US20010014389A1 - Resin molded article - Google Patents

Resin molded article Download PDF

Info

Publication number
US20010014389A1
US20010014389A1 US08/940,983 US94098397A US2001014389A1 US 20010014389 A1 US20010014389 A1 US 20010014389A1 US 94098397 A US94098397 A US 94098397A US 2001014389 A1 US2001014389 A1 US 2001014389A1
Authority
US
United States
Prior art keywords
molded article
styrene
resin
resin composition
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US08/940,983
Other versions
US6280837B1 (en
Inventor
Haruyasu Mizutani
Junji Koizumi
Katsushi Ito
Masato Kobayashi
Mitsuhiro Isomichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Assigned to TOYODA GOSEI CO., LTD. reassignment TOYODA GOSEI CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISOMICHI, MITSUHIRO, KOBAYASHI, MASATO, ITO, KATSUSHI, KOIZUMI, JUNJI, MITZUTANI, HARUYASU
Publication of US20010014389A1 publication Critical patent/US20010014389A1/en
Application granted granted Critical
Publication of US6280837B1 publication Critical patent/US6280837B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3005Body finishings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3044Bumpers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3055Cars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/251Mica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31931Polyene monomer-containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • the present invention relates to a resin molded article which can prevent formation of a flow mark also known as a flow pattern.
  • thermoplastic resin composition a metallic piece, glitter material and a colorant are directly mixed into a synthetic resin.
  • the metallic piece such as scaly-aluminum powders, acts as an agent which imparts metallic or pearl tone.
  • An example of the glitter material is pearlescent pigment made of mica.
  • a molded article using such a thermoplastic resin composition is referred to as a resin molded article.
  • a flow mark 8 can occur in some cases at a downstream side of the resin flow, where the downstream side is near a molded article end 92 remote from a gate position 91 at molding.
  • Such a flow mark 8 occurs along with the resin flow in a shape substantially similar to the letter “U”, as shown in FIGS. 2 and 3.
  • the present inventors have studied extensively to prevent the formation of such a flow mark.
  • the present inventors have found that the flow mark is primarily composed of relatively dark portions and relatively light portions, alternating from one to another at a remote location from the gate position, as shown in FIG. 3.
  • the present inventors have further discovered that the flow mark generally is not easily formed in a case where the color of the molded article is concentrated, whereas the flow mark is easily formed where the color of the molded article is pale color or colorless.
  • the likelihood of the flow mark formation increases also, as conceptionally illustrated in FIG. 4.
  • FIG. 5 (B) As shown in FIG. 5 (B), on the surface of the molded article having the flow mark, multiple linear grooves 72 can be observed at the dark portion. On the other hand, at the light portion, such linear groove 72 is not formed. Glitter material 71 is in the interior of the molded article. Also shown in FIG. 5(B) are the flow distortion and breakage at the front portion of the flow, which are formed at the downstream side in the resin flow direction N.
  • An object of the present invention is to provide a resin molded article having a uniform glitter feel, which can prevent formation of a flow mark.
  • the invention provides a resin molded article obtainable by molding using a thermoplastic resin composition in which glitter material is mixed into a synthetic resin.
  • the resin molded article has a molding ratio L/T of not less than 100, wherein T is the thickness of the molded article and L is the distance from a gate position at molding to the remotest position on the molded article.
  • the glitter material has an average particle size d of about 10 ⁇ m ⁇ d ⁇ 200 ⁇ m.
  • the average particle size d of the glitter material to be added to a synthetic resin is greater than 10 ⁇ m and not less than equal to 200 ⁇ m. For this reason, the glitter does not cause deviation in a molded article at molding, and the distortion and breakage of flow at the front portion of the flow are prevented. Therefore, the flow mark is not formed, thereby giving a uniform glittering feel.
  • FIG. 1 is a perspective view of one embodiment of a resin molded article.
  • FIG. 2 is a perspective of the prior art resin molded article.
  • FIG. 3 is an illustration of the state of flow mark development on (A) the face and (B) the back of the prior art resin molded article.
  • FIG. 4 is an illustration of the amount of a glitter material, both concentration and pale color, and the state of flow mark formation in the prior art resin molded article.
  • FIG. 5 is (A) an illustration of the resin flow and mechanism on flow mark formation and (B) an illustration of the surface state in the prior art resin molded article.
  • the resin molded article has the molding ration L/T of not less than 100.
  • examples of such resin molded article are sidemole, garnish lockermole, bumper, pillar, wheel cap, back panel and air spoiler for automobiles.
  • This molding ratio of not less than 100 is contrasted to the conventional upper limit of the molding ration L/T which is usually 1000.
  • the resin molded article of the present invention is also directed to an injection-molded article, molded by injecting a thermoplastic resin composition containing glitter material into a cavity that has the surface corresponding the external shape of the molded article.
  • an average particle size of the glitter material that is added in the thermoplastic resin composition is greater than 10 ⁇ m and less than equal to 200 ⁇ m.
  • the average particle size is less than 10 ⁇ m, the glitter material becomes too fine, and the glitter may easily deviate in the resin molded article. Further, the glittering characteristic may be insufficient.
  • Examples of the synthetic resin are a single resin, such as polypropylene, polyethylene, polystyrene, acrylonitrile-styreno, acrylonitrile-butadiene-styrene, acrylonitrile-(ethylene-propylene)-styrene, or acrylonitrile-(ethylene-propylene-diene terpolymer)-styrene, acrylonitrile-acrylic-styrene, polyamide, acrylate, polycarbonate, polyacetal, polyvinyl chloride, polyphenylene oxide, polyethylene terephtalate, polybutylene terephtahlate, and ionomer; and a mixture of a plurality of synthetic resins such as polypropylene/polyamide, polycarbonate/acrylonitrile-butadiene-styrene, polyphenylene oxide/polystyrene and the like.
  • a single resin such as polypropylene,
  • polypropylene is most preferable from the viewpoint of moldability and cost.
  • thermoplastic resin composition is a single resin composition containing no inorganic reinforcing agent and no bulking agent and that the content of the glitter material is not less than 0.05 to less than 4 parts by weight relative to the synthetic resin.
  • the single resin composition refers to a thermoplastic resin composition in which an inorganic reinforcing agent and a bulking agent is not mixed into a synthetic resin. If necessary, a small amount of a colorant may be added.
  • the content of the glitter material is less than 4 parts by weight relative to the synthetic resin.
  • a flow mark may form.
  • the lower limit is preferably 0.05 part by weight in order to attain the glitter feeling.
  • a range of 0.1 to 3 parts by weight is further preferable.
  • thermoplastic resin composition is a conjugated resin composition containing an inorganic reinforcing agent and/or a bulking agent, and the content of the glitter material is greater than equal to 0.05 to less than 5 parts by weight relative to the synthetic resin.
  • the conjugated resin composition refers to a thermoplastic resin in which the above inorganic reinforcing agent and/or bulking agent are mixed therein. If necessary, a small amount of a colorant is added thereto.
  • Examples of the inorganic reinforcing agent are talc, mica, clay, silica, alumina, calcium carbonate, magnesium carbonate, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, calcium hydroxide, magnesium hydroxide, aluminium hydroxide, calcium sulfate, barium sulfate, basic magnesium sulfate, calcium silicate, glass, potassium titanate and aluminate borate in the form of fiber, whisker, flake or powders.
  • the glitter material be less than 5 parts by weight.
  • a flow mark may form.
  • the lower limit is preferably 0.05 part by weight in order to attain a glitter feeling.
  • a range of 0.1 to 4 parts by weight is further preferable.
  • the glitter material one or more of the following may be used: aluminum powders, brass powders, mica, pearlescent pigment made of mica, flaky glass powders, metal plating powders and metal coating powders.
  • Examples of the colorant are organic pigments such as phthalocyanine blue, cyanine green, indanthrene, azo, anthraquinone, perylene, perynone, quinacridone, isoindolinone, thioindigo, dioxazine and the like; inorganic pigments such as titanium oxide, titan yellow, red iron oxide, calcinated pigment, carbon black and the like; and dyes such as phthalocyanine, anthraquinone, perylene, perynone and the like.
  • organic pigments such as phthalocyanine blue, cyanine green, indanthrene, azo, anthraquinone, perylene, perynone, quinacridone, isoindolinone, thioindigo, dioxazine and the like
  • inorganic pigments such as titanium oxide, titan yellow, red iron oxide, calcinated pigment, carbon black and the like
  • dyes such as phthalocyanine, anthr
  • Additives such, as antioxidant, ultraviolet-ray absorbing agent, silane coupling agent and the like, and dispersing agents, such as metal soap, low-molecular polyolefin and the like may be added.
  • Their content is, but is not limited to, less than equal to 3% by weight according to the conventional method.
  • a blend may be directly molded in conjunction with the molding of the resin molded article, such that each component in the thermoplastic resin composition reaches the required amount in the final molded article.
  • a compound can be prepared by pre-blending with an extruder to obtain pellets, and this may be used for molding.
  • Yet another way is preparing a dry cutter or a master batch to be diluted with a resin for molding.
  • the thermoplastic resin composition contains a rubber or an elastomer composition.
  • the rubber and the elastomer are ethylene-a-olefin rubbers such as EPM (ehtylene-propylene rubber), EBM (ethylene-propylene rubber), EBM (ehtylene-butene rubber) and EOM (ehtylene-octene rubber) and styrene rubbers such as SBR (styrene-butadiene rubber), SBS (styrene-butadiene-styrene), SIS (sytrene-isopropylene-styrene), SEBS (styrene-ethylene-butylene-styrene), SEPS (styrene-ethylene-propylene-styrene) and the like, as well as hydrogenated ones.
  • EPM ehtylene-propylene rubber
  • EBM ethylene-propylene rubber
  • EBM ehtylene-
  • polypropylene polypropylene
  • Polypropylene resin containing C2 is ethylene-propylene block resin.
  • Table 1 shows a thermoplastic resin composition of a single resin composition.
  • the glitter material aluminium powders (A, B and C in Table) or mica pearlescent pigment, i.e., “Pearl Mica” (D in Table), was used.
  • the aluminium powders A, B and C have average particle size of 10, 30 or 40 ⁇ m, respectively.
  • Pearl Mica D has average particle size of 30 ⁇ m.
  • Table 1 shows the average particle size of total glitter materials.
  • the size was its average particle size. When two or more kinds were used, it was calculated according to (average particle size of each glitter material) X (content of each glitter material)/(content of total glitter materials).
  • the content of the glitter material is an added amount (content) relative to 100 parts by weight of the synthetic resin amount.
  • thermoplastic resin composition is a conjugated resin composition, mixing EPM (ethylene-propylene rubber) as a modifier and talc as a bulking agent into polypropylene resin (C2:5 wt. %).
  • EPM ethylene-propylene rubber
  • talc a bulking agent
  • the content of the glitter material is shown parts by weight relative to the conjugated resin composition. Others are the same as those in Table 1.
  • cyanine green and magnesium stearate are added as a colorant and dispersing agent, respectively, to the thermoplastic resin composition at an appropriate amount, they are not added depending upon the object to be used.
  • Tables 1 and 2 show the flow mark, glitter deviation and glitter feeling regarding the appearance of the above respective resin molded articles.
  • Table 1 shows that in a case of the single resin composition, the glitter material having average particle size of 10 ⁇ m (Comparative Example 2) caused a bad glitter deviation and glitter feeling, and the glitter material having average particle size of 30 ⁇ m (Comparative Examples 1 and 3) produced a slight flow mark and also a slight glitter deviation at additional of 4 parts by weight.
  • Tables 1 and 2 show that in a case of average particle size d of the glitter material of greater than 10 ⁇ m to not greater than 200 ⁇ m, resin molded articles having much excellent appearance can be obtained by inclusion of the glitter material of not greater than 3 parts by weight in the single resin composition and the glitter material of not greater than 4 parts by weight in the conjugated resin composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The object of the present invention is to provide a colored resin composition having a uniform glitter feeling, which can prevent flow mark formation. In a resin composition molded by using a thermoplastic resin composition in which glitter material is mixed into a synthetic resin, said resin molded article must have a molding ratio L/T is not less than 100, wherein T is the thickness of the molded article and L is a distance from a gate position at molding to a remotest position on the molded article, and wherein said glitter material has average particle size d of 10 μm<d≦200 μm.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a resin molded article which can prevent formation of a flow mark also known as a flow pattern. [0002]
  • 2. Background Information [0003]
  • Previously, painting was used in order to give a resin molded article, such as thermoplastic resin, a uniform and aesthetically pleasing appearance like metallic tone and pearl tone having a deep feeling. [0004]
  • However, such painting required cumbersome and complicated steps, such as degreasing and washing; prime-coating, intercoating and overcoating; and dust removing, drying and stoving of the surface of the molded article. Further, painting required facilities and paints, and the steps required a longer cycle time. Thus, painting was mainly responsible for higher costs. [0005]
  • To avoid such problems, molding has been carried out using a thermoplastic resin composition. In this thermoplastic resin composition, a metallic piece, glitter material and a colorant are directly mixed into a synthetic resin. The metallic piece, such as scaly-aluminum powders, acts as an agent which imparts metallic or pearl tone. An example of the glitter material is pearlescent pigment made of mica. A molded article using such a thermoplastic resin composition is referred to as a resin molded article. [0006]
  • As shown in FIG. 2 however, at the molding of the resin molded [0007] article 9, a flow mark 8 can occur in some cases at a downstream side of the resin flow, where the downstream side is near a molded article end 92 remote from a gate position 91 at molding. Such a flow mark 8 occurs along with the resin flow in a shape substantially similar to the letter “U”, as shown in FIGS. 2 and 3.
  • Since the [0008] flow mark 8 deteriorates the decorative effect of the molded article, the present inventors have studied extensively to prevent the formation of such a flow mark. The present inventors have found that the flow mark is primarily composed of relatively dark portions and relatively light portions, alternating from one to another at a remote location from the gate position, as shown in FIG. 3. The present inventors have further discovered that the flow mark generally is not easily formed in a case where the color of the molded article is concentrated, whereas the flow mark is easily formed where the color of the molded article is pale color or colorless. Moreover, as the amount of the glitter material added increases, the likelihood of the flow mark formation increases also, as conceptionally illustrated in FIG. 4.
  • The present inventor's study of the mechanism of the formation of the flow mark has revealed that the flowing state at the front portion of the flow becomes unstable due to the fact that the rate of the resin flow is reduced at the downstream side in a cavity near an end of the molded article in the flow direction N, as shown in FIG. 5 (A). For this reason, [0009] flow distortion 81 occurs causing the breakage 82 at the front portion of the flow. The “dark portion” is formed in the breakage portion 82 where adhesion to the cavity surface is lowered which generates a concave and convex portion on the surface.
  • As shown in FIG. 5 (B), on the surface of the molded article having the flow mark, multiple [0010] linear grooves 72 can be observed at the dark portion. On the other hand, at the light portion, such linear groove 72 is not formed. Glitter material 71 is in the interior of the molded article. Also shown in FIG. 5(B) are the flow distortion and breakage at the front portion of the flow, which are formed at the downstream side in the resin flow direction N.
  • Subsequently, the present inventors have studied adjustment of injection pressure for a thermoplastic resin composition, adjustment of a rate of the resin flow, and other factors in order to prevent the flow mark from occurring. However, the molding conditions were difficult, and thus obtained no sufficient results. [0011]
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a resin molded article having a uniform glitter feel, which can prevent formation of a flow mark. [0012]
  • The invention provides a resin molded article obtainable by molding using a thermoplastic resin composition in which glitter material is mixed into a synthetic resin. The resin molded article has a molding ratio L/T of not less than 100, wherein T is the thickness of the molded article and L is the distance from a gate position at molding to the remotest position on the molded article. The glitter material has an average particle size d of about 10 μm<d≦200 μm. [0013]
  • According to the present invention, in a resin molded article having the molding ratio L/T of not less than 100, the average particle size d of the glitter material to be added to a synthetic resin, is greater than 10 μm and not less than equal to 200 μm. For this reason, the glitter does not cause deviation in a molded article at molding, and the distortion and breakage of flow at the front portion of the flow are prevented. Therefore, the flow mark is not formed, thereby giving a uniform glittering feel. [0014]
  • The present invention's objects, features and advantages are elucidated by the following detailed description and drawings. [0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of one embodiment of a resin molded article. [0016]
  • FIG. 2 is a perspective of the prior art resin molded article. [0017]
  • FIG. 3 is an illustration of the state of flow mark development on (A) the face and (B) the back of the prior art resin molded article. [0018]
  • FIG. 4 is an illustration of the amount of a glitter material, both concentration and pale color, and the state of flow mark formation in the prior art resin molded article. [0019]
  • FIG. 5 is (A) an illustration of the resin flow and mechanism on flow mark formation and (B) an illustration of the surface state in the prior art resin molded article. [0020]
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the present invention, the resin molded article has the molding ration L/T of not less than 100. Examples of such resin molded article are sidemole, garnish lockermole, bumper, pillar, wheel cap, back panel and air spoiler for automobiles. This molding ratio of not less than 100 is contrasted to the conventional upper limit of the molding ration L/T which is usually 1000. [0021]
  • The resin molded article of the present invention is also directed to an injection-molded article, molded by injecting a thermoplastic resin composition containing glitter material into a cavity that has the surface corresponding the external shape of the molded article. [0022]
  • In the present invention, an average particle size of the glitter material that is added in the thermoplastic resin composition is greater than 10 μm and less than equal to 200 μm. When the average particle size is less than 10 μm, the glitter material becomes too fine, and the glitter may easily deviate in the resin molded article. Further, the glittering characteristic may be insufficient. [0023]
  • On the other hand, when the average particle size exceeds 200 μm, the glitter material particles become too large, easily resulting in distortion and breakage of flow at the front portion as described in the prior art. Such a distortion and breakage may lead to formation of a flow mark. [0024]
  • Examples of the synthetic resin are a single resin, such as polypropylene, polyethylene, polystyrene, acrylonitrile-styreno, acrylonitrile-butadiene-styrene, acrylonitrile-(ethylene-propylene)-styrene, or acrylonitrile-(ethylene-propylene-diene terpolymer)-styrene, acrylonitrile-acrylic-styrene, polyamide, acrylate, polycarbonate, polyacetal, polyvinyl chloride, polyphenylene oxide, polyethylene terephtalate, polybutylene terephtahlate, and ionomer; and a mixture of a plurality of synthetic resins such as polypropylene/polyamide, polycarbonate/acrylonitrile-butadiene-styrene, polyphenylene oxide/polystyrene and the like. [0025]
  • Among them, polypropylene is most preferable from the viewpoint of moldability and cost. [0026]
  • It is preferable that the thermoplastic resin composition is a single resin composition containing no inorganic reinforcing agent and no bulking agent and that the content of the glitter material is not less than 0.05 to less than 4 parts by weight relative to the synthetic resin. [0027]
  • The single resin composition refers to a thermoplastic resin composition in which an inorganic reinforcing agent and a bulking agent is not mixed into a synthetic resin. If necessary, a small amount of a colorant may be added. [0028]
  • In a case of the single resin composition, it is preferred that the content of the glitter material is less than 4 parts by weight relative to the synthetic resin. When the content exceeds 4 parts by weight, a flow mark may form. The lower limit is preferably 0.05 part by weight in order to attain the glitter feeling. A range of 0.1 to 3 parts by weight is further preferable. [0029]
  • It is also preferable that the thermoplastic resin composition is a conjugated resin composition containing an inorganic reinforcing agent and/or a bulking agent, and the content of the glitter material is greater than equal to 0.05 to less than 5 parts by weight relative to the synthetic resin. [0030]
  • The conjugated resin composition refers to a thermoplastic resin in which the above inorganic reinforcing agent and/or bulking agent are mixed therein. If necessary, a small amount of a colorant is added thereto. [0031]
  • Examples of the inorganic reinforcing agent are talc, mica, clay, silica, alumina, calcium carbonate, magnesium carbonate, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, calcium hydroxide, magnesium hydroxide, aluminium hydroxide, calcium sulfate, barium sulfate, basic magnesium sulfate, calcium silicate, glass, potassium titanate and aluminate borate in the form of fiber, whisker, flake or powders. [0032]
  • In the conjugated resin composition, it is preferable that the glitter material be less than 5 parts by weight. When the content is 5 parts by weight or more, a flow mark may form. The lower limit is preferably 0.05 part by weight in order to attain a glitter feeling. A range of 0.1 to 4 parts by weight is further preferable. [0033]
  • As the glitter material, one or more of the following may be used: aluminum powders, brass powders, mica, pearlescent pigment made of mica, flaky glass powders, metal plating powders and metal coating powders. [0034]
  • Examples of the colorant are organic pigments such as phthalocyanine blue, cyanine green, indanthrene, azo, anthraquinone, perylene, perynone, quinacridone, isoindolinone, thioindigo, dioxazine and the like; inorganic pigments such as titanium oxide, titan yellow, red iron oxide, calcinated pigment, carbon black and the like; and dyes such as phthalocyanine, anthraquinone, perylene, perynone and the like. Additives such, as antioxidant, ultraviolet-ray absorbing agent, silane coupling agent and the like, and dispersing agents, such as metal soap, low-molecular polyolefin and the like may be added. Their content is, but is not limited to, less than equal to 3% by weight according to the conventional method. [0035]
  • According to the present invention, a blend may be directly molded in conjunction with the molding of the resin molded article, such that each component in the thermoplastic resin composition reaches the required amount in the final molded article. Alternatively, a compound can be prepared by pre-blending with an extruder to obtain pellets, and this may be used for molding. Yet another way is preparing a dry cutter or a master batch to be diluted with a resin for molding. [0036]
  • It is preferable that the thermoplastic resin composition contains a rubber or an elastomer composition. This can lead to an advantage of improved resistance. Examples of the rubber and the elastomer are ethylene-a-olefin rubbers such as EPM (ehtylene-propylene rubber), EBM (ethylene-propylene rubber), EBM (ehtylene-butene rubber) and EOM (ehtylene-octene rubber) and styrene rubbers such as SBR (styrene-butadiene rubber), SBS (styrene-butadiene-styrene), SIS (sytrene-isopropylene-styrene), SEBS (styrene-ethylene-butylene-styrene), SEPS (styrene-ethylene-propylene-styrene) and the like, as well as hydrogenated ones. [0037]
  • EMBODIMENTS
  • In a first embodiment, a [0038] sidemole 1 for automobiles in which the thickness T of the molded article is 0.3 cm, a distance L from a gate position 11 to the remotest position 12 on the molded article is 100 cm, and width W is 5 cm, as shown FIG. 1, was molded using an injection-molding method.
  • As the synthetic resin, two kinds of PP's (polypropylene), were used: one containing no ethylene (C2 in Table) and the other containing ethylene (C2 is 5 wt %) were used. Polypropylene resin containing C2 is ethylene-propylene block resin. Table 1 shows a thermoplastic resin composition of a single resin composition. [0039]
  • In addition, as the glitter material, aluminium powders (A, B and C in Table) or mica pearlescent pigment, i.e., “Pearl Mica” (D in Table), was used. The aluminium powders A, B and C have average particle size of 10, 30 or 40 μm, respectively. Pearl Mica D has average particle size of 30 μm. [0040]
  • Next, Table 1 shows the average particle size of total glitter materials. [0041]
  • With regards to the average particle size of the glitter material, when the glitter material was one kind, the size was its average particle size. When two or more kinds were used, it was calculated according to (average particle size of each glitter material) X (content of each glitter material)/(content of total glitter materials). [0042]
  • The content of the glitter material is an added amount (content) relative to 100 parts by weight of the synthetic resin amount. [0043]
  • Table 2 shows an embodiment where a thermoplastic resin composition is a conjugated resin composition, mixing EPM (ethylene-propylene rubber) as a modifier and talc as a bulking agent into polypropylene resin (C2:5 wt. %). The content of the glitter material is shown parts by weight relative to the conjugated resin composition. Others are the same as those in Table 1. [0044]
  • Although cyanine green and magnesium stearate are added as a colorant and dispersing agent, respectively, to the thermoplastic resin composition at an appropriate amount, they are not added depending upon the object to be used. [0045]
  • Tables 1 and 2 show the flow mark, glitter deviation and glitter feeling regarding the appearance of the above respective resin molded articles. [0046]
  • With regards to the flow mark and glitter deviation, absence is indicated by (ο), presence is indicated by (X) and slight presence is indicated by (Δ). With regards to the glitter feeling, presence is indicated by (ο) and absence is indicated by (X ). Evaluation on the appearance of the resin molded articles was performed by visual observation. [0047]
  • The same Tables also show Comparative Examples. [0048]
  • Table 1 shows that in a case of the single resin composition, the glitter material having average particle size of 10 μm (Comparative Example 2) caused a bad glitter deviation and glitter feeling, and the glitter material having average particle size of 30 μm (Comparative Examples 1 and 3) produced a slight flow mark and also a slight glitter deviation at additional of 4 parts by weight. [0049]
  • Next, from Table 2, in a case of the conjugated resin composition, it is seen that slight flow mark is developed and a glitter deviation is also developed even when average particle size of the glitter material is 30 μm if the content thereof is 5 parts by weight (Comparative Example 4). [0050]
  • Tables 1 and 2 show that in a case of average particle size d of the glitter material of greater than 10 μm to not greater than 200 μm, resin molded articles having much excellent appearance can be obtained by inclusion of the glitter material of not greater than 3 parts by weight in the single resin composition and the glitter material of not greater than 4 parts by weight in the conjugated resin composition. [0051]
    TABLE 1
    E1 E2 C1 E3 C2 E4 E5 C3 E6 E7
    Resin PP (C2 = 0 wt %) 100 100 100 100 100 100 100 100 100
    composition PP (C2 = 5 wt %) 100
    EPM
    TARC
    Glitter
    material
    A (10 μm) 1 0.1
    B (30 μm) 1 2 4 2 0.5 0.4
    C (40 μm) 1
    D (30 μm) 2 4 0.5 0.5
    Averaged 30 30 30 30 10 40 30 30 30 28
    particle
    size of
    glitter
    material
    Appearance Flowmark Δ Δ
    Glitter Δ X X
    deviation
    Glitter X
    feeling
  • [0052]
    TABLE 2
    E8 E9 C4
    Resin composition
    PP (C2 = 0 wt %)
    PP (C2 = 5 wt %) 70 70 70
    EPM 20 20 20
    TARC 10 10 10
    Glitter material
    A (10 μm)
    B (30 μm)  2 3.5  5
    C (40 μm)
    D (30 μm)
    Averaged 30 30 30
    particle size
    of glitter
    material
    Appearance
    Flow mark Δ
    Glitter X
    deviation
    Glitter
    feeling

Claims (9)

What is claimed is:
1. A resin molded article comprising a thermoplastic resin composition in which glitter material is mixed into a synthetic resin, wherein the resin molded article has a molding ratio L/T of not less than 100, L being a distance from a gate position at molding to a remotest position on the molded article, and the T being a thickness of the molded article; and
wherein the glitter material has an average particles size d of 10<d≦200 μm.
2. The resin molded article according to
claim 1
, wherein the thermoplastic resin composition is a single resin composition free of an inorganic reinforcing agent and a bulking agent, and the content of the glitter material varies between 0.05 or more to less than 4 parts by weight relative to the synthetic resin.
3. The resin molded article according to
claim 1
, wherein the thermoplastic resin composition is a conjugated resin composition containing one or more of an inorganic reinforcing agent and a bulking agent, and the content of the glitter material varies between 0.05 or more to less than 5 parts by weight relative to the synthetic resin.
4. The resin molded article according to
claim 1
, wherein the glitter material is selected from a group consisting of aluminum powders, brass powders, pearlescent pigment made of mica, flaky glass powders, metal plating powders and metal coating powders.
5. The resin molded article according to
claim 1
, wherein the thermoplastic composition contains one or more of a rubber and an elastomer composition.
6. The resin molded article according to
claim 2
, wherein the synthetic resin is one of:
a single resin is one of polypropylene, polyethylene, polystyrene, acrylonitrile-styreno, acrylonitrile-butadiene-styrene, acrylonitrile-(ethylene-propylene)-styrene, or acrylonitrile-(ethylene-propylene-diene terpolymer)-styrent, acrylonitrile-acrylic-styrene, polyamide, acrylate, polycarbonate, polyacetal, polyvinyl chloride, polyphenylene oxide, polyethylene terephtalate, polybutylene terephtahlate, and ionomer; and
a mixture of a plurality of synthetic resins such as polypropylene/polyamide, polycarbonate/acrylonitrile-butadiene-styrene, and polyphenylene oxide/polystyrene.
7. The resin molded article according to
claim 3
, wherein the organic reinforcing agent is one of talc, mica, clay, silica, alumina, calcium carbonate, magnesium carbonate, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, calcium sulfate, barium sulfate, basic magnesium sulfate, calcium silicate, glass, potassium titanate and aluminum borate in the form of one of fiber, whisker, flake and powders.
8. The resin molded article according to
claim 3
, further including a small amount of colorant is added to the conjugated resin composition, the colorant being one of:
organic pigments such as phthalocyanine blue, cyanine green, indanthrene, azo, anthraquinone, perylene, perynone, quinacridone, isoindolinone, thioindigo, and dioxazine;
inorganic pigments such as titanium oxide, titan yellow, red iron oxide, calcinated pigment, and carbon black; and
dyes such as phthalocyanine, anthraquinone, perylene, and perynone.
9. The resin mold article according to
claim 5
, wherein the one or more of a rubber and an elastomer composition being one or more of:
ethylene-alpha-olefin rubbers such as EPM (ethylene-propylene rubber), EBM (ethylene-butene rubber) and EOM (ethyleneoctene rubber); and
styrene rubbers such as SBR (styrenebutadiene rubber), SBS (styrene-butadiene-styrene), SIS (styrene-isopropylene-styren), SEBS (styrene-ethylene-butylene-styrene) and SEPS (styrene-ethylene-propylene-styrene).
US08/940,983 1996-09-30 1997-09-30 Resin molded article Expired - Lifetime US6280837B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8280065A JPH10100187A (en) 1996-09-30 1996-09-30 Resin molding
JP280065/1996 1996-09-30
JP8-280065 1996-09-30

Publications (2)

Publication Number Publication Date
US20010014389A1 true US20010014389A1 (en) 2001-08-16
US6280837B1 US6280837B1 (en) 2001-08-28

Family

ID=17619822

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/940,983 Expired - Lifetime US6280837B1 (en) 1996-09-30 1997-09-30 Resin molded article

Country Status (2)

Country Link
US (1) US6280837B1 (en)
JP (1) JPH10100187A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607206A1 (en) * 2003-01-21 2005-12-21 Techno Polymer Co., Ltd. Injection molding die, injection molding method, and weldless molded product
US20070232739A1 (en) * 2006-03-30 2007-10-04 General Electric Company Thermoplastic polycarbonate compositions with improved mechanical properties, articles made therefrom and method of manufacture
US20070232744A1 (en) * 2006-03-30 2007-10-04 General Electric Company Thermoplastic polycarbonate compositions with improved mechanical properties, articles made therefrom and method of manufacture
US10369733B2 (en) 2014-11-25 2019-08-06 Kasai Kogyo Co., Ltd. Synthetic resin molding and molding method therefor
CN112679847A (en) * 2020-12-22 2021-04-20 青岛正大环保科技有限公司 High-toughness heat-resistant polypropylene packaging bag and preparation method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770689B1 (en) * 1999-03-19 2004-08-03 Sakura Color Products Corp. Aqueous glittering ink
JP2000313758A (en) * 1999-04-30 2000-11-14 Japan Polychem Corp Glittering material-containing polypropylenebased resin molded product
KR100635798B1 (en) 1999-07-23 2006-10-19 가부시키가이샤 사쿠라 크레파스 Resin moulded articles, and applicators and ballpens using the same
DE19962570A1 (en) * 1999-12-23 2001-07-05 Basf Ag Production of thermoplastic molding compounds using magnesium oxide
KR100500519B1 (en) * 2001-03-15 2005-07-12 미쓰이 가가쿠 가부시키가이샤 Automotive part made of polypropylene resin composition
JP4480984B2 (en) * 2002-11-12 2010-06-16 旭化成ケミカルズ株式会社 Chair parts made of metallic polyamide resin
KR100690898B1 (en) * 2005-12-29 2007-03-09 엘지전자 주식회사 Plastic injection molded product showing feel of metal material
JP4966895B2 (en) * 2007-07-09 2012-07-04 日本ポリプロ株式会社 Propylene polymer composition
KR101101789B1 (en) 2009-07-20 2012-01-05 강명호 Synthetic resin composintion for plastic article having metalic surface, injection molding method and plastic article using the same
JP2011183577A (en) * 2010-03-05 2011-09-22 Gunma Prefecture Method for injection-molding metallic resin injection-molded article, and method for evaluating quality of the injection-molded article
KR101474802B1 (en) * 2011-12-30 2014-12-22 제일모직 주식회사 Thermoplastic resin composition
US9732211B2 (en) 2013-10-30 2017-08-15 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having improved weather resistance
KR102262931B1 (en) * 2017-12-15 2021-06-10 주식회사 삼양사 Thermoplastic resin composition comprising spherical metal particles and molded article comprising the same
JP7048312B2 (en) * 2017-12-28 2022-04-05 旭化成株式会社 Resin composition
JP7048311B2 (en) * 2017-12-28 2022-04-05 旭化成株式会社 Resin composition

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149264A (en) 1974-10-26 1976-04-28 Toray Industries KYOKANETSUKASOSEIJUSHICHAKUSHOKUSEIKEIHINNO SEIZOHOHO
US4544600A (en) * 1982-08-16 1985-10-01 Silberline Manufacturing Company, Inc. Resin compositions containing metals such as aluminum
JPH0613626B2 (en) 1984-01-18 1994-02-23 三井石油化学工業株式会社 Polypropylene composition
JPS61138652A (en) 1984-12-10 1986-06-26 Mitsui Toatsu Chem Inc Polypropylene resin composition
US4598020A (en) * 1985-08-16 1986-07-01 Inmont Corporation Automotive paint compositions containing pearlescent pigments and dyes
JPH0618975B2 (en) 1985-10-08 1994-03-16 三井東圧化学株式会社 Polypropylene resin composition
US5177124A (en) * 1987-08-19 1993-01-05 Intaglio Ltd. Plastic molded pieces having the appearance of a solid metallic piece
JPH02214747A (en) 1989-02-14 1990-08-27 Toda Kogyo Corp Rubber or resin composition having golden color
JPH0684465B2 (en) 1988-05-31 1994-10-26 ポリプラスチックス株式会社 Method for producing improved colored polybutylene terephthalate resin composition
JPH01308441A (en) 1988-06-06 1989-12-13 Toray Ind Inc Colored molding resin composition
JPH02255842A (en) 1988-11-15 1990-10-16 Tokyo Ink Kk Resin composition having metallic luster
JP2993706B2 (en) 1990-04-24 1999-12-27 東洋インキ製造株式会社 Resin composition
US5229175A (en) * 1991-12-02 1993-07-20 Chrysler Corporation Vehicle molding attaching arrangement
JP2560171B2 (en) 1992-03-31 1996-12-04 住化カラー株式会社 Black polyester hollow molded article, and master batch and colored pellets for black polyester hollow molded article
ATE146509T1 (en) * 1992-07-23 1997-01-15 Silberline Ltd METAL POWDER PIGMENT
US5496630A (en) * 1993-09-13 1996-03-05 The Geon Company Thermoplastic multilayer louver with a polished metal look
DE19540437B4 (en) * 1994-10-31 2004-04-01 Toyoda Gosei Co., Ltd. High-gloss molded part made of resin
US6068896A (en) * 1996-02-29 2000-05-30 Toyoda Gosei Co., Ltd. Molded colored articles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607206A1 (en) * 2003-01-21 2005-12-21 Techno Polymer Co., Ltd. Injection molding die, injection molding method, and weldless molded product
EP1607206A4 (en) * 2003-01-21 2006-11-29 Techno Polymer Co Ltd Injection molding die, injection molding method, and weldless molded product
US20070232739A1 (en) * 2006-03-30 2007-10-04 General Electric Company Thermoplastic polycarbonate compositions with improved mechanical properties, articles made therefrom and method of manufacture
US20070232744A1 (en) * 2006-03-30 2007-10-04 General Electric Company Thermoplastic polycarbonate compositions with improved mechanical properties, articles made therefrom and method of manufacture
US10369733B2 (en) 2014-11-25 2019-08-06 Kasai Kogyo Co., Ltd. Synthetic resin molding and molding method therefor
CN112679847A (en) * 2020-12-22 2021-04-20 青岛正大环保科技有限公司 High-toughness heat-resistant polypropylene packaging bag and preparation method thereof

Also Published As

Publication number Publication date
US6280837B1 (en) 2001-08-28
JPH10100187A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
US6280837B1 (en) Resin molded article
DE69809318T2 (en) Polypropylene-based exterior panel and process for its manufacture
US5037680A (en) Exterior automotive component with pigmented substrate and clear coating
EP0869143B1 (en) Exterior automotive component of an elastomeric modified polyolefin material having pleasing appearance
CN101250303A (en) Mineral/whisker reinforced polypropylene composite material having good spraying property
US5712003A (en) Blow-molded articles for automobile exterior parts and the process therefor
US20010053454A1 (en) Laminated film and structure comprising same
US20040229977A1 (en) Mold-in color panels
CN111690209A (en) High-fluidity scratch-resistant spraying-free metallic silver modified polypropylene material for vehicles
JP5892885B2 (en) Decorative molded body and method for producing decorative molded body
DE19717648A1 (en) Polyolefin-based plastic composition and molded automotive body made from it
JP5463622B2 (en) Metallic resin molded product manufacturing method and mold
JP4780863B2 (en) Laminated body
CA2189304C (en) Process for producing a bumper for a vehicle
JP2000071274A (en) Resin molding
US6818302B2 (en) Laminate
JP3760615B2 (en) Resin molded product and molding method thereof
KR20020070519A (en) Process for producing shaped articles having a color swirl effect
JP2000309638A (en) Resin molded product
JP2002240077A (en) Decorative sheet and method for simultaneous injection molding with decoration
EP0596378A1 (en) Resinous moulding matter for manufacture of mouldings with adjustable decorative colour effect
JP2006219115A (en) Long ornamental molding and manufacturing method for it
JPH0699592B2 (en) Resin molded product
JPH11106518A (en) Automobile resin exterior part
KR100792114B1 (en) Polypropylene Resin Composition for Exterior Parts of Automobile

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYODA GOSEI CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MITZUTANI, HARUYASU;KOIZUMI, JUNJI;ITO, KATSUSHI;AND OTHERS;REEL/FRAME:009072/0536;SIGNING DATES FROM 19970926 TO 19971014

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12