US20010014521A1 - Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride - Google Patents
Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride Download PDFInfo
- Publication number
- US20010014521A1 US20010014521A1 US09/836,123 US83612301A US2001014521A1 US 20010014521 A1 US20010014521 A1 US 20010014521A1 US 83612301 A US83612301 A US 83612301A US 2001014521 A1 US2001014521 A1 US 2001014521A1
- Authority
- US
- United States
- Prior art keywords
- aluminum nitride
- wafers
- layer
- furnace
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000012431 wafers Nutrition 0.000 title claims abstract description 83
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims abstract description 73
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 60
- 239000002243 precursor Substances 0.000 claims abstract description 38
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000009792 diffusion process Methods 0.000 claims abstract description 25
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 16
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 13
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 12
- JKIJDZLJAQKQFO-UHFFFAOYSA-N dimethylazanide;titanium(3+);n,n',n'-trimethylethane-1,2-diamine Chemical compound [Ti+3].C[N-]C.C[N-]C.C[N-]C.CNCCN(C)C JKIJDZLJAQKQFO-UHFFFAOYSA-N 0.000 claims abstract description 5
- 230000008021 deposition Effects 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 238000010926 purge Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 3
- MNWRORMXBIWXCI-UHFFFAOYSA-N tetrakis(dimethylamido)titanium Chemical compound CN(C)[Ti](N(C)C)(N(C)C)N(C)C MNWRORMXBIWXCI-UHFFFAOYSA-N 0.000 claims 2
- 238000011065 in-situ storage Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 10
- 239000005380 borophosphosilicate glass Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 230000003667 anti-reflective effect Effects 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000429 assembly Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229910015844 BCl3 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02178—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02186—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
- H01L21/0276—Photolithographic processes using an anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0332—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28568—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/318—Inorganic layers composed of nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76828—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76832—Multiple layers
Definitions
- This invention relates to the field of semiconductor assembly, and more particularly to a method for forming a material comprising at least one of aluminum nitride and titanium aluminum nitride over the surface of a plurality of semiconductor wafers.
- AlN aluminum nitride
- TiAlN titanium aluminum nitride
- AlN has been used, for example, as an insulator and as a heat sink.
- TiAlN has been used for an adhesion layer and as a conductive layer, and both AlN and TiAlN have been used for diffusion barriers.
- Aluminum nitride compounds are extremely hard substances thereby making them also useful as etch stop layers.
- U.S. Pat. No. 5,783,483 describes a method of forming an aluminum nitride layer by first depositing a thin aluminum layer by sputtering, chemical vapor deposition (CVD) or ion implantation. Next, the aluminum layer is thermally cycled in a nitrogen ambient to form an aluminum nitride barrier layer. An aluminum nitride layer can further be formed in a single step using CVD or reactive sputtering. After formation of a desired layer, aluminum nitride can be patterned using Cl 2 or BCl 3 gas using reactive ion etching (RIE).
- RIE reactive ion etching
- U.S. Pat. No. 5,687,112 describes that titanium aluminum nitride may be deposited by such methods as physical vapor deposition including evaporation, ion plating as well as by DC and RF sputtering deposition, chemical vapor deposition, and plasma assisted chemical vapor deposition. The exact method used depends upon many factors, for example deposition temperature constraints imposed by the composition of the target material.
- Prior methods of forming TiAlN and AlN include formation of the material on a single wafer.
- Single wafer processing is known to be time consuming and therefore expensive, but a process to form a layer of TiAlN or AlN simultaneously over a plurality of wafers has not been feasible as prior precursor technology has not been viable with only thermal decomposition.
- single wafer processing is expensive because additional equipment must be purchased to provide adequate manufacturing throughput.
- previous methods of forming AlN or TiAlN result in layers having varying thickness over device features, for example thinning at the edges of features, which can decrease device performance and yields.
- a method for forming TiAlN and AlN on two or more wafers simultaneously which also can improve step coverage would increase production throughput, decrease costs, and improve device performance and yields, and would therefore be desirable.
- the present invention provides a new process for forming a layer comprising one of aluminum nitride and titanium aluminum nitride over a semiconductor substrate assembly.
- the process decreases the time and cost of wafer manufacture and increases wafer throughput by allowing for the simultaneous processing of multiple wafers.
- at least two wafers are placed into a diffusion furnace. With the wafers in the furnace, a precursor comprising at least one of triethylaluminum and trimethylethylenediamine tris(dimethylamino)titanium is placed into the diffusion furnace. The temperature of the wafers is increased and a layer comprising at least one of aluminum nitride and titanium aluminum nitride is simultaneously formed over a surface of each wafer.
- the instant process allows for the formation of a layer comprising one of a titanium aluminum nitride layer and an aluminum nitride layer over the surfaces of two or more wafers simultaneously thereby increasing throughput over conventional single wafer processing.
- FIG. 1 is a cross section depicting a wafer substrate assembly and a capacitor bottom electrode layer which can be formed using an embodiment of the invention
- FIG. 2 is a cross section depicting the structure of FIG. 1 after forming various other layers, one or more of which can be formed using an embodiment of the inventive process;
- FIG. 3 is a cross section depicting the use of an aluminum nitride layer as a dielectric to protect and to improve the electrical characteristics of a field emitter display tip.
- the instant invention comprises the formation of one or more layers of either aluminum nitride (AlN), titanium aluminum nitride (TiAlN), or one or more layers of both materials over a plurality of wafers simultaneously using an inventive process. While it is appreciated that AlN is a dielectric and TiAlN is a conductor, the layers are formed using similar processes with a common precursor for each material, and an additional precursor to form TiAlN.
- a first inventive embodiment to form an aluminum nitride dielectric includes placing a plurality of wafers (at least two wafers and preferably a larger number) into a diffusion furnace reactor.
- a furnace purge for example using one or both of N 2 and argon, can be performed to provide a controlled process atmosphere.
- the wafers are heated to a temperature of between about 350° C. and about 550° C., and preferably in the range of about 425° C. to about 450° C. in the presence of an inert gas such as argon.
- ammonia is bottom injected into the reactor at a gas flow rate of from about 5 standard cm 3 /minute (sccm) to about 300 sccm to provide an ambient ammonia atmosphere for each wafer.
- hydrazine for this step to provide a hydrazine atmosphere, and for other processing steps, rather than ammonia.
- a flow of an aluminum precursor such as triethylaluminum (TEAL) is initiated, for example at a flow rate of 300 sccm or less.
- the flow of TEAL is maintained for between about 300 seconds (5 minutes) and about 10,000 seconds (2.78 hours), and preferably for between about 500 seconds and 1500 seconds to form an aluminum nitride layer of from about 25 angstroms ( ⁇ ) to about 2.0 K ⁇ thick.
- Pressure for the above steps is maintained at about one torr or less. Thicker films may be deposited by increasing the deposition time.
- the wafer is cooled and wafer processing is continued, or an optional in situ anneal step can be performed at temperature.
- This process results in an AlN dielectric layer formed simultaneously over the surfaces of a plurality of wafers, thereby decreasing processing time over a single-wafer process.
- both ammonia and hydrogen are bottom injected into the reactor at a gas flow rate of about 500 sccm or less.
- both TEAL and an a titanium precursor such as trimethylethylenediamine tris(dimethylamino)titanium (TMEDT) are bottom injected at temperature in the presence of ammonia as described for AlN formation.
- TEDT trimethylethylenediamine tris(dimethylamino)titanium
- Gas flow rates of 500 sccm or less for both the TEAL and TMEDT would be sufficient, and a duration of between about 100 seconds and about 10,000 seconds, and preferably for between about 500 second and 1500 seconds would form a titanium aluminum nitride layer from about 25 ⁇ to about 2 K ⁇ thick.
- a pressure of less than one torr is maintained.
- the above flow rates are batch size dependent. For large batches, the flow rates may need to be increased, for example up to 1,000 sccm. The flow rates required can be determined by an artisan of ordinary skill from the information contained herein.
- a multiport injection of the TEAL and/or TMEDT up the length of the tube can be performed.
- the multiport injection in addition to allowing for increased load size, may improve uniformity of the layer across the batch of wafers.
- an in situ anneal or conditioning step may be required in some cases, for example to densify the film to prevent the unbonded titanium from oxidizing upon exposure to air.
- more than one deposition step and more than one anneal step may be used to achieve a more stable film.
- An anneal step for example using NH 3 , N 2 , or H 2 at the deposition temperature or higher between 200 millitorr and 25 atmospheres, for example at one atmosphere, would cause the unbonded titanium within the film to bond with nitrogen to form a densified TiAlN film.
- the instant process for forming TiAlN allows the formation of the material over a plurality of wafer substrates simultaneously, and also decreases processing time resulting from a subsequent in situ conditioning or anneal step in the diffusion furnace.
- FIGS. 1 and 2 illustrate one possible use of the inventive process to form a layer of TiAlN as a capacitor bottom electrode and another layer as a top plate, and to form a layer of AlN as a capacitor dielectric and another layer as a deposited antireflective coating (DARC) layer under a photoresist layer.
- This process is for purposes of illustration only, as the inventive process can be used to form either TiAlN or AlN, or both, for any particular structure for which the material is useful.
- FIG. 1 depicts a semiconductor substrate assembly comprising a semiconductor wafer 10 having doped regions therein 12 , field oxide 14 , gate oxide 16 , and a plurality of transistor gates 18 having a protective oxide cap 20 such as tetraethyl orthosilicate thereover and oxide or nitride spacers 22 .
- This structure can be manufactured by one of ordinary skill in the art.
- a plurality of wafers comprising the wafer substrate assembly described above are placed into a diffusion furnace.
- the wafers are heated to a temperature of from between about 350° C. to about 550° C., for example to about 425° C. in an argon, hydrogen, or nitrogen atmosphere.
- argon, hydrogen, or nitrogen atmosphere Once the wafers reach 425° C. ammonia and hydrogen are bottom injected into the reactor at a gas flow rate of 500 sccm or less, for example 290 sccm for each gas to provide an ammonia atmosphere.
- a flow of TEAL and TMEDT are bottom injected into the reactor at 290 sccm for each gas.
- TiAlN will form on the wafer substrate assembly surface such as that depicted in FIG. 1 at a rate of about 10 ⁇ /minute, and thus for a target of about 500 ⁇ this process is continued for 50 minutes to form the TiAlN layer 24 as depicted in FIG. 1.
- a planar layer such as a borophosphosilicate glass (BPSG) layer 26 and a patterned photoresist layer 28 are conventionally formed over each wafer as depicted in FIG. 1 which requires removal of the wafers from the furnace.
- the exposed BPSG and TiAlN materials are then removed to expose the wafers at the locations uncovered by resist. This etch exposes the wafer at various doped regions, for example at region 30 where a digit line contact will be formed.
- the etch further defines the storage capacitor bottom electrode ( 40 in FIG. 2).
- the resist and BPSG are stripped using conventional processing subsequent to forming the FIG. 1 structure.
- a cell dielectric may be formed from AlN using an inventive process, for example by heating the wafers to a temperature of from between about 350° C. to about 550° C., for example to about 425° C. in an argon atmosphere. Once the wafers reach 425° C., ammonia is bottom injected into the reactor at a gas flow rate of 300 sccm or less, for example at 290 sccm, to provide an ammonia atmosphere. Subsequently, a flow of TEAL is bottom injected into the reactor at 290 sccm.
- AlN will form on a wafer substrate assembly surface such as that depicted in FIG. 2 at a rate of about 240 ⁇ /minute (about 4 ⁇ /sec), and thus for a target of from about 50 ⁇ to about 250 ⁇ this process is continued for between about 12 seconds to about one minute to form the AlN layer 42 as depicted in FIG. 2.
- TiAlN 44 can be formed conformally with the cell dielectric 42 to form the capacitor top plate.
- the process described above using TEAL and TMEDT as precursors can be modified to form a desired layer of from about 300 ⁇ to about 500 ⁇ thick.
- FIG. 2 further depicts an AlN antireflective layer 48 formed over the BPSG layer using a process described above to form AlN.
- an antireflective AlN layer will form over BPSG at a rate of about 240 ⁇ /minute (4 ⁇ /sec).
- the thickness of the AlN antireflective layer will depend on the qualities of the material, and a layer of from about 100 ⁇ to about 500 ⁇ , for example 300 ⁇ thick should be sufficient.
- a patterned resist layer 50 is formed.
- the material overlying the wafer is etched to expose the wafer at the digit line contact area 30 . Wafer processing continues to form a semiconductor device.
- FIG. 3 Another possible use of the invention is depicted in FIG. 3 which includes an array of emitter tips 60 such as those used in a field emitter display (FED).
- the tips are formed according to means known in the art on a plurality of substrate assemblies such as silicon semiconductor wafers having various layer formed therein and thereover, or other substrate assemblies, one of which is depicted as element 62 .
- a layer of aluminum nitride dielectric 64 is formed simultaneously over the tips on the plurality of wafer substrate assemblies using equipment settings as described above. Aluminum nitride reduces the effective work function of the field emitter tips thereby reducing the required operating voltage.
- An aluminum nitride coating also provides stability against degradation from contaminants and oxidation.
- a layer of AlN about 50 ⁇ to about 500 ⁇ thick should be sufficient to provide the necessary characteristics.
- the thickness of the layer is dependent on the sharpness of the tip, the material from which the tip is formed, and the porosity of the tip material.
- etch rate of the AlN and/or TiAlN material when etching surrounding materials such as oxide and nitride, for example in processes which use the AlN or TiAlN as a mask.
- This can be accomplished by doping the TiAlN or AlN with carbon, for example to a concentration of less than 0.1%, by providing a carbon-containing gas in the chamber during formation of the film.
- Suitable carbon-containing gasses include CH 4 , CO 2 , acetylene, and ethylene, and other similar materials. It should be noted that CO 2 may be inadequate for this step as it could possibly incorporate O 2 into the film. Further, lowering the NH 3 during the film deposition may incorporate sufficient carbon into the film using the organometallic precursor itself as a carbon source.
- the instant invention allows the formation of an aluminum nitride layer or a titanium aluminum layer simultaneously over a plurality of wafers.
- the invention further allows for the conditioning or annealing of an aluminum nitride layer or a titanium aluminum nitride layer during one or more anneals over a plurality of wafers in situ which is a more cost-effective process than single-wafer processing.
- a fast-ramp furnace can be utilized to bring the wafers to temperature at a rate of as high as 750° C./minute (for example about 700° C./minute) without excess thermal budget.
- a rapid ramp to an anneal temperature of greater than about 800° C. then a decrease in temperature to ambient can be advantageously implemented.
- inventive process can be used to form only one of a bottom electrode, a cell dielectric, a top plate, and an antireflective layer, or other conductive and dielectric structures can be formed using the inventive process.
- an aluminum precursor other than TEAL and a titanium precursor other than TMEDT can be used.
- an aluminum precursor in the form of R 3 Al can be used to form AlN and it should be recognized that the aluminum precursor is not restricted to the use of the recommended R 3 Al precursor TEAL.
- a titanium precursor such as tetrakisdimethylaminotitanium (TDMAT) or tetrakisdiethylaminotitanium (TDEAT) may function adequately. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as fall within the scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
A process used during the formation of a semiconductor device comprises the steps of placing a plurality of semiconductor wafers each having a surface into a chamber of a batch wafer processor such as a diffusion furnace. The wafers are heated to a temperature of between about 300° C. and about 550° C. With the wafers in the chamber, at least one of ammonia and hydrazine is introduced into the chamber, then a precursor comprising trimethylethylenediamine tris(dimethylamino)titanium and/or triethylaluminum is introduced into the chamber. In the chamber, a layer comprising aluminum nitride is simultaneously formed over the surface of each wafer. The inventive process allows for the formation of aluminum nitride or titanium aluminum nitride over the surface of a plurality of wafers simultaneously. A subsequent anneal of the aluminum nitride layer or the titanium aluminum nitride layer can be performed in situ.
Description
- This is a division of U.S. application Ser. No. 09/191,294, filed Nov. 13, 1998 and issued Apr. 17, 2001 as U.S. Pat. No. 6,218,293.
- This invention relates to the field of semiconductor assembly, and more particularly to a method for forming a material comprising at least one of aluminum nitride and titanium aluminum nitride over the surface of a plurality of semiconductor wafers.
- In the manufacture of semiconductor devices various uses for aluminum nitride (AlN) and titanium aluminum nitride (TiAlN) have been proposed. AlN has been used, for example, as an insulator and as a heat sink. TiAlN has been used for an adhesion layer and as a conductive layer, and both AlN and TiAlN have been used for diffusion barriers. Aluminum nitride compounds are extremely hard substances thereby making them also useful as etch stop layers.
- U.S. Pat. No. 5,783,483 describes a method of forming an aluminum nitride layer by first depositing a thin aluminum layer by sputtering, chemical vapor deposition (CVD) or ion implantation. Next, the aluminum layer is thermally cycled in a nitrogen ambient to form an aluminum nitride barrier layer. An aluminum nitride layer can further be formed in a single step using CVD or reactive sputtering. After formation of a desired layer, aluminum nitride can be patterned using Cl2 or BCl3 gas using reactive ion etching (RIE).
- U.S. Pat. No. 5,687,112 describes that titanium aluminum nitride may be deposited by such methods as physical vapor deposition including evaporation, ion plating as well as by DC and RF sputtering deposition, chemical vapor deposition, and plasma assisted chemical vapor deposition. The exact method used depends upon many factors, for example deposition temperature constraints imposed by the composition of the target material.
- Prior methods of forming TiAlN and AlN include formation of the material on a single wafer. Single wafer processing is known to be time consuming and therefore expensive, but a process to form a layer of TiAlN or AlN simultaneously over a plurality of wafers has not been feasible as prior precursor technology has not been viable with only thermal decomposition. In addition to costs added from long processing times, single wafer processing is expensive because additional equipment must be purchased to provide adequate manufacturing throughput. Further, previous methods of forming AlN or TiAlN result in layers having varying thickness over device features, for example thinning at the edges of features, which can decrease device performance and yields. A method for forming TiAlN and AlN on two or more wafers simultaneously which also can improve step coverage would increase production throughput, decrease costs, and improve device performance and yields, and would therefore be desirable.
- The present invention provides a new process for forming a layer comprising one of aluminum nitride and titanium aluminum nitride over a semiconductor substrate assembly. The process decreases the time and cost of wafer manufacture and increases wafer throughput by allowing for the simultaneous processing of multiple wafers. In accordance with one embodiment of the invention, at least two wafers are placed into a diffusion furnace. With the wafers in the furnace, a precursor comprising at least one of triethylaluminum and trimethylethylenediamine tris(dimethylamino)titanium is placed into the diffusion furnace. The temperature of the wafers is increased and a layer comprising at least one of aluminum nitride and titanium aluminum nitride is simultaneously formed over a surface of each wafer.
- Thus the instant process allows for the formation of a layer comprising one of a titanium aluminum nitride layer and an aluminum nitride layer over the surfaces of two or more wafers simultaneously thereby increasing throughput over conventional single wafer processing.
- Other objects and advantages will become apparent to those skilled in the art from the following detailed description read in conjunction with the appended claims and the drawings attached hereto.
- FIG. 1 is a cross section depicting a wafer substrate assembly and a capacitor bottom electrode layer which can be formed using an embodiment of the invention;
- FIG. 2 is a cross section depicting the structure of FIG. 1 after forming various other layers, one or more of which can be formed using an embodiment of the inventive process; and
- FIG. 3 is a cross section depicting the use of an aluminum nitride layer as a dielectric to protect and to improve the electrical characteristics of a field emitter display tip.
- It should be emphasized that the drawings herein may not be to exact scale and are schematic representations. The drawings are not intended to portray the specific parameters, materials, particular uses, or the structural details of the invention, which can be determined by one of skill in the art by examination of the information herein.
- The instant invention comprises the formation of one or more layers of either aluminum nitride (AlN), titanium aluminum nitride (TiAlN), or one or more layers of both materials over a plurality of wafers simultaneously using an inventive process. While it is appreciated that AlN is a dielectric and TiAlN is a conductor, the layers are formed using similar processes with a common precursor for each material, and an additional precursor to form TiAlN.
- A first inventive embodiment to form an aluminum nitride dielectric includes placing a plurality of wafers (at least two wafers and preferably a larger number) into a diffusion furnace reactor. A furnace including a dispersion injector, such as a model A400 vertical diffusion furnace available from ASM of Phoenix, Ariz., as well as other multiple-wafer furnaces, would be sufficient.
- After the wafers are placed in the furnace, a furnace purge, for example using one or both of N2 and argon, can be performed to provide a controlled process atmosphere. Next, the wafers are heated to a temperature of between about 350° C. and about 550° C., and preferably in the range of about 425° C. to about 450° C. in the presence of an inert gas such as argon. Once the target temperature is reached, ammonia is bottom injected into the reactor at a gas flow rate of from about 5 standard cm3/minute (sccm) to about 300 sccm to provide an ambient ammonia atmosphere for each wafer. It should be noted that it may be possible to use hydrazine for this step to provide a hydrazine atmosphere, and for other processing steps, rather than ammonia. Subsequently, a flow of an aluminum precursor such as triethylaluminum (TEAL) is initiated, for example at a flow rate of 300 sccm or less. The flow of TEAL is maintained for between about 300 seconds (5 minutes) and about 10,000 seconds (2.78 hours), and preferably for between about 500 seconds and 1500 seconds to form an aluminum nitride layer of from about 25 angstroms (Å) to about 2.0 KÅ thick. Pressure for the above steps is maintained at about one torr or less. Thicker films may be deposited by increasing the deposition time. Finally, the wafer is cooled and wafer processing is continued, or an optional in situ anneal step can be performed at temperature. This process results in an AlN dielectric layer formed simultaneously over the surfaces of a plurality of wafers, thereby decreasing processing time over a single-wafer process.
- To form a layer of titanium aluminum nitride, a similar process is used. The reactor parameters remain the same as those used for the formation of aluminum nitride, but the chemistry is altered. To form TiAlN, both ammonia and hydrogen are bottom injected into the reactor at a gas flow rate of about 500 sccm or less. Further, both TEAL and an a titanium precursor such as trimethylethylenediamine tris(dimethylamino)titanium (TMEDT) are bottom injected at temperature in the presence of ammonia as described for AlN formation. Gas flow rates of 500 sccm or less for both the TEAL and TMEDT would be sufficient, and a duration of between about 100 seconds and about 10,000 seconds, and preferably for between about 500 second and 1500 seconds would form a titanium aluminum nitride layer from about 25 Å to about 2 KÅ thick. For TiAlN formation, a pressure of less than one torr is maintained.
- It should be noted that the above flow rates are batch size dependent. For large batches, the flow rates may need to be increased, for example up to 1,000 sccm. The flow rates required can be determined by an artisan of ordinary skill from the information contained herein. To further increase the number of wafers which can be simultaneously processed, a multiport injection of the TEAL and/or TMEDT up the length of the tube can be performed. The multiport injection, in addition to allowing for increased load size, may improve uniformity of the layer across the batch of wafers.
- After the formation of the TiAlN film, an in situ anneal or conditioning step may be required in some cases, for example to densify the film to prevent the unbonded titanium from oxidizing upon exposure to air. Additionally, more than one deposition step and more than one anneal step may be used to achieve a more stable film. An anneal step, for example using NH3, N2, or H2 at the deposition temperature or higher between 200 millitorr and 25 atmospheres, for example at one atmosphere, would cause the unbonded titanium within the film to bond with nitrogen to form a densified TiAlN film. Thus the instant process for forming TiAlN allows the formation of the material over a plurality of wafer substrates simultaneously, and also decreases processing time resulting from a subsequent in situ conditioning or anneal step in the diffusion furnace.
- FIGS. 1 and 2 illustrate one possible use of the inventive process to form a layer of TiAlN as a capacitor bottom electrode and another layer as a top plate, and to form a layer of AlN as a capacitor dielectric and another layer as a deposited antireflective coating (DARC) layer under a photoresist layer. This process is for purposes of illustration only, as the inventive process can be used to form either TiAlN or AlN, or both, for any particular structure for which the material is useful.
- FIG. 1 depicts a semiconductor substrate assembly comprising a
semiconductor wafer 10 having doped regions therein 12,field oxide 14,gate oxide 16, and a plurality oftransistor gates 18 having aprotective oxide cap 20 such as tetraethyl orthosilicate thereover and oxide ornitride spacers 22. This structure can be manufactured by one of ordinary skill in the art. - Next, a plurality of wafers comprising the wafer substrate assembly described above are placed into a diffusion furnace. The wafers are heated to a temperature of from between about 350° C. to about 550° C., for example to about 425° C. in an argon, hydrogen, or nitrogen atmosphere. Once the wafers reach 425° C. ammonia and hydrogen are bottom injected into the reactor at a gas flow rate of 500 sccm or less, for example 290 sccm for each gas to provide an ammonia atmosphere. Subsequently, a flow of TEAL and TMEDT are bottom injected into the reactor at 290 sccm for each gas. Using these parameters, it is expected that TiAlN will form on the wafer substrate assembly surface such as that depicted in FIG. 1 at a rate of about 10 Å/minute, and thus for a target of about 500 Å this process is continued for 50 minutes to form the
TiAlN layer 24 as depicted in FIG. 1. - Next, a planar layer such as a borophosphosilicate glass (BPSG)
layer 26 and a patternedphotoresist layer 28 are conventionally formed over each wafer as depicted in FIG. 1 which requires removal of the wafers from the furnace. The exposed BPSG and TiAlN materials are then removed to expose the wafers at the locations uncovered by resist. This etch exposes the wafer at various doped regions, for example atregion 30 where a digit line contact will be formed. The etch further defines the storage capacitor bottom electrode (40 in FIG. 2). The resist and BPSG are stripped using conventional processing subsequent to forming the FIG. 1 structure. - Next, the wafers are placed back into the furnace to form the capacitor cell dielectric and the top plate. A cell dielectric may be formed from AlN using an inventive process, for example by heating the wafers to a temperature of from between about 350° C. to about 550° C., for example to about 425° C. in an argon atmosphere. Once the wafers reach 425° C., ammonia is bottom injected into the reactor at a gas flow rate of 300 sccm or less, for example at 290 sccm, to provide an ammonia atmosphere. Subsequently, a flow of TEAL is bottom injected into the reactor at 290 sccm. Using these parameters, it is expected that AlN will form on a wafer substrate assembly surface such as that depicted in FIG. 2 at a rate of about 240 Å/minute (about 4 Å/sec), and thus for a target of from about 50 Å to about 250 Å this process is continued for between about 12 seconds to about one minute to form the
AlN layer 42 as depicted in FIG. 2. - Subsequently, another layer of
TiAlN 44 can be formed conformally with thecell dielectric 42 to form the capacitor top plate. The process described above using TEAL and TMEDT as precursors can be modified to form a desired layer of from about 300 Å to about 500 Å thick. - The wafers are then removed from the furnace and a planar layer of
BPSG 46 is formed according to means known in the art. FIG. 2 further depicts an AlNantireflective layer 48 formed over the BPSG layer using a process described above to form AlN. Using the parameters described above for forming a cell dielectric layer, it is expected that an antireflective AlN layer will form over BPSG at a rate of about 240 Å/minute (4 Å/sec). The thickness of the AlN antireflective layer will depend on the qualities of the material, and a layer of from about 100 Å to about 500 Å, for example 300 Å thick should be sufficient. Subsequent to forming the antireflective layer 48 a patterned resistlayer 50 is formed. The material overlying the wafer is etched to expose the wafer at the digitline contact area 30. Wafer processing continues to form a semiconductor device. - Another possible use of the invention is depicted in FIG. 3 which includes an array of
emitter tips 60 such as those used in a field emitter display (FED). The tips are formed according to means known in the art on a plurality of substrate assemblies such as silicon semiconductor wafers having various layer formed therein and thereover, or other substrate assemblies, one of which is depicted aselement 62. A layer ofaluminum nitride dielectric 64 is formed simultaneously over the tips on the plurality of wafer substrate assemblies using equipment settings as described above. Aluminum nitride reduces the effective work function of the field emitter tips thereby reducing the required operating voltage. An aluminum nitride coating also provides stability against degradation from contaminants and oxidation. For a field emitter tip having a height of one micron, a layer of AlN about 50 Å to about 500 Å thick should be sufficient to provide the necessary characteristics. The thickness of the layer is dependent on the sharpness of the tip, the material from which the tip is formed, and the porosity of the tip material. - In some uses of the invention it may be desirable to decrease the etch rate of the AlN and/or TiAlN material when etching surrounding materials such as oxide and nitride, for example in processes which use the AlN or TiAlN as a mask. This can be accomplished by doping the TiAlN or AlN with carbon, for example to a concentration of less than 0.1%, by providing a carbon-containing gas in the chamber during formation of the film. Suitable carbon-containing gasses include CH4, CO2, acetylene, and ethylene, and other similar materials. It should be noted that CO2 may be inadequate for this step as it could possibly incorporate O2 into the film. Further, lowering the NH3 during the film deposition may incorporate sufficient carbon into the film using the organometallic precursor itself as a carbon source.
- The instant invention allows the formation of an aluminum nitride layer or a titanium aluminum layer simultaneously over a plurality of wafers. The invention further allows for the conditioning or annealing of an aluminum nitride layer or a titanium aluminum nitride layer during one or more anneals over a plurality of wafers in situ which is a more cost-effective process than single-wafer processing. To increase throughput, a fast-ramp furnace can be utilized to bring the wafers to temperature at a rate of as high as 750° C./minute (for example about 700° C./minute) without excess thermal budget. Thus a rapid ramp to an anneal temperature of greater than about 800° C. then a decrease in temperature to ambient can be advantageously implemented.
- While this invention has been described with reference to illustrative embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as additional embodiments of the invention, will be apparent to persons skilled in the art upon reference to this description. For example, the inventive process can be used to form only one of a bottom electrode, a cell dielectric, a top plate, and an antireflective layer, or other conductive and dielectric structures can be formed using the inventive process. Further, an aluminum precursor other than TEAL and a titanium precursor other than TMEDT can be used. Generally an aluminum precursor in the form of R3Al can be used to form AlN and it should be recognized that the aluminum precursor is not restricted to the use of the recommended R3Al precursor TEAL. A titanium precursor such as tetrakisdimethylaminotitanium (TDMAT) or tetrakisdiethylaminotitanium (TDEAT) may function adequately. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as fall within the scope of the invention.
Claims (26)
1. A process used to form a film comprising aluminum nitride comprising the following steps:
placing at least two wafers into a diffusion furnace;
increasing a temperature of said wafers in said diffusion furnace;
with said wafers in said furnace, introducing an aluminum nitride precursor into said diffusion furnace; and
in said furnace, forming a layer comprising aluminum nitride from said aluminum nitride precursor over a surface of each wafer.
2. The process of wherein said layer formed from said aluminum nitride precursor is an aluminum nitride containing film.
claim 1
3. The process of wherein said precursor comprises a compound in the form R3Al.
claim 2
4. The process of wherein said precursor comprises triethylaluminum.
claim 3
5. The process of wherein said precursor further comprises at least one of trimethylethylenediamine tris(dimethylamino)titanium, TDEAT and TDMAT, and said step of forming said layer comprising aluminum nitride comprises the formation of a titanium aluminum nitride containing film.
claim 4
6. The process of further comprising the step of introducing at least one of ammonia and hydrazine into said furnace subsequent to said step of placing said at least two wafers in said furnace and prior to said step of introducing said precursor into said furnace.
claim 1
7. The process of wherein said step of increasing said temperature of said wafers in said diffusion furnace increases said temperature to between about 300° C. and about 550° C.
claim 1
8. A process used during the formation of a semiconductor device comprising the following steps:
placing a plurality of semiconductor wafers each having a surface into a chamber;
heating said wafers to a temperature of between about 300° C. and about 550° C.;
with said wafers in said chamber, introducing at least one of ammonia and hydrazine into said chamber;
with said wafers in said chamber, introducing an aluminum nitride precursor into said chamber; and
in said chamber, simultaneously forming a layer comprising aluminum nitride over said surface of each said wafer.
9. The process of wherein said precursor comprises a compound in the form R3Al.
claim 8
10. The process of wherein said precursor comprises triethylaluminum.
claim 9
11. The process of wherein said precursor further comprises at least one of trimethylethylenediamine tris(dimethylamino)titanium, TDEAT and TDMAT, and said step of forming said layer comprising aluminum nitride comprises the formation of titanium aluminum nitride over the surface of each said wafer.
claim 10
12. The process of further comprising the step of photo-defining a capacitor bottom electrode from said titanium aluminum nitride layer.
claim 11
13. A process for forming a field emitter device comprising the following steps:
forming an array of emitter tips on each of a plurality of semiconductor wafers;
placing said plurality of wafers into a diffusion furnace;
increasing a temperature of said plurality of wafers in said diffusion furnace;
with said wafers in said furnace, introducing an aluminum nitride precursor into said diffusion furnace; and
in said furnace, forming a layer comprising aluminum nitride from said aluminum nitride precursor over each said array of each said wafer.
14. The process of wherein said layer formed from said aluminum nitride precursor is an aluminum nitride containing film.
claim 13
15. The process of wherein said precursor comprises a compound having the form R3Al.
claim 14
16. The process of wherein said precursor comprises triethylaluminum.
claim 15
17. The process of further comprising the step of introducing at least one of ammonia and hydrazine into said furnace subsequent to said step of placing said at least two wafers in said furnace and prior to said step of introducing said precursor into said furnace.
claim 13
18. The process of wherein said step of increasing said temperature of said wafers in said diffusion furnace increases said temperature to between about 300° C. and about 550° C.
claim 13
19. A process used to form an electronic device having a film comprising aluminum nitride, the process comprising the following steps:
placing at least two wafers into a diffusion furnace;
increasing a temperature of said wafers in said diffusion furnace to a deposition temperature;
with said wafers in said furnace, introducing an aluminum nitride precursor into said diffusion furnace;
in said furnace at about said deposition temperature, forming a layer comprising aluminum nitride from said aluminum nitride precursor over a surface of each wafer; and
subsequent to said step of forming said layer comprising aluminum nitride, annealing said layer at a temperature equal to or greater than said deposition temperature in an atmosphere comprising at least one of H2, N2, and NH3 at a pressure of between about 200 millitorr and 25 atmospheres.
20. The process of further comprising the step of introducing a carbon-containing gas into said diffusion furnace during said step of introducing said aluminum nitride precursor into said diffusion furnace.
claim 19
21. The process of wherein said step of introducing said carbon-containing gas into said diffusion furnace comprises introducing at least one of CH4, CO2, acetylene, and ethylene.
claim 20
22. The process of wherein said step of forming said layer comprising aluminum nitride is a first deposition step and forms a first layer comprising aluminum nitride layer and said step of annealing is a first anneal step, further comprising the following steps:
claim 19
subsequent to said first anneal step, with said wafers in said furnace, introducing an aluminum nitride precursor into said diffusion furnace;
in said furnace at about said deposition temperature, forming a second layer comprising aluminum nitride from said aluminum nitride precursor over a surface of each wafer;
subsequent to said step of forming said second layer comprising aluminum nitride, annealing said first and second layers at a temperature equal to or greater than said deposition temperature in an atmosphere comprising at least one of H2, N2, and NH3 at a pressure of between about 200 millitorr and 25 atmospheres.
23. The process of wherein said second layer contacts said first layer.
claim 22
24. The process of further comprising the step of purging said diffusion furnace using at least one of N2 and argon prior to said step of introducing said aluminum nitride precursor into said diffusion furnace.
claim 19
25. The method of wherein said anneal step includes the step of ramping said furnace to an anneal temperature at a rate of at least 700° C./minute.
claim 19
26. The process of wherein said deposition temperature is between about 300° C. and about 500° C.
claim 19
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/836,123 US6365519B2 (en) | 1998-11-13 | 2001-04-16 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
US10/116,385 US6548405B2 (en) | 1998-11-13 | 2002-04-02 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/191,294 US6218293B1 (en) | 1998-11-13 | 1998-11-13 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
US09/836,123 US6365519B2 (en) | 1998-11-13 | 2001-04-16 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/191,294 Division US6218293B1 (en) | 1998-11-13 | 1998-11-13 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/116,385 Continuation US6548405B2 (en) | 1998-11-13 | 2002-04-02 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010014521A1 true US20010014521A1 (en) | 2001-08-16 |
US6365519B2 US6365519B2 (en) | 2002-04-02 |
Family
ID=22704904
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/191,294 Expired - Lifetime US6218293B1 (en) | 1998-11-13 | 1998-11-13 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
US09/836,123 Expired - Fee Related US6365519B2 (en) | 1998-11-13 | 2001-04-16 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
US10/116,385 Expired - Lifetime US6548405B2 (en) | 1998-11-13 | 2002-04-02 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/191,294 Expired - Lifetime US6218293B1 (en) | 1998-11-13 | 1998-11-13 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/116,385 Expired - Lifetime US6548405B2 (en) | 1998-11-13 | 2002-04-02 | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
Country Status (1)
Country | Link |
---|---|
US (3) | US6218293B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040036129A1 (en) * | 2002-08-22 | 2004-02-26 | Micron Technology, Inc. | Atomic layer deposition of CMOS gates with variable work functions |
US20070020923A1 (en) * | 2005-07-20 | 2007-01-25 | Micron Technology, Inc. | ALD formed titanium nitride films |
US20090085130A1 (en) * | 2004-01-29 | 2009-04-02 | Kenji Suzuki | Semiconductor device |
US7709402B2 (en) | 2006-02-16 | 2010-05-04 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6218293B1 (en) * | 1998-11-13 | 2001-04-17 | Micron Technology, Inc. | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
US6352944B1 (en) | 1999-02-10 | 2002-03-05 | Micron Technology, Inc. | Method of depositing an aluminum nitride comprising layer over a semiconductor substrate |
US7554829B2 (en) | 1999-07-30 | 2009-06-30 | Micron Technology, Inc. | Transmission lines for CMOS integrated circuits |
KR20010064099A (en) * | 1999-12-24 | 2001-07-09 | 박종섭 | A new method for forming alumina layer and fabricating method of semiconductor device using the same |
US6852167B2 (en) * | 2001-03-01 | 2005-02-08 | Micron Technology, Inc. | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US6492270B1 (en) * | 2001-03-19 | 2002-12-10 | Taiwan Semiconductor Manufacturing Company | Method for forming copper dual damascene |
JP3866540B2 (en) * | 2001-07-06 | 2007-01-10 | 株式会社東芝 | Nitride semiconductor device and manufacturing method thereof |
US8545629B2 (en) | 2001-12-24 | 2013-10-01 | Crystal Is, Inc. | Method and apparatus for producing large, single-crystals of aluminum nitride |
US7638346B2 (en) * | 2001-12-24 | 2009-12-29 | Crystal Is, Inc. | Nitride semiconductor heterostructures and related methods |
US7160577B2 (en) | 2002-05-02 | 2007-01-09 | Micron Technology, Inc. | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
US7205218B2 (en) | 2002-06-05 | 2007-04-17 | Micron Technology, Inc. | Method including forming gate dielectrics having multiple lanthanide oxide layers |
US7135421B2 (en) | 2002-06-05 | 2006-11-14 | Micron Technology, Inc. | Atomic layer-deposited hafnium aluminum oxide |
US7221586B2 (en) | 2002-07-08 | 2007-05-22 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
US6726468B2 (en) | 2002-09-25 | 2004-04-27 | Silterra Malaysia Sdn. Bhd. | Pre-heating dilution gas before mixing with steam in diffusion furnace |
US7282744B2 (en) * | 2003-05-09 | 2007-10-16 | Cree, Inc. | III-nitride optoelectronic device structure with high Al AlGaN diffusion barrier |
KR100538096B1 (en) * | 2004-03-16 | 2005-12-21 | 삼성전자주식회사 | Method for forming a capacitor using atomic layer deposition method |
US7588988B2 (en) | 2004-08-31 | 2009-09-15 | Micron Technology, Inc. | Method of forming apparatus having oxide films formed using atomic layer deposition |
US7662729B2 (en) | 2005-04-28 | 2010-02-16 | Micron Technology, Inc. | Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer |
US7927948B2 (en) | 2005-07-20 | 2011-04-19 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
US7575978B2 (en) | 2005-08-04 | 2009-08-18 | Micron Technology, Inc. | Method for making conductive nanoparticle charge storage element |
US7989290B2 (en) * | 2005-08-04 | 2011-08-02 | Micron Technology, Inc. | Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps |
CN101331249B (en) | 2005-12-02 | 2012-12-19 | 晶体公司 | Doped aluminum nitride crystals and methods of making them |
US9034103B2 (en) * | 2006-03-30 | 2015-05-19 | Crystal Is, Inc. | Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them |
WO2008088838A1 (en) | 2007-01-17 | 2008-07-24 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
US9771666B2 (en) | 2007-01-17 | 2017-09-26 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
US8080833B2 (en) * | 2007-01-26 | 2011-12-20 | Crystal Is, Inc. | Thick pseudomorphic nitride epitaxial layers |
JP5730484B2 (en) * | 2007-01-26 | 2015-06-10 | クリスタル アイエス インコーポレイテッド | Thick pseudo-lattice matched nitride epitaxial layer |
US7915178B2 (en) * | 2008-07-30 | 2011-03-29 | North Carolina State University | Passivation of aluminum nitride substrates |
US20100314551A1 (en) * | 2009-06-11 | 2010-12-16 | Bettles Timothy J | In-line Fluid Treatment by UV Radiation |
US8637411B2 (en) | 2010-04-15 | 2014-01-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9611544B2 (en) | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
US9373500B2 (en) | 2014-02-21 | 2016-06-21 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications |
US9257274B2 (en) | 2010-04-15 | 2016-02-09 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
CN103038400B (en) | 2010-06-30 | 2016-06-22 | 晶体公司 | Use the growth of the bulk aluminum nitride single crystal of thermal gradient control |
US9685320B2 (en) | 2010-09-23 | 2017-06-20 | Lam Research Corporation | Methods for depositing silicon oxide |
US8962359B2 (en) | 2011-07-19 | 2015-02-24 | Crystal Is, Inc. | Photon extraction from nitride ultraviolet light-emitting devices |
US9330911B2 (en) * | 2011-08-22 | 2016-05-03 | Invenlux Limited | Light emitting device having group III-nitride current spreading layer doped with transition metal or comprising transition metal nitride |
JP6538300B2 (en) | 2012-11-08 | 2019-07-03 | ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated | Method for depositing a film on a sensitive substrate |
EP2973664B1 (en) | 2013-03-15 | 2020-10-14 | Crystal Is, Inc. | Ultraviolet light-emitting device and method of forming a contact to an ultraviolet light-emitting device |
US9552979B2 (en) * | 2013-05-31 | 2017-01-24 | Asm Ip Holding B.V. | Cyclic aluminum nitride deposition in a batch reactor |
US9214334B2 (en) * | 2014-02-18 | 2015-12-15 | Lam Research Corporation | High growth rate process for conformal aluminum nitride |
US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
US10566187B2 (en) | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US9502238B2 (en) | 2015-04-03 | 2016-11-22 | Lam Research Corporation | Deposition of conformal films by atomic layer deposition and atomic layer etch |
US9773643B1 (en) | 2016-06-30 | 2017-09-26 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
CN114127890A (en) | 2019-05-01 | 2022-03-01 | 朗姆研究公司 | Modulated atomic layer deposition |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4656101A (en) * | 1984-11-07 | 1987-04-07 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device with a protective film |
US5573742A (en) * | 1987-10-29 | 1996-11-12 | Martin Marietta Corporation | Method for the preparation of high purity aluminum nitride |
US5783483A (en) | 1993-02-24 | 1998-07-21 | Intel Corporation | Method of fabricating a barrier against metal diffusion |
JPH06333857A (en) * | 1993-05-27 | 1994-12-02 | Semiconductor Energy Lab Co Ltd | Device and method for forming film |
JPH07302858A (en) | 1994-04-28 | 1995-11-14 | Toshiba Corp | Semiconductor package |
US5489548A (en) | 1994-08-01 | 1996-02-06 | Texas Instruments Incorporated | Method of forming high-dielectric-constant material electrodes comprising sidewall spacers |
US5767578A (en) | 1994-10-12 | 1998-06-16 | Siliconix Incorporated | Surface mount and flip chip technology with diamond film passivation for total integated circuit isolation |
US5783716A (en) | 1996-06-28 | 1998-07-21 | Advanced Technology Materials, Inc. | Platinum source compositions for chemical vapor deposition of platinum |
US5648699A (en) * | 1995-11-09 | 1997-07-15 | Lucent Technologies Inc. | Field emission devices employing improved emitters on metal foil and methods for making such devices |
US5687112A (en) | 1996-04-19 | 1997-11-11 | Energy Conversion Devices, Inc. | Multibit single cell memory element having tapered contact |
US5874131A (en) * | 1996-10-02 | 1999-02-23 | Micron Technology, Inc. | CVD method for forming metal-containing films |
US5786635A (en) | 1996-12-16 | 1998-07-28 | International Business Machines Corporation | Electronic package with compressible heatsink structure |
KR100230422B1 (en) | 1997-04-25 | 1999-11-15 | 윤종용 | Method for manufacturing a capacitor in semiconductor device |
US6120842A (en) * | 1997-10-21 | 2000-09-19 | Texas Instruments Incorporated | TiN+Al films and processes |
US6180446B1 (en) * | 1997-12-17 | 2001-01-30 | Texas Instruments Incorporated | Method of fabricating an oxygen-stable layer/diffusion barrier/poly bottom electrode structure for high-K DRAMS using disposable-oxide processing |
US6211035B1 (en) * | 1998-09-09 | 2001-04-03 | Texas Instruments Incorporated | Integrated circuit and method |
US6218293B1 (en) * | 1998-11-13 | 2001-04-17 | Micron Technology, Inc. | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
-
1998
- 1998-11-13 US US09/191,294 patent/US6218293B1/en not_active Expired - Lifetime
-
2001
- 2001-04-16 US US09/836,123 patent/US6365519B2/en not_active Expired - Fee Related
-
2002
- 2002-04-02 US US10/116,385 patent/US6548405B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040036129A1 (en) * | 2002-08-22 | 2004-02-26 | Micron Technology, Inc. | Atomic layer deposition of CMOS gates with variable work functions |
US20050032342A1 (en) * | 2002-08-22 | 2005-02-10 | Micron Technology, Inc. | Atomic layer deposition of CMOS gates with variable work functions |
US7351628B2 (en) | 2002-08-22 | 2008-04-01 | Micron Technology, Inc. | Atomic layer deposition of CMOS gates with variable work functions |
US20090085130A1 (en) * | 2004-01-29 | 2009-04-02 | Kenji Suzuki | Semiconductor device |
US20070020923A1 (en) * | 2005-07-20 | 2007-01-25 | Micron Technology, Inc. | ALD formed titanium nitride films |
US20070200243A1 (en) * | 2005-07-20 | 2007-08-30 | Micron Technology, Inc. | Ald formed titanium nitride films |
US7473637B2 (en) | 2005-07-20 | 2009-01-06 | Micron Technology, Inc. | ALD formed titanium nitride films |
US8058729B2 (en) | 2005-07-20 | 2011-11-15 | Micron Technology, Inc. | Titanium nitride films |
US8633110B2 (en) | 2005-07-20 | 2014-01-21 | Micron Technology, Inc. | Titanium nitride films |
US7709402B2 (en) | 2006-02-16 | 2010-05-04 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
US8067794B2 (en) | 2006-02-16 | 2011-11-29 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
US8785312B2 (en) | 2006-02-16 | 2014-07-22 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride |
Also Published As
Publication number | Publication date |
---|---|
US6218293B1 (en) | 2001-04-17 |
US20020106896A1 (en) | 2002-08-08 |
US6548405B2 (en) | 2003-04-15 |
US6365519B2 (en) | 2002-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6548405B2 (en) | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride | |
KR100313091B1 (en) | Method of forming gate dielectric layer with TaON | |
US6218288B1 (en) | Multiple step methods for forming conformal layers | |
US6184044B1 (en) | Thin film capacitor including perovskite-type oxide layers having columnar structure and granular structure | |
JP2875945B2 (en) | Method of depositing silicon nitride thin film on large area glass substrate at high deposition rate by CVD | |
EP1042529B1 (en) | Method for selectively depositing bismuth based ferroelectric films | |
US6319728B1 (en) | Method for treating a deposited film for resistivity reduction | |
JP2001267316A (en) | Method of manufacturing aluminum oxide film used in semiconductor element | |
JP2002009016A (en) | Method for treating substrate | |
US6686292B1 (en) | Plasma etch method for forming uniform linewidth residue free patterned composite silicon containing dielectric layer/silicon stack layer | |
JP3355236B2 (en) | Method for manufacturing capacitor of semiconductor memory device | |
JP2820930B2 (en) | Semiconductor device capacitor manufacturing method | |
US6635556B1 (en) | Method of preventing autodoping | |
US6524958B2 (en) | Method of forming channel in thin film transistor using non-ionic excited species | |
US6365487B2 (en) | Method of manufacturing a capacitor in a semiconductor device | |
US6329237B1 (en) | Method of manufacturing a capacitor in a semiconductor device using a high dielectric tantalum oxide or barium strontium titanate material that is treated in an ozone plasma | |
US6455329B1 (en) | Method for fabricating a capacitor in a semiconductor device | |
KR100780686B1 (en) | Method for fabricating semiconductor device | |
US6054332A (en) | Method for fabricating capacitor of semiconductor memory device | |
JP3139369B2 (en) | Method of forming thin film capacitor | |
KR100670670B1 (en) | A method for fabricating semiconductor device with landing plug contact structure | |
EP0357221B1 (en) | Process for producing contacts in integrated circuits having shallow junctions | |
KR100353809B1 (en) | Method for manufacturing ferroelectric capacitor | |
US20090197421A1 (en) | Chemistry and compositions for manufacturing integrated circuits | |
KR20010026374A (en) | Method for manufacturing a capacitor of a semiconductor device using TaxOy as a dielectric film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140402 |