums. Specimens of these material were forced-air-dried and used for the foaming trials (see Table 2).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
The invention relates to expandable olefin bead polymers which comprise a blowing agent with a boiling point of from −5 to 150° C., selected from the group consisting of alkanes, alkanols, ketones, ethers and esters. The particles are unfoamed and have a bulk density above 500 g/l, and can be foamed to a bulk density below 200 g/l after storage for one hour at room temperature in free contact with the atmosphere. They are prepared by impregnating polyolefin pellets in suspension in a pressure vessel with the blowing agent, cooling the batch below 100° C., reducing the pressure and isolating the particles.
Description
- The invention relates to expandable olefin bead polymers which comprise blowing agent and can be expanded to give a moldable foam. Moldable polyolefin foams are increasingly used to produce foam moldings in automotive construction, in packaging and in the leisure sector. However, moldable foams are much more voluminous than unfoamed expandable beads, e.g. those based on polystyrene (EPS beads), and this is disadvantageous during transport and in storage, since the space required is large.
- EPS beads can, is as known, be prepared by impregnating polystyrene pellets with a volatile hydrocarbon blowing agent in aqueous suspension, cooling the suspension and isolating the impregnated beads. Since polystyrene has good capabilities for retaining hydrocarbons, these diffuse only very slowly, so that the beads comprising blowing agent can be stored for prolonged periods without loss of blowing agent.
- However, in the case of polyolefins this is not readily possible, and unfoamed expandable polyolefin beads have not therefore hitherto been available. The known expanded polypropylene moldable foams (EPP) are produced on an industrial scale by impregnating polypropylene pellets with a volatile blowing agent in aqueous suspension under pressure and reducing the pressure, whereupon the impregnated beads foam. The blowing agents used in practice comprise butane, dichlorodifluoromethane and CO2. Since these blowing agents are lost again relatively rapidly by diffusion out of the polypropylene, polypropylene beads comprising blowing agent and prepared in this way have not been regarded as storable.
- EP-A 540 271 describes a process for preparing expandable polyblend beads made from polyphenylene ether with a polyolefin. Here, minipellets made from a polyphenylene ether/polyolefin blend are impregnated in aqueous dispersion in a pressure vessel with a halogenated hydrocarbon blowing agent, preferably trichlorofluoromethane, the dispersion is cooled and the expandable beads are isolated. A disadvantage of the process is that it can apparently only be carried out with halogenated hydrocarbons as blowing agent. But these are environmentally hazardous. In addition, when the examples are repeated, very large-cell foams are obtained when the expandable beads are foamed.
- It is an object of the present invention to provide unfoamed expandable beads made from olefin polymers, comprising a preferably halogen-free blowing agent and foamable to give small-cell foams. The olefin polymers must not comprise any admixed thermoplastics with a glass transition point above 180° C. (Polyphenylene ethers have a glass transition point at about 200° C.). It is preferable for there to be less than 5% by weight of thermoplastics of other types, and in particular for there to be none at all.
- We have found that this object is achieved by expandable olefin bead polymers which may have been blended with up to 50% by weight, preferably less than 5% by weight, of a thermoplastic with a glass transition point below 180° C. and which comprise from 1 to 40% by weight of an organic blowing agent with a boiling point of from −5 to 150° C., based in each case on the weight of the olefin polymer.
- The polymers are characterized by a bulk density above 400 g/l and in that they can be foamed to a bulk density below 200 g/l after storage for one hour at room temperature in free contact with the atmosphere by heating above 100° C. During this, the beads comprising blowing agent should melt at least to some extent, so that the foaming process can proceed to completion. In the case of the preferred propylene polymers, the ideal foaming temperature is from 130 to 160° C., preferably 150° C.
- The invention further provides a process for preparing these expandable beads, in which polyolefin pellets are impregnated in suspension in a pressure vessel at elevated temperature with from 2 to 50% by weight of a preferably halogen-free, organic blowing agent, the batch is cooled below 100° C., and the impregnated pellets are isolated and washed.
- EP-A 778 310 describes a process for preparing moldable polyolefin foams, in which a first step prepares partially foamed beads with a bulk density of from 120 to 400 g/l by extruding polyolefin comprising solid blowing agents, and a second step then uses steam to foam these further.
- The novel expandable olefin bead polymers are practically unfoamed beads with a bulk density above 400 g/l, preferably above 500 g/l, and can be foamed to a bulk density below 200 g/l, preferably below 150 g/l and in particular below 100 g/l after storage for one hour, at room temperature in free contact with the atmosphere by heating above 100° C., and in the case of propylene polymers preferably at from 130 to 160° C., in particular at 150° C.
- The first condition expresses the fact that the beads practically do not foam when the pressure on the impregnating batch is reduced. The olefin polymer pellets used as starting material have, depending on their composition and the shape of their particles, a bulk density of from 450 to 700 g/l. The second condition expresses the fact that, even after storage for one hour in free contact with the atmosphere, the beads still comprise sufficient stored blowing agent to be capable of good foaming. This storage for one hour at room temperature in free contact with the atmosphere is therefore significant in practice and is also realistic, since practical treatment and handling of the beads comprising blowing agent prior to their packing and after their removal from the packing prior to their foaming does not take more than one hour in total. Very little blowing agent should escape during this period. As the beads have generally been packed in sealed containers or in gas-tight film sacks when they are stored and transported, the amount of blowing agent which can escape during these stages is also insignificant.
- The novel polyolefin beads comprising blowing agent can normally be stored for a number of days without escape of any substantial amount of blowing agent. Prolonged storage in the open should, however, be avoided.
- For the purposes of the invention olefin polymers are
- a) Homopolypropylene,
- b) Random copolymers of propylene with from 0.1 to 15% by weight, preferably 0.5 to 12% by weight, of ethylene and/or a C4-C10-α-olefin, preferably a copolymer of propylene with from 0.5 to 6% by weight of ethylene or with from 0.5 to 15% by weight of 1-butene, or a terpolymer made from propylene, from 0.5 to 6% by weight of ethylene and from 0.5 to 6% by weight of 1-butene, or
- c) A mixture of a) or b) with from 0.1 to 75% by weight, preferably from 3 to 50% by weight, of a polyolefin elastomer, e.g. an ethylene-propylene block copolymer with from 30 to 70% by weight of propylene.
- d) Polyethylene (LLDPE, LDPE, MDPE, HDPE) or
- e) A mixture of the polyolefins mentioned under a) to d) (if desired with addition of compatibilizers).
- Olefin polymers prepared using either Ziegler or metallocene catalysts are suitable.
- The crystalline melting point (DSC maximum) of the polyolefins listed under a) to e) is generally from 90 to 170° C., their enthalpy of fusion, determined by DSC, is preferably from 20 to 300 J/g, and the melt index MFR (230° C., 2.16 kp for propylene polymers and 190° C., 2.16 kp for ethylene polymers) is preferably from 0.1 to 100 g/10 min to DIN 53 735.
- Preferred polyolefins are homo- or copolymers of propylene with up to 15% by weight of ethylene and/or 1-butene, particularly preferably propylene-ethylene copolymers with from 1 to 5% by weight of ethylene. They have a melting point of from 130 to 160° C. and a density (at room temperature) of about 900 g/l.
- The olefin polymer may have been blended with up to 50% of its weight of a thermoplastic of a different type and having a glass transition temperature (point of inflection in DSC curve) below 180° C. Examples of suitable thermoplastics are polyamides in amounts of from 5 to 40% by weight and conventional compatibilizers, e.g. block copolymers, such as Exxelor P 1015 (EXXON), may be added to the mixture here.
- It has been found that the invention may also be worked without admixing a thermoplastic of a different type. This is preferred insofar as the presence of a foreign thermoplastic impairs the recycleability of the polyolefin and of the foam produced therefrom. Elastomeric ethylene-propylene copolymers which may be added for plasticization are not regarded for the purposes of the present invention as being of a different type.
- The polyolefin may comprise the usual additives, such as antioxidants, stabilizers, flame retardants, waxes, nucleating agents, fillers, pigments and dyes.
- The starting material for preparing the novel expandable polyolefin beads is polyolefin pellets, which preferably have average diameters of from 0.2 to 10 mm, in particular from 0.5 to 5 mm. These mostly cylindrical or round minipellets are prepared by extruding the polyolefin, if desired together with the thermoplastic to be admixed and with other additives, and if desired cooling, and pelletizing.
- The minipellets should preferably comprise from 0.001 to 10% by weight of a nucleating agent, preferably from 0.1 to 5% by weight and in particular from 0.5 to 3% by weight. Examples of those suitable are talc, paraffins and/or waxes, and also carbon black, graphite and pyrogenic silicas, and also naturally occuring or synthetic zeolites and (modified or unmodified) bentonites. They bring about production of a small-cell foam, and in a good many cases foaming is impossible without them.
- These pellets are dispersed in a suspension medium in a stirred reactor. A preferred suspension medium is water. In this instance it is necessary to add suspending agents, to ensure uniform distribution of the minipellets in the suspension medium. Suitable suspending agents are water-insoluble inorganic stabilizers, such as tricalcium phosphate, magnesium pyrophosphate and metal carbonates; others are polyvinyl alcohol and surfactants, such as sodium dodecylarylsulfonate. The amounts of these usually used are from 0.05 to 10% by weight. The addition of suspension stabilizers may be dispensed with if, as in WO-A 99/10419, the density of the suspension medium is lower than that of the suspended pellets. This is the case, for example, if the suspension medium is ethanol or a mixture of ethanol with up to 50% by weight of water.
- The correct choice of blowing agent is significant for the invention. Its boiling point should be from −5 to 150° C., in particular from 25 to 125° C. The blowing agent is preferably an alkane, an alkanol, a ketone, an ether or an ester. Particular preference is given to pentanes, hexanes and heptanes, in particular sec-pentane, 3,3-dimethyl-2-butanone and 4-methyl-2-pentanone. It is also possible to use blowing agent mixtures. The blowing agent is preferably halogen-free. However, blowing agent mixtures which comprise small amounts, preferably less than 10% by weight, in particular less than 5% by weight, of a halogen-containing blowing agent, e.g. methylene chloride or fluorohydrocarbons, should not be excluded.
- The amount of the blowing agent used is preferably from 2 to 50% by weight, in particular from 5 to 30% by weight, based on the pellets. The blowing agent may be added prior to, during or after the heating of the reactor contents. It may be introduced all at once or in portions.
- During the impregnation the temperature should be in the vicinity of the softening point of the polyolefin. It may be from 40 to 25° C. above the melting point (crystalline melting point), but should preferably be below the melting point. In the case of polypropylene, preferred impregnating temperatures are from 120 to 150° C.
- Depending on the amount and nature of the blowing agent, and also on the temperature, the pressure which becomes established in the reactor is generally above 2 bar but not above 40 bar.
- The impregnation times are generally from 0.5 to 10 hours. Prior to pressure reduction and removal from the stirred reactor, the suspension is cooled below 100° C., preferably to 10-50° C., by, for example, passing cooling water through the reactor jacket. Once the pressure has been reduced and the batch discharged from the reactor, the beads comprising blowing agent are isolated from the suspension medium and washed.
- The beads comprising blowing agent may be foamed by conventional methods using hot air or steam in pressure prefoamers. Depending on the nature of the blowing agent and on the polymer matrix and the desired bulk density, the pressures used when foaming with steam are from 2 to 4.5 bar, the foaming times vary from 3 to 30 sec and the temperature during foaming should be above 100° C., and in the case of polypropylene in particular from 130 to 160° C. A single foaming gives bulk densities of from 20 to 200 g/l. Technical or economic reasons may also make it expedient to use more than one foaming for low bulk densities.
- The resultant moldable foam may be used to produce foam moldings by known methods.
- In the examples all parts and percentages are by weight.
- A. Preparation of the minipellets (MP)
- 1. Starting materials:
PP: NOVOLEN 3200 MC polypropylene from Targor GmbH PA: ULTRAMID B 3 polyamide from BASF Aktiengesellschaft PPE: NORYL 8390 polyphenylene oxide from General Electric Comp. EX: EXXELOR P 1015 compatibilizer from Exxon Corp. KR: KRAT0N G 1701 E compatibilizer from Shell Corp. Wax: LUWAX AF 31 polyethylene wax from BASF Aktiengesellschaft - BE: Bentonite EXM 948 from Südchemie AG
- 2. Mixtures:
MP 1: 100 Parts of PP 0.5 Parts of wax 1 Part of talc MP 2: 95 Parts of PP 4.75 Parts of PA 0.25 Parts of EX 0.1 Parts of wax 1 Part of talc MP 3: 70 Parts of PP 28.5 Parts of PA 1.5 Parts of EX 0.1 Parts of wax 1 Part of talc MP 4: 70 Parts of PP 30 Parts of PPE 5 Parts of KR 0.1 Parts of wax 1 Part of talc MP 5: 100 Parts of PP 1 Part of wax 1 Part of talc MP 6: 100 Parts of PP 2 Parts of BE 1 Part of wax - 3. Extrusion
- The stated amounts of the starting materials are mixed in an extruder, extruded and pelletized. The minipellets have dimensions d=0.8 to 1 mm, 1=2.3 to 2.8 mm.
- B. Preparation of the expandable beads in a 260 ml stirred autoclave
- 1. Starting materials and amounts
Minipellets 33.3 g Water 106.7 g Blowing agent 10.7 g Tricalcium phosphate 2.9 g Sodium dodecylarylsulfonate 0.1 g - 2. Impregnation
- The starting materials were placed in a 260 ml stirred autoclave. The batch was heated to 140° C. and held at this temperature for three hours. The autoclave was then cooled to room temperature and the pressure reduced. The impregnated beads were isolated, washed, forced-air-dried and stored in a sealed container.
- C. Foaming the expandable beads
- The beads were removed from the container and stored for 1 hour at room temperature in free contact with the atmosphere. They were then foamed at 150° C. for 8 sec with steam (steam pressure 3.5 bar) in a conventional pressure prefoamer. Table 1 gives the minipellets and blowing agents used, the contents of blowing agent found prior to and after the holding period of one hour and the bulk densities of the beads, together with the nature of the cells in the resultant moldable foam.
TABLE 1 Example 1 2 3 4 5 6 c Minipellets MP1 MP2 MP3 MP1 MP1 MP4 Blowing sec- DB 4M2P 4M2P n- Freon agent pentane butane 11 Prior 15.5 19.2 22.8 17.9 7.2 17.6 content % Subsequent 5.9 9.3 9.9 9.4 3.5 12.4 content % Prior bulk 480 546 522 539 531 573 density g/l Subsequent 88 51 86 70 147 278 bulk density g/l Nature of small medium- medium- small small large cells sized sized - Blowing agents
- DB=3,3-dimethyl-2-butanone
- 4M2P=4-methyl-2-pentanone
- Freon 11=trichlorofluoromethane
- Example 6 c is comparative.
- B. Preparation of the expandable beads in a 55 l stirred vessel
- 1a. Starting materials and amounts (Examples 7 to 9)
Minipellets 11.93 kg Water 26.50 kg Blowing agent 2.50 kg Calcium carbonate 1.05 kg (Calcilit 1G, from Alpha) Lutensol AO 3109 1.07 g (surfactant from BASF AG) - 1b. Starting materials and amounts (Example 10)
Minipellets 16.19 kg Water 20.24 kg Blowing agent 3.40 kg Calcium carbonate 1.42 kg (Calcilit 1G, from Alpha) Lutensol AO 3109 1.46 g (surfactant from BASF AG) - 1c. Starting materials and amounts (Example 11)
Minipellets 16.24 kg Water 20.30 kg Blowing agent 3.41 kg Calcium carbonate 1.06 kg (Calcilit 1G, from Alpha) Lutensol AO 3109 1.46 g (surfactant from BASF AG) - 2. Impregnation
- The starting materials were placed in a 55 liter stirred vessel. Within the heating time given in the table, the mixture was brought to 140° C. and held at that temperature for one hour, followed by cooling to room temperature and pressure release. The impregnated pellets were discharged onto a screen, where they were washed with water, and then stored in sealed drums. Specimens of these material were forced-air-dried and used for the foaming trials (see Table 2).
- B. Preparation of the expandable beads in a 1.6 m3 stirred vessel
- 1c. Starting materials and amounts (Example 12)
Minipellets 423.3 kg Water 940.7 kg Blowing agent 88.9 kg Calcium carbonate 37.1 kg (Calcilit 1G, from Alpha) Lutensol AO 3109 38.1 g (from BASF AG) - 2. Impregnation
- The starting materials were placed in a 1.6 m3 stirred vessel. The mixture was then brought to 140° C. within a period of 5 hours and held at that temperature for one hour, followed by cooling to room temperature and release of pressure. The impregnated pellets were discharged onto a screen, where they were washed with water, and then stored in sealed drums. Specimens of these material were forced-air-dried and used for the foaming trials (see Table 2).
- C. Foaming the expandable beads
- The foaming was carried out as described in Examples 1 to 6 under C. See Table 2 for results.
TABLE 2 Example 7 8 9 10 11 12 Minipellets MP1 MP5 MP6 MP1 MP1 MP1 Heating time 1 1 1 5 5 5 [h] Blowing agent sec- n- sec- sec- sec- sec- pentane heptane pentane pentane pentane pentane Prior content 8.7 12.0 10.8 12.5 12.1 13.6 % Subsequent 4.6 4.9 7.3 5.7 5.7 5.9 content % Prior bulk 564 562 562 563 558 562 density [g/l] Subsequent 73 154 * 46 67 61 78 bulk density [g/l] Nature of small small small small small small cells
Claims (13)
1. An expandable olefin bead polymer which may have been blended with up to 50% of a thermoplastic with a glass transition point below 180° C. and comprises from 1 to 40% by weight of an organic blowing agent with a boiling point of from −5 to 150° C., based in each case on the weight of the olefin polymer, wherein the unfoamed beads have a bulk density above 400 g/l and can be foamed to a bulk density below 200 g/l after storage for one hour at room temperature in free contact with the atmosphere by heating above 100° C.
2. An expandable olefin polymer as claimed in , which comprises a halogen-free blowing agent.
claim 1
3. An expandable olefin polymer as claimed in which is a copolymer of propylene with up to 15% by weight of ethylene and/or 1-butene.
claim 1
4. An expandable olefin polymer as claimed in , which comprises from 0.001 to 10% by weight of a nucleating agent, based on the weight of the polymer.
claim 1
5. An expandable olefin polymer as claimed in , which comprises no admixed thermoplastics.
claim 1
6. An expandable olefin polymer as claimed in which has been blended with from 5 to 40% by weight of a polyamide.
claim 1
7. A process for preparing expandable olefin bead polymers by impregnating polyolefin pellets with from 2 to 50% by weight of an organic blowing agent with a boiling point of from −5 to 150° C. in suspension in a pressure vessel at elevated temperature, reducing the pressure on the batch and isolating and washing the impregnated pellets, wherein the batch is cooled below 100° C. before the pressure is reduced.
8. A process as claimed in , wherein a halogen-free blowing agent is used.
claim 7
9. A process as claimed in , wherein the blowing agent is an alkane, an alkanol, a ketone, an ether, an ester or a mixture of these.
claim 7
10. A process as claimed in , wherein the blowing agent is a pentane, a hexane, a heptane, 3,3-dimethyl-2-butanone or 4-methyl-2-pentanone.
claim 9
11. A process as claimed in , wherein the polyolefin pellets comprise from 0.001 to 10% by weight of a nucleating agent.
claim 7
12. A process as claimed in , wherein the nucleating agent is a wax and/or talc.
claim 11
13. The use of expandable olefin bead polymers as claimed in for producing foams.
claim 1
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/042,708 US20020185768A1 (en) | 2000-01-25 | 2001-11-05 | Preparation of expandable propylene polymer beads |
US09/985,476 US6727291B2 (en) | 2000-01-25 | 2001-11-05 | Preparation of expandable propylene polymer beads |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10003021.1 | 2000-01-25 | ||
DE10003021 | 2000-01-25 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/042,708 Continuation US20020185768A1 (en) | 2000-01-25 | 2001-11-05 | Preparation of expandable propylene polymer beads |
US09/985,476 Continuation US6727291B2 (en) | 2000-01-25 | 2001-11-05 | Preparation of expandable propylene polymer beads |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010016610A1 true US20010016610A1 (en) | 2001-08-23 |
Family
ID=7628617
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/750,760 Abandoned US20010016610A1 (en) | 2000-01-25 | 2001-01-02 | Expandable olefin bead polymers |
US09/985,476 Expired - Lifetime US6727291B2 (en) | 2000-01-25 | 2001-11-05 | Preparation of expandable propylene polymer beads |
US10/042,708 Pending US20020185768A1 (en) | 2000-01-25 | 2001-11-05 | Preparation of expandable propylene polymer beads |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/985,476 Expired - Lifetime US6727291B2 (en) | 2000-01-25 | 2001-11-05 | Preparation of expandable propylene polymer beads |
US10/042,708 Pending US20020185768A1 (en) | 2000-01-25 | 2001-11-05 | Preparation of expandable propylene polymer beads |
Country Status (7)
Country | Link |
---|---|
US (3) | US20010016610A1 (en) |
EP (1) | EP1132420B1 (en) |
JP (1) | JP4990438B2 (en) |
AT (1) | ATE323126T1 (en) |
BR (1) | BR0100169B1 (en) |
DE (1) | DE50012568D1 (en) |
ES (1) | ES2261142T3 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080039588A1 (en) * | 2004-11-22 | 2008-02-14 | Kaneka Corporation | Pre-Expanded Particulate Polypropylene-Based Resin and In-Mold Expansion Molded Article |
US20110166242A1 (en) * | 2008-09-30 | 2011-07-07 | Yasuhiro Kawaguchi | Masterbatch for foam molding and molded foam |
US20120087823A1 (en) * | 2009-06-02 | 2012-04-12 | Basf Se | Method for producing porous metal sintered molded bodies |
US9109096B2 (en) | 2008-11-07 | 2015-08-18 | Sekisui Chemical Co., Ltd. | Thermally expandable microcapsule and foam-molded article |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030059827A (en) * | 2000-12-04 | 2003-07-10 | 노바 케미칼즈 인코포레이팃드 | Foamed cellular particles of an expandable polymer composition |
US6821931B2 (en) * | 2002-03-05 | 2004-11-23 | Alpine Mud Products Corporation | Water-based drilling fluid additive containing talc and carrier |
EP1388568A1 (en) * | 2002-08-09 | 2004-02-11 | Nmc S.A. | Polyolefin foam |
DE10359436A1 (en) | 2003-12-17 | 2005-07-21 | Basf Ag | Expandable, a DSC double peak polyolefin |
DE102004027073A1 (en) | 2004-06-02 | 2005-12-29 | Basf Ag | Metal particles containing polyolefin foam particles |
PL1702945T5 (en) | 2005-03-18 | 2014-09-30 | Basf Se | Polyolefin foam particles containing fillers |
WO2007107584A2 (en) * | 2006-03-22 | 2007-09-27 | Basf Se | Method for granulating polymer melts that contain low boiling fractions |
RU2478112C2 (en) * | 2007-04-11 | 2013-03-27 | Басф Се | Elastic foam material made of particles based on polyolefin/styrene polymer mixtures |
WO2009153345A2 (en) * | 2008-06-20 | 2009-12-23 | Golden Trade S.R.L. | Process for decolorizing and/or aging fabrics, and decolorized and/or aged fabrics obtainable therefrom |
WO2010076184A1 (en) * | 2008-12-30 | 2010-07-08 | Basf Se | Elastic particle foam based on polyolefin/styrene polymer mixtures |
US8709315B2 (en) * | 2009-08-18 | 2014-04-29 | Exxonmobil Chemical Patents Inc. | Process for making thermoplastic polymer pellets |
DE102011052273A1 (en) * | 2011-07-29 | 2013-01-31 | Fagerdala Automotive AG | Manufacture of extruded-foamed granules used for manufacture of molded component, involves melting specified amount of polypropylene and polymer, mixing, adding foaming agent(s), foaming obtained melt, and granulating |
JP6961425B2 (en) * | 2017-08-30 | 2021-11-05 | 株式会社カネカ | Foamable thermoplastic resin particles for in-mold molding and their manufacturing method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5389320A (en) | 1991-10-28 | 1995-02-14 | General Electric Company | Method of making expandable polyphenylene ether and polyolefin blend |
JPH0632932A (en) * | 1992-07-13 | 1994-02-08 | Dainippon Ink & Chem Inc | Preparation of expandable thermoplastic resin particle |
IT1255364B (en) | 1992-09-15 | 1995-10-31 | Himont Inc | PROCESS FOR THE PREPARATION OF EXPANDED POLYPROPYLENE MANUFACTURES THROUGH PRODUCTION OF PRE-EXPANDED GRANULES AND THERMOFORMING FOR SINTERING THEMSELVES |
JP3204424B2 (en) | 1993-02-18 | 2001-09-04 | 三菱化学フォームプラスティック株式会社 | Polypropylene resin foam particles |
JPH07314438A (en) * | 1994-05-30 | 1995-12-05 | Dainippon Ink & Chem Inc | Production of foamable thermoplastic resin granule |
JPH07316335A (en) * | 1994-05-30 | 1995-12-05 | Dainippon Ink & Chem Inc | Production of expandable thermoplastic resin particle |
WO1996013169A1 (en) | 1994-10-27 | 1996-05-09 | Stoller Enterprises, Inc. | Method for inhibiting plant disease |
DE19545098A1 (en) | 1995-12-04 | 1997-06-05 | Basf Ag | Polyolefin particle foam |
DE19547398A1 (en) * | 1995-12-19 | 1997-06-26 | Huels Chemische Werke Ag | Process for the production of foamable plastic granules |
WO2000053669A1 (en) * | 1999-03-11 | 2000-09-14 | The Dow Chemical Company | Olefin polymers and alpha-olefin/vinyl or alfa-olefin/vinylidene interpolymer blend foams |
DE19950420A1 (en) | 1999-10-20 | 2001-04-26 | Basf Ag | Particulate expandable olefin polymerizate, useful in preparation of foamed materials, has specified properties and comprises halogen-free propellant |
-
2000
- 2000-12-18 AT AT00127658T patent/ATE323126T1/en not_active IP Right Cessation
- 2000-12-18 DE DE50012568T patent/DE50012568D1/en not_active Expired - Lifetime
- 2000-12-18 EP EP00127658A patent/EP1132420B1/en not_active Expired - Lifetime
- 2000-12-18 ES ES00127658T patent/ES2261142T3/en not_active Expired - Lifetime
-
2001
- 2001-01-02 US US09/750,760 patent/US20010016610A1/en not_active Abandoned
- 2001-01-22 JP JP2001013170A patent/JP4990438B2/en not_active Expired - Fee Related
- 2001-01-25 BR BRPI0100169-8A patent/BR0100169B1/en not_active IP Right Cessation
- 2001-11-05 US US09/985,476 patent/US6727291B2/en not_active Expired - Lifetime
- 2001-11-05 US US10/042,708 patent/US20020185768A1/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080039588A1 (en) * | 2004-11-22 | 2008-02-14 | Kaneka Corporation | Pre-Expanded Particulate Polypropylene-Based Resin and In-Mold Expansion Molded Article |
US8084509B2 (en) * | 2004-11-22 | 2011-12-27 | Kaneka Corporation | Pre-expanded particulate polypropylene-based resin and in-mold expansion molded article |
US20110166242A1 (en) * | 2008-09-30 | 2011-07-07 | Yasuhiro Kawaguchi | Masterbatch for foam molding and molded foam |
US9102805B2 (en) * | 2008-09-30 | 2015-08-11 | Sekisui Chemical Co., Ltd. | Masterbatch for foam molding and molded foam |
US9109096B2 (en) | 2008-11-07 | 2015-08-18 | Sekisui Chemical Co., Ltd. | Thermally expandable microcapsule and foam-molded article |
US20120087823A1 (en) * | 2009-06-02 | 2012-04-12 | Basf Se | Method for producing porous metal sintered molded bodies |
Also Published As
Publication number | Publication date |
---|---|
US20020074680A1 (en) | 2002-06-20 |
JP4990438B2 (en) | 2012-08-01 |
DE50012568D1 (en) | 2006-05-24 |
EP1132420A2 (en) | 2001-09-12 |
US6727291B2 (en) | 2004-04-27 |
ATE323126T1 (en) | 2006-04-15 |
JP2001240678A (en) | 2001-09-04 |
ES2261142T3 (en) | 2006-11-16 |
EP1132420B1 (en) | 2006-04-12 |
EP1132420A3 (en) | 2002-03-20 |
BR0100169B1 (en) | 2010-10-19 |
BR0100169A (en) | 2001-08-21 |
US20020185768A1 (en) | 2002-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6448300B1 (en) | Expandable olefin bead polymers | |
US20010016610A1 (en) | Expandable olefin bead polymers | |
RU2002113170A (en) | Able to expand olefin polymers in the form of granules | |
US20050236728A1 (en) | Open-cell polypropylene particle foams | |
US6864298B2 (en) | Expandable polyolefin particles | |
CA1244205A (en) | Production process of pre-foamed particles | |
JP3507699B2 (en) | Method for producing polypropylene resin pre-expanded particles | |
US5925686A (en) | Production of expanded polyolefin particles | |
CA1120650A (en) | Process for producing expandable thermoplastic resin beads | |
JPH0812798A (en) | Polyolefin resin prefoamed particle with antistatic property and its manufacture | |
JP3599600B2 (en) | Expandable polyolefin-based resin particles, expanded particles and expanded molded articles obtained therefrom, and method for producing expanded particles | |
JPH07330942A (en) | Prefoaming particle made of antistatic polyolefin resin and its preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASF AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MALETZKO, CHRISTIAN;HAHN, KLAUS;DE GRAVE, ISIDOR;AND OTHERS;REEL/FRAME:012278/0820 Effective date: 20001030 |
|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |