US20010013701A1 - Automatic stop/restart device of vehicle engine - Google Patents
Automatic stop/restart device of vehicle engine Download PDFInfo
- Publication number
- US20010013701A1 US20010013701A1 US09/783,309 US78330901A US2001013701A1 US 20010013701 A1 US20010013701 A1 US 20010013701A1 US 78330901 A US78330901 A US 78330901A US 2001013701 A1 US2001013701 A1 US 2001013701A1
- Authority
- US
- United States
- Prior art keywords
- engine
- brake pedal
- vehicle
- restart
- depressed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims description 36
- 230000000994 depressogenic effect Effects 0.000 claims description 29
- 230000007246 mechanism Effects 0.000 claims description 13
- 230000003247 decreasing effect Effects 0.000 claims description 7
- 239000000498 cooling water Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 230000006698 induction Effects 0.000 abstract description 34
- 230000007423 decrease Effects 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K6/485—Motor-assist type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/543—Transmission for changing ratio the transmission being a continuously variable transmission
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18063—Creeping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits or control means specially adapted for starting of engines
- F02N11/0814—Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
- F02N11/0818—Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/445—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/48—Drive Train control parameters related to transmissions
- B60L2240/486—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0676—Engine temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/24—Energy storage means
- B60W2510/242—Energy storage means for electrical energy
- B60W2510/244—Charge state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/12—Brake pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/16—Ratio selector position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/15—Road slope, i.e. the inclination of a road segment in the longitudinal direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/06—Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
- F02N2200/061—Battery state of charge [SOC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/08—Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
- F02N2200/0801—Vehicle speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/08—Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
- F02N2200/0802—Transmission state, e.g. gear ratio or neutral state
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/08—Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
- F02N2200/0814—Bonnet switches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/08—Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
- F02N2200/0815—Vehicle door sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/10—Parameters used for control of starting apparatus said parameters being related to driver demands or status
- F02N2200/101—Accelerator pedal position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/10—Parameters used for control of starting apparatus said parameters being related to driver demands or status
- F02N2200/102—Brake pedal position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/68—Inputs being a function of gearing status
- F16H59/72—Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/904—Component specially adapted for hev
- Y10S903/915—Specific drive or transmission adapted for hev
- Y10S903/917—Specific drive or transmission adapted for hev with transmission for changing gear ratio
- Y10S903/918—Continuously variable
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/947—Characterized by control of braking, e.g. blending of regeneration, friction braking
Definitions
- This invention relates to a device for automatically stopping and restarting an engine.
- Tokkai 2000-274273 published by the Japanese Patent Office in 2000 discloses a device for automatically stopping an engine to conserve fuel when a vehicle has temporarily stopped, and automatically restarting when the driver steps on the accelerator pedal, while traveling and in the state where a transmission remains in a drive range.
- this invention provides an automatic stop/restart device for an engine of a vehicle, the vehicle comprising a drive wheel, an accelerator pedal, a brake pedal, a battery, and a motive force transmission mechanism which transmits a creep force to the drive wheel according to the rotation of an engine.
- the automatic stop/restart device comprises a motor which starts the engine, a sensor which detects if the transmission mechanism is in a drive range wherein the creep force is transmitted to the drive wheel, a sensor which detects that the brake pedal is depressed, a sensor which detects that the accelerator pedal is depressed, a sensor which detects a state of charge (SOC) of the battery, a sensor which detects a depression amount of the brake pedal, and a microprocessor.
- SOC state of charge
- the microprocessor is programmed to stop the rotation of the engine when the brake pedal is depressed and the vehicle is stationary, determine if the vehicle is in an idling stop state wherein the brake pedal is depressed, the vehicle is stationary with the engine stopped and the transmission mechanism is in the drive range, restart the engine by the motor when the accelerator pedal is depressed or the battery SOC has fallen below a predetermined SOC in the idling stop state, and restart the engine by the motor when the brake pedal depression amount has decreased by a predetermined amount in the idling stop state.
- FIG. 1 is a schematic diagram of a vehicle drive system to which this invention is applied.
- FIG. 2 is a flowchart describing an engine stop/restart control routine performed by a control unit according to this invention.
- FIG. 3 is a flowchart describing an engine stop/restart control routine according to a second embodiment of this invention.
- FIG. 4 is a diagram describing a relation between a road surface slope and a braking force required for stopping the vehicle.
- FIG. 5 is a flowchart describing an engine stop/restart control routine according to a third embodiment of this invention.
- a vehicle drive system to which this invention is applied comprises an engine 1 , an induction motor 2 which is connected with the engine 1 , a continuously variable transmission (CVT) 3 and a torque converter 4 .
- the engine 1 may be a gasoline engine or a diesel engine.
- the continuously variable transmission 3 is connected to the induction motor 2 via the torque converter 4 .
- the rotation of an output shaft of the continuously variable transmission 3 is transmitted to drive wheels 5 of the vehicle.
- a stepwise automatic transmission may be used. Forward motion and reverse motion of the vehicle is changed over by a forward/reverse change-over mechanism, not shown, interposed between the engine 1 and continuously variable transmission 3 .
- the induction motor 2 functions as a motor/generator.
- the induction motor 2 is connected to an output shaft of the engine either directly, or via a gear and a chain.
- the induction motor 2 functions as a motor, starting the rotation of the engine 1 , and also supplements the output of the engine 1 if necessary.
- the induction motor 2 functions as a generator driven by the engine 1 and charges a battery 11 when a state of charge (SOC) of the battery 11 decreases. It also generates power by recovering energy when the vehicle is coasting and charges the battery 11 .
- SOC state of charge
- the continuously variable transmission 3 comprises a pair of variable pulleys and a belt looped over these pulleys. By varying the diameters of these variable pulleys, the speed ratio of the rotation pulleys changes. The speed ratio is set to vary according to running conditions. The speed ratio is controlled by adjusting the pulley width, i.e., the groove width of the variable pulleys by oil pressure.
- a control unit 10 comprises a microprocessor provided with a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input/output interface (I/O interface) (not shown).
- CPU central processing unit
- ROM read-only memory
- RAM random access memory
- I/O interface input/output interface
- the control unit 10 controls the induction motor 2 via an inverter 12 .
- the control unit 10 commands the inverter 12 to convert the direct current from the battery 11 into alternating current, and supply alternating current to the induction motor 2 .
- the control unit 10 commands the inverter 12 to supply an exciting current to the induction motor 2 , and convert alternating current generated by the induction motor 2 into direct current to charge the battery 11 .
- the control unit 10 automatically stops the engine 1 by commanding an engine control module 14 , when, for example, the vehicle temporarily stops at a crossing.
- the automatic stopping of the engine on such an occasion is referred to as an idling stop.
- the control unit 10 drives the induction motor 2 to automatically restart the engine 1 when, for example, the accelerator pedal is depressed or the battery SOC drops.
- various signals are input from sensors to the control unit 10 . They are a water temperature sensor 21 which detects an engine cooling water temperature, an oil temperature sensor 22 which detects an oil temperature of the continuously variable transmission 3 , an oil pressure sensor 23 which detects an oil pressure of the continuously variable transmission 3 , a rotation sensor 24 which detects a rotation speed of the engine 1 , a vacuum sensor 25 which detects a negative pressure of a brake booster, a shift position sensor 26 which detects a position of a shift lever, an accelerator switch 27 which detects that an accelerator pedal is depressed, a brake stroke sensor 28 which detects a brake pedal depression amount, a brake switch 29 which detects that a brake pedal is depressed, a drive wheel rotation sensor 30 which detects a rotation speed of the drive wheels 5 , a battery sensor 31 which detects the SOC of the battery 11 , a gradient sensor 32 which detects whether or not the vehicle is traveling on a downhill slope, a bonnet open/close sensor 33 which detects whether a bonne
- a step S 1 it is determined whether or not the engine 1 has temporarily stopped with the transmission in a drive range, i.e., whether the vehicle is in an idling stop state.
- the shift position sensor 26 determines whether or not the transmission is in a drive range wherein a creep force is transmitted to the drive wheels 5 .
- Based on signals from the engine rotation sensor 24 , shift position sensor 26 , drive wheel rotation sensor 30 , bonnet open/close sensor 33 and door open/close sensor 34 it is determined whether or not the engine 1 has stopped while traveling. If the following conditions are all satisfied, it is determined that the engine 1 has temporarily stopped with the transmission in the drive range, and the routine then proceeds to a step S 2 .
- step S 2 it is determined whether or not the restart condition holds, i.e., whether or not an engine restart is required.
- the restart condition holds when at least one of the following conditions is satisfied.
- the battery SOC is less than a predetermined SOC.
- the brake booster negative pressure is less than a predetermined negative pressure.
- the engine cooling water temperature is less than a predetermined water temperature.
- the transmission oil temperature is less than a predetermined oil temperature.
- the transmission oil pressure is less than a predetermined oil pressure.
- the predetermined SOC is set in the range of 30% to 40% of the full charge state
- the predetermined negative pressure is set to about 180 mmHg
- the predetermined water temperature is set to about 25° C.
- the predetermined oil temperature is set to about 25° C.
- the predetermined oil pressure is set to about 0.7 MPa.
- a “negative pressure” means a pressure difference relative to the atmospheric pressure. If a negative pressure is small, an absolute pressure is large.
- step S 2 when the restart is not required, the routine proceeds to a step S 3 .
- step S 3 it is determined whether or not the brake pedal is slack. In the case where the brake pedal depression amount has decreased by at least a predetermined amount after the engine has automatically stopped, it is determined that the braking has become slack, and startup of the engine 1 is commanded.
- step S 3 when the brake pedal is slack, the routine proceeds to a step S 4 . Also, when there is a request for startup of the engine in the step S 2 , the routine proceeds to the step S 4 . When there is no slackness in braking in the step S 3 , the control operation is terminated.
- step S 4 the control unit 10 starts the induction motor 2 . Due to the rotation of the induction motor 2 , a creep force is transmitted from the torque converter 4 to the drive wheels 5 via the continuously variable transmission 3 . Also, the engine 1 rotates together with induction motor 2 .
- the creep force of the torque converter 4 is effectively proportional to the square of the increase of rotation speed.
- startup of the engine 1 is performed in a step S 5 .
- startup of the engine 1 is performed by fuel injection to the engine, and ignition by a spark plug. Injection may start before ignition so that the ignition proceeds smoothly.
- step S 6 After the startup of the engine 1 is performed, it is determined whether or not engine stop is required in a step S 6 .
- the routine proceeds directly to the step S 6 .
- the battery SOC is equal to or greater than the predetermined SOC.
- the brake booster negative pressure is equal to or greater than the predetermined negative pressure.
- the engine cooling water temperature is equal to or greater than the predetermined water temperature.
- the transmission oil temperature is equal to or greater than the predetermined oil temperature.
- the transmission oil pressure is equal to or greater than the predetermined oil pressure.
- step S 7 the control unit 10 stops the engine 1 via the engine control module 14 , i.e., the idling stop is performed, and the routine is terminated.
- step S 6 If the automatic engine stop has not been required in the step S 6 , the routine terminates without performing the process of the step S 7 .
- the restart of the engine 1 is performed, and a creep force is generated correspondingly.
- the engine restarts in the following two cases. Firstly, the driver intentionally restarts the engine. This is the case where the driver releases the brake pedal, and depresses the accelerator pedal.
- the other case is where the engine restarts due to a command from the control unit 10 despite the fact that the driver has not intended to start the vehicle. This occurs when, for example, the induction motor 2 generates power due to the fact that the battery SOC has fallen below the predetermined SOC.
- the braking force due to the driver during the vehicle stop is much larger than the creep force when the engine restarts. Therefore, even if the engine restarts due to a command from the control unit 10 when unintended by the driver, the drive wheels usually do not rotate and the vehicle does not move off.
- the engine 1 when the brake pedal has been slack in the state where the engine has stopped, the engine 1 restarts. As a result, when the braking force becomes even slightly weaker, the engine 1 restarts immediately as a warning to the driver before the braking force becomes less than the creep force. In this case, the drive wheels 5 do not rotate due to restart of the engine 1 .
- the slackness of the braking is detected as a variation in the brake pedal depression amount. As described above, in the state where the engine has automatically stopped, the brake pedal depression amount is detected by the brake stroke sensor 28 .
- the predetermined amount is, for example, set to be 5 mm.
- the driver becomes aware of the restarting of the engine, and depresses the brake pedal if he does not intend to start the vehicle.
- the brake pedal is again depressed, the conditions for the automatic engine stop are satisfied, so the engine stops.
- the driver's brake depression becomes weaker in the state where the engine has automatically stopped, the driver is alerted by the restart of the engine. Therefore, even when an engine restart unintended by the driver is performed due to a drop in the battery SOC, there is little risk that the vehicle will start to move, because the driver has been frequently alerted to insufficient braking in the state where the engine has automatically stopped. As a result, the vehicle can be prevented from moving unintentionally under a creep force.
- FIG. 3 shows the control routine performed by the control unit 10 according to the second embodiment.
- the engine is restarted due to a weakening of brake force only when the vehicle is on a downward slope.
- the driver can slightly release the brake when the vehicle is on a flat road.
- a step S 8 it is determined in a step S 8 whether or not the downhill gradient of a road surface detected by the gradient sensor 32 is greater than a predetermined gradient.
- the downhill gradient of the road surface is less than the predetermined gradient, engine restart is not performed and the control operation is terminated.
- the control operation is terminated also when there is no slackness of the brake pedal in the step S 3 .
- the predetermined gradient of the downhill is, for example, set to be in the range of 5% to 10%.
- the driver can cause the brake pedal to be slack and rest his foot when the vehicle is at rest on a flat road.
- the driver may have a feeling that is close to the case where idling stop is not performed.
- FIG. 4 shows the relation between the gradient of the road surface and the braking force required to stop the vehicle.
- the solid line shows the braking force required to stop the vehicle when the engine has stopped relative to the gradient of the road surface.
- the dotted line shows the braking force required when a creep force is produced with the engine running relative to the gradient of the road surface.
- the engine 1 starts after the induction motor 2 has rotated within a predetermined time.
- the engine 1 also rotates together, however, until the predetermined time has elapsed, fuel is not supplied to the engine 1 .
- the driver is alerted at a creep force of the induction motor 2 which is less than the creep force due to the engine rotation, so the driver is encouraged to further depress the brake pedal before a large creep force is exerted on the vehicle.
- step S 3 when it is determined in the step S 3 that braking has become slack, and when it is determined in a step S 8 that the downhill gradient is greater than the predetermined gradient, the induction motor 2 is started in a step S 9 .
- step S 10 it is determined whether or not the brake pedal has been further depressed, i.e. whether or not the brake pedal is slack, based on a signal from the brake stroke sensor 28 .
- the brake pedal is not further depressed, it is determined in a step S 11 whether or not the predetermined time, e.g., 1.5 seconds, has elapsed after the induction motor 2 has started.
- the routine returns to the step S 10 .
- the routine proceeds from the step S 10 to the step S 12 .
- the induction motor 2 stops, and the startup of the engine will not be performed.
- the creep force due to the operation of the induction motor 2 is less than the creep force due to the operation of the engine, so even when the braking has become slack, there is very little possibility that the vehicle will move off due to the starting of the induction motor 2 . Therefore, it is possible to alert the driver without actually starting the vehicle. If the driver depresses the brake pedal during this alert and eliminate the slackness of the brake pedal, the induction motor 2 stops. Therefore, an appropriate warning is given to the driver, and the idling stop state of the engine 1 can be maintained.
- the routine proceeds to the step S 5 from the step S 11 and the startup of the engine 1 is performed. Due to the startup of the engine 1 , a more powerful creep force is generated, and the driver is strongly motivated to depress the brake pedal more firmly.
- the creep force due to the induction motor 2 is set to be as small as the extra drive force usually added by the extra engine rotation when the air-conditioner is operated, the vehicle will definitely not move off. Therefore, the driver can effectively be alerted to a drop in the brake force without risking the vehicle to move.
- the induction motor 2 starts during the predetermined time only when the vehicle is stationary on a downhill slope having a gradient greater than the predetermined gradient.
- this control of the induction motor 2 may of course also be performed when the vehicle stops on a flat road.
- the engine 1 is started after the induction motor 2 is driven for the predetermined time after the braking was found to be slack.
- control may be performed to stop the engine when it is detected that the brake pedal is depressed firmly within the predetermined time after the engine 1 starts immediately due to rotation of the induction motor 2 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
Abstract
In the vehicle provided with a device to automatically stop/start an engine, when a brake pedal depression amount decreases in a state where the engine has temporarily stopped, the engine is restarted to alert the driver. The brake pedal depression amount in this case is set to a level such that a braking force exceeds a creep force. This restarting of the engine encourages the driver to step on the brake pedal, and reinforces braking force. As a result, when the engine is restarted after temporarily stopping due to a command from a control unit regardless of the driver's intention, such as when the battery is being charged, there is less release of the brake pedal. In this way, moving-off of the vehicle regardless of the driver's intention can be prevented.
When automatic stop conditions are satisfied, the engine 1 stops, and when start conditions are satisfied, an induction motor 2 for starting the vehicle is started to restart the engine 1. If the brake pedal depression amount decreases even slightly during temporary stop of the engine, when the brake is released, the engine is restarted. Due to the generation of a creep force, the driver is requested to step on the brake pedal again. As a result, when the engine restarts, for example in order to charge the battery, after temporarily stopping due to a command from the controller unrelated to the driver's intention, the vehicle can be prevented from moving off.
Description
- This invention relates to a device for automatically stopping and restarting an engine.
- Tokkai 2000-274273 published by the Japanese Patent Office in 2000 discloses a device for automatically stopping an engine to conserve fuel when a vehicle has temporarily stopped, and automatically restarting when the driver steps on the accelerator pedal, while traveling and in the state where a transmission remains in a drive range.
- In a vehicle equipped with an automatic stop/restart device of this type, the engine is restarted based on the command of a control unit, and it is possible that the engine will be restarted unintentionally by the driver, for example, when the battery voltage drops. If the brake pedal is not depressed when this automatic restart is performed, the vehicle moves although unintended by the driver.
- It is therefore an object of this invention to prevent a vehicle moving when the engine is restarted based on the command of the control unit which is not based on the driver's intention, in a vehicle provided with the automatic stop/restart device which is capable of performing automatic stop/restart in a drive range.
- In order to achieve above object, this invention provides an automatic stop/restart device for an engine of a vehicle, the vehicle comprising a drive wheel, an accelerator pedal, a brake pedal, a battery, and a motive force transmission mechanism which transmits a creep force to the drive wheel according to the rotation of an engine.
- The automatic stop/restart device comprises a motor which starts the engine, a sensor which detects if the transmission mechanism is in a drive range wherein the creep force is transmitted to the drive wheel, a sensor which detects that the brake pedal is depressed, a sensor which detects that the accelerator pedal is depressed, a sensor which detects a state of charge (SOC) of the battery, a sensor which detects a depression amount of the brake pedal, and a microprocessor.
- The microprocessor is programmed to stop the rotation of the engine when the brake pedal is depressed and the vehicle is stationary, determine if the vehicle is in an idling stop state wherein the brake pedal is depressed, the vehicle is stationary with the engine stopped and the transmission mechanism is in the drive range, restart the engine by the motor when the accelerator pedal is depressed or the battery SOC has fallen below a predetermined SOC in the idling stop state, and restart the engine by the motor when the brake pedal depression amount has decreased by a predetermined amount in the idling stop state.
- The details as well as other features and advantages of this invention are set forth in the remainder of the specification and are shown in the accompanying drawings.
- FIG. 1 is a schematic diagram of a vehicle drive system to which this invention is applied.
- FIG. 2 is a flowchart describing an engine stop/restart control routine performed by a control unit according to this invention.
- FIG. 3 is a flowchart describing an engine stop/restart control routine according to a second embodiment of this invention.
- FIG. 4 is a diagram describing a relation between a road surface slope and a braking force required for stopping the vehicle.
- FIG. 5 is a flowchart describing an engine stop/restart control routine according to a third embodiment of this invention.
- Referring to FIG. 1 of the drawings, a vehicle drive system to which this invention is applied comprises an
engine 1, aninduction motor 2 which is connected with theengine 1, a continuously variable transmission (CVT) 3 and atorque converter 4. Theengine 1 may be a gasoline engine or a diesel engine. The continuouslyvariable transmission 3 is connected to theinduction motor 2 via thetorque converter 4. The rotation of an output shaft of the continuouslyvariable transmission 3 is transmitted to drivewheels 5 of the vehicle. Instead of the continuouslyvariable transmission 3, a stepwise automatic transmission may be used. Forward motion and reverse motion of the vehicle is changed over by a forward/reverse change-over mechanism, not shown, interposed between theengine 1 and continuouslyvariable transmission 3. - The
induction motor 2 functions as a motor/generator. Theinduction motor 2 is connected to an output shaft of the engine either directly, or via a gear and a chain. Theinduction motor 2 functions as a motor, starting the rotation of theengine 1, and also supplements the output of theengine 1 if necessary. Further, theinduction motor 2 functions as a generator driven by theengine 1 and charges abattery 11 when a state of charge (SOC) of thebattery 11 decreases. It also generates power by recovering energy when the vehicle is coasting and charges thebattery 11. - The continuously
variable transmission 3 comprises a pair of variable pulleys and a belt looped over these pulleys. By varying the diameters of these variable pulleys, the speed ratio of the rotation pulleys changes. The speed ratio is set to vary according to running conditions. The speed ratio is controlled by adjusting the pulley width, i.e., the groove width of the variable pulleys by oil pressure. - A
control unit 10 comprises a microprocessor provided with a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input/output interface (I/O interface) (not shown). - The
control unit 10 controls theinduction motor 2 via aninverter 12. When theinduction motor 2 functions as a motor, thecontrol unit 10 commands theinverter 12 to convert the direct current from thebattery 11 into alternating current, and supply alternating current to theinduction motor 2. When theinduction motor 2 functions as a generator, thecontrol unit 10 commands theinverter 12 to supply an exciting current to theinduction motor 2, and convert alternating current generated by theinduction motor 2 into direct current to charge thebattery 11. - The
control unit 10 automatically stops theengine 1 by commanding anengine control module 14, when, for example, the vehicle temporarily stops at a crossing. The automatic stopping of the engine on such an occasion is referred to as an idling stop. Thecontrol unit 10 drives theinduction motor 2 to automatically restart theengine 1 when, for example, the accelerator pedal is depressed or the battery SOC drops. - To perform this control, various signals are input from sensors to the
control unit 10. They are awater temperature sensor 21 which detects an engine cooling water temperature, an oil temperature sensor 22 which detects an oil temperature of the continuouslyvariable transmission 3, anoil pressure sensor 23 which detects an oil pressure of the continuouslyvariable transmission 3, arotation sensor 24 which detects a rotation speed of theengine 1, avacuum sensor 25 which detects a negative pressure of a brake booster, a shift position sensor 26 which detects a position of a shift lever, an accelerator switch 27 which detects that an accelerator pedal is depressed, a brake stroke sensor 28 which detects a brake pedal depression amount, a brake switch 29 which detects that a brake pedal is depressed, a drive wheel rotation sensor 30 which detects a rotation speed of thedrive wheels 5, a battery sensor 31 which detects the SOC of thebattery 11, a gradient sensor 32 which detects whether or not the vehicle is traveling on a downhill slope, a bonnet open/close sensor 33 which detects whether a bonnet of the vehicle is open or closed, and a door open/close sensor 34 which detects whether or not doors of the vehicle are all closed. - Referring to the flowchart of FIG. 2, the engine automatic stop and restart control performed by the
control unit 10 will now be described. - In a step S1, it is determined whether or not the
engine 1 has temporarily stopped with the transmission in a drive range, i.e., whether the vehicle is in an idling stop state. The shift position sensor 26 determines whether or not the transmission is in a drive range wherein a creep force is transmitted to thedrive wheels 5. Based on signals from theengine rotation sensor 24, shift position sensor 26, drive wheel rotation sensor 30, bonnet open/close sensor 33 and door open/close sensor 34, it is determined whether or not theengine 1 has stopped while traveling. If the following conditions are all satisfied, it is determined that theengine 1 has temporarily stopped with the transmission in the drive range, and the routine then proceeds to a step S2. - (1) The engine rotation speed is 0.
- (2) The transmission is in the drive range.
- (3) The vehicle speed, i.e., the rotation speed of the drive wheels, is 0.
- (4) The vehicle doors are all closed.
- (5) The vehicle bonnet is closed.
- In the step S2, it is determined whether or not the restart condition holds, i.e., whether or not an engine restart is required. The restart condition holds when at least one of the following conditions is satisfied.
- (1) The accelerator pedal is depressed. In other words, the accelerator switch is ON.
- (2) The brake is completely released. In other words, the brake switch is OFF.
- (3) The battery SOC is less than a predetermined SOC.
- (4) The brake booster negative pressure is less than a predetermined negative pressure.
- (5) The engine cooling water temperature is less than a predetermined water temperature.
- (6) The transmission oil temperature is less than a predetermined oil temperature.
- (7) The transmission oil pressure is less than a predetermined oil pressure.
- For example, the predetermined SOC is set in the range of 30% to 40% of the full charge state, the predetermined negative pressure is set to about 180 mmHg, the predetermined water temperature is set to about 25° C., the predetermined oil temperature is set to about 25° C., and the predetermined oil pressure is set to about 0.7 MPa. In the present specification, a “negative pressure” means a pressure difference relative to the atmospheric pressure. If a negative pressure is small, an absolute pressure is large.
- In the step S2, when the restart is not required, the routine proceeds to a step S3.
- In the step S3, it is determined whether or not the brake pedal is slack. In the case where the brake pedal depression amount has decreased by at least a predetermined amount after the engine has automatically stopped, it is determined that the braking has become slack, and startup of the
engine 1 is commanded. - In the step S3, when the brake pedal is slack, the routine proceeds to a step S4. Also, when there is a request for startup of the engine in the step S2, the routine proceeds to the step S4. When there is no slackness in braking in the step S3, the control operation is terminated.
- In the step S4, the
control unit 10 starts theinduction motor 2. Due to the rotation of theinduction motor 2, a creep force is transmitted from thetorque converter 4 to thedrive wheels 5 via the continuouslyvariable transmission 3. Also, theengine 1 rotates together withinduction motor 2. - The creep force of the
torque converter 4 is effectively proportional to the square of the increase of rotation speed. - Next, startup of the
engine 1 is performed in a step S5. In the case of a gasoline engine, startup of theengine 1 is performed by fuel injection to the engine, and ignition by a spark plug. Injection may start before ignition so that the ignition proceeds smoothly. - After the startup of the
engine 1 is performed, it is determined whether or not engine stop is required in a step S6. When theengine 1 has not automatically stopped with the transmission in the drive range in the step S1, the routine proceeds directly to the step S6. - When the following conditions are all satisfied, it is determined that the automatic engine stop is required.
- (1) The vehicle speed is 0.
- (2) The brake pedal is depressed. In other words, the brake switch is ON.
- (3) The vehicle doors are all closed.
- (4) The vehicle bonnet is closed.
- (5) The battery SOC is equal to or greater than the predetermined SOC.
- (6) The brake booster negative pressure is equal to or greater than the predetermined negative pressure.
- (7) The engine cooling water temperature is equal to or greater than the predetermined water temperature.
- (8) The transmission oil temperature is equal to or greater than the predetermined oil temperature.
- (9) The transmission oil pressure is equal to or greater than the predetermined oil pressure.
- If the automatic engine stop is required, the routine proceeds to a step S7.
- In the step S7, the
control unit 10 stops theengine 1 via theengine control module 14, i.e., the idling stop is performed, and the routine is terminated. - If the automatic engine stop has not been required in the step S6, the routine terminates without performing the process of the step S7.
- Subsequently, the flowchart described above is repeated at a predetermined interval, e.g., 10 msec, as an interrupt processing.
- Next, the results of the control shown in the flowchart of FIG. 2 will be described.
- When the conditions are satisfied for restarting the
engine 1 in a state where the engine has stopped, the restart of theengine 1 is performed, and a creep force is generated correspondingly. The engine restarts in the following two cases. Firstly, the driver intentionally restarts the engine. This is the case where the driver releases the brake pedal, and depresses the accelerator pedal. - The other case is where the engine restarts due to a command from the
control unit 10 despite the fact that the driver has not intended to start the vehicle. This occurs when, for example, theinduction motor 2 generates power due to the fact that the battery SOC has fallen below the predetermined SOC. - According to experimental results, the braking force due to the driver during the vehicle stop is much larger than the creep force when the engine restarts. Therefore, even if the engine restarts due to a command from the
control unit 10 when unintended by the driver, the drive wheels usually do not rotate and the vehicle does not move off. - It may occur, however, that the driver releases the depressing force of the brake pedal unconsciously when the engine has temporarily stopped. If the brake pedal is released to the extent that the braking force becomes less than the creep force and the
engine 1 is also restarted by a command from thecontrol unit 10, the vehicle will gradually move off. - However, according to this invention, when the brake pedal has been slack in the state where the engine has stopped, the
engine 1 restarts. As a result, when the braking force becomes even slightly weaker, theengine 1 restarts immediately as a warning to the driver before the braking force becomes less than the creep force. In this case, thedrive wheels 5 do not rotate due to restart of theengine 1. The slackness of the braking is detected as a variation in the brake pedal depression amount. As described above, in the state where the engine has automatically stopped, the brake pedal depression amount is detected by the brake stroke sensor 28. If the brake pedal depression amount has decreased by at least a predetermined amount from the brake pedal depression amount when the operation of theengine 1 has stopped, it is determined that the brake pedal is slack even if the brake switch 29 is ON. The predetermined amount is, for example, set to be 5 mm. - The driver becomes aware of the restarting of the engine, and depresses the brake pedal if he does not intend to start the vehicle. When the brake pedal is again depressed, the conditions for the automatic engine stop are satisfied, so the engine stops. Thus, if the driver's brake depression becomes weaker in the state where the engine has automatically stopped, the driver is alerted by the restart of the engine. Therefore, even when an engine restart unintended by the driver is performed due to a drop in the battery SOC, there is little risk that the vehicle will start to move, because the driver has been frequently alerted to insufficient braking in the state where the engine has automatically stopped. As a result, the vehicle can be prevented from moving unintentionally under a creep force.
- Next, a second embodiment of this invention will be described referring to FIG. 3 and FIG. 4.
- The flowchart of FIG. 3 shows the control routine performed by the
control unit 10 according to the second embodiment. - In this embodiment, the engine is restarted due to a weakening of brake force only when the vehicle is on a downward slope. According to this embodiment, the driver can slightly release the brake when the vehicle is on a flat road.
- To realize the above concept, when the brake pedal is slack in the step S3, it is determined in a step S8 whether or not the downhill gradient of a road surface detected by the gradient sensor 32 is greater than a predetermined gradient. When the downhill gradient of the road surface is less than the predetermined gradient, engine restart is not performed and the control operation is terminated. The control operation is terminated also when there is no slackness of the brake pedal in the step S3. The predetermined gradient of the downhill is, for example, set to be in the range of 5% to 10%.
- In this way, while the vehicle has stopped on a flat road or a gentle downhill slope, engine restart is not performed even if it is determined that the brake pedal is slack in the step S3.
- Hence, the driver can cause the brake pedal to be slack and rest his foot when the vehicle is at rest on a flat road. In this case, the driver may have a feeling that is close to the case where idling stop is not performed.
- On the other hand, on a slope which has a downhill gradient larger than the predetermined gradient, the routine shifts to the step S4 and the
induction motor 2 starts. Next, theengine 1 restarts in the step S5. - FIG. 4 shows the relation between the gradient of the road surface and the braking force required to stop the vehicle. The solid line shows the braking force required to stop the vehicle when the engine has stopped relative to the gradient of the road surface. The dotted line shows the braking force required when a creep force is produced with the engine running relative to the gradient of the road surface. When a creep force is produced due to engine restart on a downhill slope, a large braking force is required compared to a flat road or uphill slope to prevent the vehicle from moving. According to experiment, the braking force due to brake pedal depression is effectively distributed in the dotted region of FIG. 4. Normally, the braking force when the vehicle is at rest is larger than the creep force. If the actual slope is greater than the slope recognized by the driver, the braking force may approach the minimum braking force required to keep the vehicle stationary. If the braking becomes slack in this case, the vehicle may move off due to the creep force.
- However, when the downhill gradient is greater than the predetermined gradient and the braking becomes slack, the driver is alerted by immediate restart of the engine. As a result, the brake pedal is again firmly depressed, so the moving-off of the vehicle is definitively prevented.
- A third embodiment of this invention will now be described referring to the flowchart of FIG. 5.
- According to this embodiment, in the case where the slackness in the braking has been detected, the
engine 1 starts after theinduction motor 2 has rotated within a predetermined time. When theinduction motor 2 rotates, theengine 1 also rotates together, however, until the predetermined time has elapsed, fuel is not supplied to theengine 1. The driver is alerted at a creep force of theinduction motor 2 which is less than the creep force due to the engine rotation, so the driver is encouraged to further depress the brake pedal before a large creep force is exerted on the vehicle. - Therefore, when it is determined in the step S3 that braking has become slack, and when it is determined in a step S8 that the downhill gradient is greater than the predetermined gradient, the
induction motor 2 is started in a step S9. Subsequently, in the step S10, it is determined whether or not the brake pedal has been further depressed, i.e. whether or not the brake pedal is slack, based on a signal from the brake stroke sensor 28. When the brake pedal is not further depressed, it is determined in a step S11 whether or not the predetermined time, e.g., 1.5 seconds, has elapsed after theinduction motor 2 has started. When the predetermined time has not elapsed, the routine returns to the step S10. - If the driver becomes aware of a weak creep force due to starting of the
induction motor 2 during this predetermined time of, e.g., 1.5 seconds, and depresses the brake pedal further, the routine proceeds from the step S10 to the step S12. In the step S12, theinduction motor 2 stops, and the startup of the engine will not be performed. - The creep force due to the operation of the
induction motor 2 is less than the creep force due to the operation of the engine, so even when the braking has become slack, there is very little possibility that the vehicle will move off due to the starting of theinduction motor 2. Therefore, it is possible to alert the driver without actually starting the vehicle. If the driver depresses the brake pedal during this alert and eliminate the slackness of the brake pedal, theinduction motor 2 stops. Therefore, an appropriate warning is given to the driver, and the idling stop state of theengine 1 can be maintained. - If the brake pedal is not further depressed within the predetermined time, the routine proceeds to the step S5 from the step S11 and the startup of the
engine 1 is performed. Due to the startup of theengine 1, a more powerful creep force is generated, and the driver is strongly motivated to depress the brake pedal more firmly. - If the creep force due to the
induction motor 2 is set to be as small as the extra drive force usually added by the extra engine rotation when the air-conditioner is operated, the vehicle will definitely not move off. Therefore, the driver can effectively be alerted to a drop in the brake force without risking the vehicle to move. - In this embodiment, when the brake is slack, the
induction motor 2 starts during the predetermined time only when the vehicle is stationary on a downhill slope having a gradient greater than the predetermined gradient. However, this control of theinduction motor 2 may of course also be performed when the vehicle stops on a flat road. Also, in this embodiment, theengine 1 is started after theinduction motor 2 is driven for the predetermined time after the braking was found to be slack. However, control may be performed to stop the engine when it is detected that the brake pedal is depressed firmly within the predetermined time after theengine 1 starts immediately due to rotation of theinduction motor 2. - The entire contents of Japanese Patent Applications P2000-37040 (filed Feb. 15, 2000) are incorporated herein by reference.
- Although the invention has been described above by reference to certain embodiments of the invention, the invention is not limited to the embodiments described above. Modifications and variations of the embodiments described above will occur to those skilled in the art, in light of the above teachings. The scope of the invention is defined with reference to the following claims.
Claims (12)
1. An automatic stop/restart device for an engine of a vehicle, the vehicle having a drive wheel, an accelerator pedal, a brake pedal, a battery, and a motive force transmission mechanism which transmits a creep force to the drive wheel according to a rotation of the engine, comprising,
a motor which starts the engine,
a sensor which detects if the transmission mechanism is in a drive range wherein the creep force is transmitted to the drive wheel,
a sensor which detects that the brake pedal is depressed,
a sensor which detects that the accelerator pedal is depressed,
a sensor which detects a state of charge (SOC) of the battery,
a sensor which detects a depression amount of the brake pedal, and
a microprocessor programmed to:
stop the rotation of the engine when the brake pedal is depressed and the vehicle is stationary,
determine if the vehicle is in an idling stop state wherein the brake pedal is depressed, the vehicle is stationary with the engine stopped, and the transmission mechanism is in the drive range,
restart the engine by the motor when the accelerator pedal is depressed or the battery SOC has fallen below a predetermined SOC in the idling stop state, and
restart the engine by the motor when the brake pedal depression amount has decreased by a predetermined amount in the idling stop state.
2. The automatic stop/restart device as defined in , wherein the predetermined amount is set to an amount where the vehicle can be maintained in a stationary state against the creep force.
claim 1
3. The automatic stop/restart device as defined in , wherein the restart device further comprises a sensor which detects a negative pressure of a brake booster with which the brake is provided, and
claim 1
the microprocessor is further programmed to restart the engine by the motor regardless of the operation of the brake pedal when the brake booster negative pressure has fallen below a predetermined negative pressure in the idling stop state.
4. The automatic stop/restart device as defined in , wherein the restart device further comprises a sensor which detects an engine cooling water temperature, and
claim 1
the microprocessor is further programmed to restart the engine by the motor regardless of the operation of the brake pedal when the engine cooling water temperature has fallen below a predetermined water temperature in the idling stop state.
5. The automatic stop/restart device as defined in , wherein the restart device further comprises a sensor which detects an oil temperature of a transmission with which the motive force transmission mechanism is provided, and
claim 1
the microprocessor is further programmed to restart the engine by the motor regardless of the operation of the brake pedal when the oil temperature of the transmission has fallen below a predetermined oil temperature in the idling stop state.
6. The automatic stop/restart device as defined in , wherein the restart device further comprises a sensor which detects an oil pressure of a transmission with which the motive force transmission mechanism is provided, and
claim 1
the microprocessor is further programmed to restart the engine by the motor regardless of the operation of the brake pedal when the oil pressure of the transmission has fallen below a predetermined oil pressure in the idling stop state.
7. The automatic stop/restart device as defined in , wherein the restart device further comprises a sensor which detects a gradient of the vehicle, and
claim 1
the microprocessor is further programmed to prevent the motor from starting when the vehicle is not on a downward gradient greater than a predetermined gradient even if the brake pedal depression amount has decreased by more than the predetermined amount in the idling stop state.
8. The automatic stop/restart device as defined in , wherein the microprocessor is further programmed to prevent the engine from starting for a predetermined time while operating the motor when the brake pedal depression amount has decreased by the predetermined amount.
claim 1
9. The automatic stop/restart device as defined in , wherein the microprocessor is further programmed to stop the running of the engine again after restart of the engine, when the brake pedal has been depressed within a predetermined time from restart of the engine via the motor.
claim 1
10. The automatic stop/restart device as defined in , wherein the motive force transmission mechanism is further designed to transmit a creep force to the drive wheel according to the rotation of the motor.
claim 8
11. The automatic stop/restart device as defined in , wherein the microprocessor is further programmed to stop the operation of the motor when the brake pedal is depressed within the predetermined time.
claim 8
12. An automatic stop/restart device for an engine of a vehicle, the vehicle comprising a drive wheel, an accelerator pedal, a brake pedal, a battery, and a motive force transmission mechanism which transmits a creep force to the drive wheel according to a rotation of the engine, comprising,
means for detecting if the transmission mechanism is in a drive range wherein the creep force is transmitted to the drive wheel,
means for detecting that the brake pedal is depressed,
means for detecting that the accelerator pedal is depressed,
means for detecting a state of charge (SOC) of the battery,
means for detecting a depression amount of the brake pedal,
means for stopping the rotation of the engine when the brake pedal is depressed and the vehicle is stationary,
means for determining if the vehicle is in an idling stop state wherein the brake pedal is depressed, the vehicle is stationary with the engine stopped, and the transmission mechanism is in the drive range,
means for restarting the engine when the accelerator pedal is depressed or the battery SOC has fallen below a predetermined SOC in the idling stop state, and
means for restarting the engine when the brake pedal depression amount has decreased by a predetermined amount in the idling stop state.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000037040A JP3675281B2 (en) | 2000-02-15 | 2000-02-15 | Automatic engine stop / restart device for vehicle |
JP2000-037040 | 2000-12-26 | ||
JP2000-37040 | 2000-12-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010013701A1 true US20010013701A1 (en) | 2001-08-16 |
US6404072B2 US6404072B2 (en) | 2002-06-11 |
Family
ID=18560986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/783,309 Expired - Lifetime US6404072B2 (en) | 2000-02-15 | 2001-02-15 | Automatic stop/restart device of vehicle engine |
Country Status (2)
Country | Link |
---|---|
US (1) | US6404072B2 (en) |
JP (1) | JP3675281B2 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6677685B2 (en) * | 2000-06-30 | 2004-01-13 | Goodrich Control Systems Limited | Controller for a continuously variable transmission |
WO2005065980A1 (en) * | 2003-12-23 | 2005-07-21 | Daimlerchrysler Ag | Method and device for influencing a motor torque |
US20070170775A1 (en) * | 2006-01-26 | 2007-07-26 | Fuji Jukogyo Kabushiki Kaisha | Vehicle control system |
US20070215395A1 (en) * | 2006-03-20 | 2007-09-20 | Makoto Ogata | Control device for a hybrid electric vehicle |
FR2916487A1 (en) * | 2007-05-23 | 2008-11-28 | Peugeot Citroen Automobiles Sa | METHOD FOR CONTROLLING THE AUTOMATIC STOP AND RESTART OF THE ENGINE OF A VEHICLE BASED ON THE SLOPE |
US20090145673A1 (en) * | 2007-12-05 | 2009-06-11 | Ford Global Technologies, Llc | Torque Control for Hybrid Electric Vehicle Speed Control Operation |
US20100138139A1 (en) * | 2007-02-16 | 2010-06-03 | Renault Sas | Method for adjusting thermal comfort in a vehicle upon stopping and starting the engine |
WO2010149928A1 (en) * | 2009-06-25 | 2010-12-29 | Envision Vehicle Engineering Novasio Technology Event | Method and device for starting the engine of a vehicle |
US20110230309A1 (en) * | 2008-12-03 | 2011-09-22 | Bayerische Motoren Werke Aktiengesellschaft | Method for Automatic Shutdown of an Internal Combustion Engine |
US20110238284A1 (en) * | 2008-12-11 | 2011-09-29 | Bayerische Motoren Werke Aktiengesellschaft | Process for Automatically Turning Off and Starting an Internal-Combustion Engine |
EP2407656A1 (en) * | 2009-03-10 | 2012-01-18 | Toyota Jidosha Kabushiki Kaisha | Power supply control device for vehicle |
US20120080001A1 (en) * | 2010-09-30 | 2012-04-05 | Denso Corporation | Engine control apparatus |
US20120143467A1 (en) * | 2010-12-01 | 2012-06-07 | Hyundai Motor Company | Isg restart control device and method of isg vehicle |
GB2489210A (en) * | 2011-03-15 | 2012-09-26 | Jaguar Cars | Vehicle with stop-start engine controller with driver departure detection |
CN103069136A (en) * | 2010-10-21 | 2013-04-24 | 日野自动车株式会社 | Idle stop control device, vehicle, idle stop control method, and program |
US20130245923A1 (en) * | 2012-03-13 | 2013-09-19 | Nissan Motor Co., Ltd. | Vehicle control apparatus |
US20130297193A1 (en) * | 2011-01-20 | 2013-11-07 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle and method for controlling the same |
EP2739845A1 (en) * | 2011-08-01 | 2014-06-11 | Robert Bosch GmbH | Method for switching a vehicle engine on and off |
US20140214310A1 (en) * | 2012-01-23 | 2014-07-31 | Toyota Jidosha Kabushiki Kaisha | Engine restart control apparatus, vehicle and vehicle control method |
US8886443B2 (en) | 2010-12-01 | 2014-11-11 | Hyundai Motor Company | ISG control method for vehicle in congested area |
US8897990B2 (en) | 2010-12-01 | 2014-11-25 | Hyundai Motor Company | ISG system and control method thereof |
CN104238539A (en) * | 2013-06-17 | 2014-12-24 | 广州汽车集团股份有限公司 | Intelligent load box and vehicle start-stop simulating device and method |
GB2516231A (en) * | 2013-07-15 | 2015-01-21 | Jaguar Land Rover Ltd | Vehicle and method of control thereof |
WO2016003461A1 (en) * | 2014-07-02 | 2016-01-07 | Cummins Inc. | Engine start/stop function management |
US9278685B2 (en) * | 2012-12-10 | 2016-03-08 | Ford Global Technologies, Llc | Method and system for adapting operation of a hybrid vehicle transmission torque converter lockup clutch |
US20160297425A1 (en) * | 2015-04-10 | 2016-10-13 | Toyota Jidosha Kabushiki Kaisha | Vehicle |
CN106321318A (en) * | 2016-08-18 | 2017-01-11 | 河南职业技术学院 | Starting control system and control method of automobile engine |
CN108327517A (en) * | 2017-01-17 | 2018-07-27 | 丰田自动车株式会社 | Hybrid vehicle |
CN109649374A (en) * | 2017-10-11 | 2019-04-19 | 现代自动车株式会社 | Method for the EV on/off line of hybrid vehicle to be arranged |
US10363832B2 (en) * | 2015-03-06 | 2019-07-30 | Honda Motor Co., Ltd. | Vehicle parking control device |
US11279357B2 (en) * | 2013-12-25 | 2022-03-22 | Denso Corporation | Vehicle diagnosis system and method |
FR3146860A1 (en) * | 2023-03-23 | 2024-09-27 | Psa Automobiles Sa | METHOD FOR MANAGING THE STARTING OF THE THERMAL ENGINE DURING DOWNHILL |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000257462A (en) * | 1999-03-09 | 2000-09-19 | Honda Motor Co Ltd | Engine controller for hybrid vehicle |
JP4051870B2 (en) * | 2000-09-05 | 2008-02-27 | スズキ株式会社 | Engine automatic stop / start control device |
US7220388B2 (en) * | 2004-02-25 | 2007-05-22 | Lucent Technologies Inc. | Micro-channel chemical concentrator |
JP4792801B2 (en) * | 2005-04-21 | 2011-10-12 | 株式会社アドヴィックス | Vehicle speed control device |
DE102009027337B4 (en) * | 2009-06-30 | 2017-03-23 | Ford Global Technologies, Llc | Method for estimating the prevailing in a motor vehicle brake booster negative pressure and stop-start control device |
US9457811B2 (en) * | 2009-09-17 | 2016-10-04 | Ford Global Technologies, Llc | Brake assisted vehicle engine restart on a road grade |
DE112010005534B4 (en) * | 2010-04-30 | 2018-11-29 | Toyota Jidosha Kabushiki Kaisha | Vehicle control system |
CN102892655B (en) | 2010-05-13 | 2015-08-26 | 丰田自动车株式会社 | Controller of vehicle and vehicle control system |
JP5705706B2 (en) * | 2011-11-15 | 2015-04-22 | 日立建機株式会社 | Engine control device for work vehicle |
WO2013111178A1 (en) * | 2012-01-24 | 2013-08-01 | トヨタ自動車株式会社 | Vehicle control device, vehicle, and vehicle control method |
US8821348B2 (en) | 2012-08-31 | 2014-09-02 | Ford Global Technologies, Llc | Dynamic filtering for stop/start vehicle launch preparation |
US8998774B2 (en) | 2012-08-31 | 2015-04-07 | Ford Global Technologies, Llc | Brake apply and release detection for stop/start vehicle |
CN104769334B (en) | 2012-10-31 | 2016-11-09 | 艾里逊变速箱公司 | The method controlling the hydraulic pressure boosting system of variator |
CN103802832A (en) * | 2012-11-12 | 2014-05-21 | 奥托立夫开发公司 | Hill start assist method |
WO2015138089A1 (en) * | 2014-03-11 | 2015-09-17 | Voyomotive, Llc | A method of signaling an engine stop or start request |
DE102015211118B4 (en) * | 2015-06-17 | 2017-08-03 | Ford Global Technologies, Llc | Method for operating a motor vehicle with a start-stop system and start-stop system and motor vehicle |
US11420609B2 (en) | 2020-12-14 | 2022-08-23 | Allison Transmission, Inc. | System and method for controlling engine stop-start events |
US11958362B1 (en) | 2022-11-21 | 2024-04-16 | Honda Motor Co., Ltd. | All-terrain vehicle assembly with bed outlet and method for powering the same |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS528241A (en) * | 1975-07-09 | 1977-01-21 | Katsutomo Okada | Automatic stop and starting system of automotive engine |
US4286683A (en) * | 1979-08-20 | 1981-09-01 | Zemco, Inc. | Stop/start control system for engine |
US4362133A (en) * | 1981-05-08 | 1982-12-07 | General Motors Corporation | Automatic engine shutdown and restart system |
JPS5815732A (en) * | 1981-07-21 | 1983-01-29 | Nippon Denso Co Ltd | Automatically starting and stopping method of automobile engine |
JPS5818524A (en) * | 1981-07-27 | 1983-02-03 | Toyota Motor Corp | Automatically stopping and restarting device of engine |
JPS5835245A (en) * | 1981-08-25 | 1983-03-01 | Toyota Motor Corp | Automatically stopping and restarting device of engine |
US4475493A (en) * | 1983-02-16 | 1984-10-09 | The Bendix Corporation | Start and shutdown sequencer for a diesel engine |
JPS61196831A (en) * | 1985-02-26 | 1986-09-01 | Diesel Kiki Co Ltd | Automatic starting controller for internal-combustion engine vehicles |
US4873637A (en) * | 1988-02-10 | 1989-10-10 | Eaton Corporation | Control for vehicle start from stop operation |
US5205255A (en) * | 1990-11-26 | 1993-04-27 | Suzuki Motor Corporation | Starting time engine speed control device |
US6177734B1 (en) * | 1998-02-27 | 2001-01-23 | Isad Electronic Systems Gmbh & Co. Kg | Starter/generator for an internal combustion engine, especially an engine of a motor vehicle |
DE19703517C2 (en) * | 1997-01-31 | 2001-05-31 | Daimler Chrysler Ag | Method for displaying the control interventions for parking a motor vehicle or method for carrying out the control interventions for parking a motor vehicle and device for carrying out the method |
EP1346870B1 (en) * | 1998-04-17 | 2005-07-20 | Toyota Jidosha Kabushiki Kaisha | Control device for restarting engine of vehicle |
US6131062A (en) * | 1999-01-21 | 2000-10-10 | Case Corporation | Apparatus and method for preventing an automatic operation sequence in a work vehicle |
JP3649031B2 (en) | 1999-03-19 | 2005-05-18 | 日産自動車株式会社 | Automatic engine stop / restart device for vehicle |
DE10014328A1 (en) * | 1999-03-26 | 2000-09-28 | Denso Corp | Automatic travel regulation device for automobile e.g. for automatic movement in convoy, uses controlled acceleration or braking for maintaining required relative spacing between successive vehicles |
JP3627582B2 (en) * | 1999-07-30 | 2005-03-09 | 日産自動車株式会社 | Vehicle tracking control device |
JP3691296B2 (en) * | 1999-08-02 | 2005-09-07 | 本田技研工業株式会社 | Engine control device |
-
2000
- 2000-02-15 JP JP2000037040A patent/JP3675281B2/en not_active Expired - Lifetime
-
2001
- 2001-02-15 US US09/783,309 patent/US6404072B2/en not_active Expired - Lifetime
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6677685B2 (en) * | 2000-06-30 | 2004-01-13 | Goodrich Control Systems Limited | Controller for a continuously variable transmission |
WO2005065980A1 (en) * | 2003-12-23 | 2005-07-21 | Daimlerchrysler Ag | Method and device for influencing a motor torque |
US20070129873A1 (en) * | 2003-12-23 | 2007-06-07 | Daimlerchrysler Ag | Method and apparatus for influencing a motor torque |
US20070170775A1 (en) * | 2006-01-26 | 2007-07-26 | Fuji Jukogyo Kabushiki Kaisha | Vehicle control system |
US9308899B2 (en) * | 2006-01-26 | 2016-04-12 | Fuji Jukogyo Kabushiki Kaisha | Vehicle control system |
US20070215395A1 (en) * | 2006-03-20 | 2007-09-20 | Makoto Ogata | Control device for a hybrid electric vehicle |
US7823668B2 (en) * | 2006-03-20 | 2010-11-02 | Mitsubishi Fuso Truck And Bus Corporation | Control device for a hybrid electric vehicle |
US20100138139A1 (en) * | 2007-02-16 | 2010-06-03 | Renault Sas | Method for adjusting thermal comfort in a vehicle upon stopping and starting the engine |
FR2916487A1 (en) * | 2007-05-23 | 2008-11-28 | Peugeot Citroen Automobiles Sa | METHOD FOR CONTROLLING THE AUTOMATIC STOP AND RESTART OF THE ENGINE OF A VEHICLE BASED ON THE SLOPE |
EP1995449A3 (en) * | 2007-05-23 | 2010-11-10 | Peugeot Citroën Automobiles SA | Method of controlling the stopping and automatic restarting of a vehicle engine according to the slope |
US8596390B2 (en) * | 2007-12-05 | 2013-12-03 | Ford Global Technologies, Llc | Torque control for hybrid electric vehicle speed control operation |
US20090145673A1 (en) * | 2007-12-05 | 2009-06-11 | Ford Global Technologies, Llc | Torque Control for Hybrid Electric Vehicle Speed Control Operation |
US20110230309A1 (en) * | 2008-12-03 | 2011-09-22 | Bayerische Motoren Werke Aktiengesellschaft | Method for Automatic Shutdown of an Internal Combustion Engine |
US8323152B2 (en) | 2008-12-03 | 2012-12-04 | Bayerische Motoren Werke Aktiengesellschaft | Method for automatic shutdown of an internal combustion engine |
US20110238284A1 (en) * | 2008-12-11 | 2011-09-29 | Bayerische Motoren Werke Aktiengesellschaft | Process for Automatically Turning Off and Starting an Internal-Combustion Engine |
US8326520B2 (en) * | 2008-12-11 | 2012-12-04 | Bayerische Motoren Werke Aktiengesellschaft | Process for automatically turning off and starting an internal-combustion engine |
EP2407656A1 (en) * | 2009-03-10 | 2012-01-18 | Toyota Jidosha Kabushiki Kaisha | Power supply control device for vehicle |
EP2407656A4 (en) * | 2009-03-10 | 2014-03-19 | Toyota Motor Co Ltd | Power supply control device for vehicle |
WO2010149928A1 (en) * | 2009-06-25 | 2010-12-29 | Envision Vehicle Engineering Novasio Technology Event | Method and device for starting the engine of a vehicle |
CN102802987A (en) * | 2009-06-25 | 2012-11-28 | 昂维仲汽车工程诺瓦兹沃技术公司 | Method and device for starting the engine of a vehicle |
US20120080001A1 (en) * | 2010-09-30 | 2012-04-05 | Denso Corporation | Engine control apparatus |
US8919314B2 (en) * | 2010-09-30 | 2014-12-30 | Denso Corporation | Engine control apparatus |
CN103069136A (en) * | 2010-10-21 | 2013-04-24 | 日野自动车株式会社 | Idle stop control device, vehicle, idle stop control method, and program |
US9291118B2 (en) | 2010-10-21 | 2016-03-22 | Hino Motors, Ltd. | Idle reduction control device, vehicle, idle reduction control method, and computer program |
US20120143467A1 (en) * | 2010-12-01 | 2012-06-07 | Hyundai Motor Company | Isg restart control device and method of isg vehicle |
US8897990B2 (en) | 2010-12-01 | 2014-11-25 | Hyundai Motor Company | ISG system and control method thereof |
US8886443B2 (en) | 2010-12-01 | 2014-11-11 | Hyundai Motor Company | ISG control method for vehicle in congested area |
US20130297193A1 (en) * | 2011-01-20 | 2013-11-07 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle and method for controlling the same |
US9399978B2 (en) * | 2011-01-20 | 2016-07-26 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle and method for controlling the same |
GB2489210A (en) * | 2011-03-15 | 2012-09-26 | Jaguar Cars | Vehicle with stop-start engine controller with driver departure detection |
US10280868B2 (en) | 2011-03-15 | 2019-05-07 | Jaguar Land Rover Limited | Vehicle and method of control thereof in start and stop condition |
GB2489210B (en) * | 2011-03-15 | 2013-09-04 | Jaguar Cars | Vehicle and method of control thereof |
EP2739845A1 (en) * | 2011-08-01 | 2014-06-11 | Robert Bosch GmbH | Method for switching a vehicle engine on and off |
US9267447B2 (en) * | 2012-01-23 | 2016-02-23 | Toyota Jidosha Kabushiki Kaisha | Engine restart control apparatus, vehicle and vehicle control method |
US20140214310A1 (en) * | 2012-01-23 | 2014-07-31 | Toyota Jidosha Kabushiki Kaisha | Engine restart control apparatus, vehicle and vehicle control method |
US9365110B2 (en) * | 2012-03-13 | 2016-06-14 | Nissan Motor Co., Ltd. | Vehicle control apparatus for controlling the drive force of the vehicle |
US20130245923A1 (en) * | 2012-03-13 | 2013-09-19 | Nissan Motor Co., Ltd. | Vehicle control apparatus |
US9278685B2 (en) * | 2012-12-10 | 2016-03-08 | Ford Global Technologies, Llc | Method and system for adapting operation of a hybrid vehicle transmission torque converter lockup clutch |
CN104238539A (en) * | 2013-06-17 | 2014-12-24 | 广州汽车集团股份有限公司 | Intelligent load box and vehicle start-stop simulating device and method |
GB2516231A (en) * | 2013-07-15 | 2015-01-21 | Jaguar Land Rover Ltd | Vehicle and method of control thereof |
US11279357B2 (en) * | 2013-12-25 | 2022-03-22 | Denso Corporation | Vehicle diagnosis system and method |
US10184441B2 (en) | 2014-07-02 | 2019-01-22 | Cummins Inc. | Engine start/stop function management |
US10385817B2 (en) | 2014-07-02 | 2019-08-20 | Cummins Inc. | Engine start/stop function management |
WO2016003461A1 (en) * | 2014-07-02 | 2016-01-07 | Cummins Inc. | Engine start/stop function management |
US10363832B2 (en) * | 2015-03-06 | 2019-07-30 | Honda Motor Co., Ltd. | Vehicle parking control device |
US9637113B2 (en) * | 2015-04-10 | 2017-05-02 | Toyota Jidosha Kabushiki Kaisha | Vehicle |
JP2016199155A (en) * | 2015-04-10 | 2016-12-01 | トヨタ自動車株式会社 | vehicle |
US20160297425A1 (en) * | 2015-04-10 | 2016-10-13 | Toyota Jidosha Kabushiki Kaisha | Vehicle |
CN106321318A (en) * | 2016-08-18 | 2017-01-11 | 河南职业技术学院 | Starting control system and control method of automobile engine |
CN108327517A (en) * | 2017-01-17 | 2018-07-27 | 丰田自动车株式会社 | Hybrid vehicle |
US10618400B2 (en) | 2017-01-17 | 2020-04-14 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
CN109649374A (en) * | 2017-10-11 | 2019-04-19 | 现代自动车株式会社 | Method for the EV on/off line of hybrid vehicle to be arranged |
FR3146860A1 (en) * | 2023-03-23 | 2024-09-27 | Psa Automobiles Sa | METHOD FOR MANAGING THE STARTING OF THE THERMAL ENGINE DURING DOWNHILL |
Also Published As
Publication number | Publication date |
---|---|
JP3675281B2 (en) | 2005-07-27 |
JP2001227373A (en) | 2001-08-24 |
US6404072B2 (en) | 2002-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6404072B2 (en) | Automatic stop/restart device of vehicle engine | |
US6466860B2 (en) | Automatic stop/restart device of vehicle engine | |
US6434475B2 (en) | Automatic stop/restart device of vehicle engine | |
JP3743421B2 (en) | Vehicle control device | |
EP1196689B1 (en) | Vehicle idling stop system | |
US6401012B1 (en) | Vehicle control apparatus | |
EP0925988B1 (en) | Vehicle drive device and vehicle drive device control method | |
US6296593B1 (en) | Electromagnetic clutch control device and control method for hybrid drive vehicle | |
JP4051870B2 (en) | Engine automatic stop / start control device | |
JP5011835B2 (en) | Vehicle control device | |
US6942594B2 (en) | Automatic stop/start controller for an engine | |
WO2013084697A1 (en) | Automatic vehicle-engine control device | |
US6388407B1 (en) | Apparatus for controlling a driving motor | |
US10953879B2 (en) | Vehicle control apparatus | |
JP2005155399A (en) | Automobile and method for controlling the same | |
JP3706736B2 (en) | Automatic engine stop / start control device for vehicle | |
JP2004066843A (en) | Control device for hybrid vehicle | |
JP4112351B2 (en) | Automotive engine stop control device | |
CN111183078B (en) | Method and device for controlling internal combustion engine | |
JP3675193B2 (en) | Automatic engine stop / restart control device for vehicle | |
JP4111084B2 (en) | Idle stop control device for vehicle | |
JP3706735B2 (en) | Automatic engine stop / start control device for vehicle | |
JP4041204B2 (en) | Vehicle engine stop control device | |
JP3656497B2 (en) | Automatic engine stop / restart device for vehicle | |
JPH04246252A (en) | Automatic stop/start controller for engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NISSAN MOTOR CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ONOYAMA, TAIICHI;HIRAI, TOSHIHIRO;REEL/FRAME:011762/0942 Effective date: 20010329 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |