US20010012209A1 - Power factor corrected UPS with improved connection of battery to neutral - Google Patents

Power factor corrected UPS with improved connection of battery to neutral Download PDF

Info

Publication number
US20010012209A1
US20010012209A1 US09/812,993 US81299301A US2001012209A1 US 20010012209 A1 US20010012209 A1 US 20010012209A1 US 81299301 A US81299301 A US 81299301A US 2001012209 A1 US2001012209 A1 US 2001012209A1
Authority
US
United States
Prior art keywords
battery
neutral
circuit
ups
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/812,993
Other versions
US6400586B2 (en
Inventor
William Raddi
Joseph Paulakonis
Robert Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Power Quality Corp
Original Assignee
Powerware Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/038,469 priority Critical patent/US6069412A/en
Priority to US09/563,462 priority patent/US6262899B1/en
Application filed by Powerware Corp filed Critical Powerware Corp
Priority to US09/812,993 priority patent/US6400586B2/en
Assigned to POWERWARE SYSTEMS, INC. reassignment POWERWARE SYSTEMS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EXIDE ELECTRONICS CORPORATION
Assigned to POWERWARE CORPORATION reassignment POWERWARE CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: POWERWARE SYSTEMS, INC.
Publication of US20010012209A1 publication Critical patent/US20010012209A1/en
Application granted granted Critical
Publication of US6400586B2 publication Critical patent/US6400586B2/en
Assigned to EATON POWER QUALITY CORPORATION reassignment EATON POWER QUALITY CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: POWERWARE CORPORATION
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over involving non rotating DC/AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M2001/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M2001/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
    • Y02B70/12Power factor correction technologies for power supplies
    • Y02B70/126Active technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T307/00Electrical transmission or interconnection systems
    • Y10T307/50Plural supply circuits or sources
    • Y10T307/615Substitute or emergency source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T307/00Electrical transmission or interconnection systems
    • Y10T307/50Plural supply circuits or sources
    • Y10T307/615Substitute or emergency source
    • Y10T307/625Storage battery or accumulator

Abstract

An uninterrupted power supply (UPS) device with uninterrupted neutral from input to output utilizes the same converter for converting rectified AC power and battery power to positive and negative high voltage (HV) rails. A simple circuit is utilized for connecting the battery to the conversion components of the PFC circuit without adverse affect on the performance of the PFC circuit, and while holding the battery substantially connected to neutral. In a first embodiment, the circuit comprises a simple combination of four diodes and a pair of high pass capacitors arranged so that in both power line and battery supply modes the battery is balanced around neutral. In a second, preferred embodiment, one terminal of the battery is connected directly to neutral.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to uninterrupted power supply (UPS) apparatus and, more particularly, to a power factor corrected UPS maintaining integrity of the connection from power line neutral to an output load terminal. [0002]
  • 2. Description of the Prior Art [0003]
  • UPS systems are now widely used to provide a secure supply of power to critical loads such as computers, so that if the line voltage varies or is interrupted, power to the load is maintained at an adequate level and is not lost. The UPS conventionally comprises a rectifier circuit for providing a DC voltage from the AC power lines; an inverter for inverting the DC voltage back to an AC voltage corresponding to the input, for delivery to the load; and a battery and a connection circuit for connecting battery power to the input of the DC to AC inverter, so that when reliable AC power is lost the delivery of AC power to the load is substantially unaffected. In such an UPS, it is highly desirable to maintain an uninterrupted neutral from the commercial AC utility power to each component circuit and to the load, e.g., in order to eliminate shock hazards. Because of the inherent nature and mode of operation of typical UPS systems, conventional UPS designs did not maintain the integrity of the neutral through the processing circuitry, requiring some type of isolation means such as isolation transformer to re-establish the neutral at the load. U.S. Pat. No. 4,935,861, assigned to the assignee of this invention, provides an UPS wherein the electrical continuity of an electrical conductor is maintained from one terminal of the AC utility through to one of the load terminals, without any isolation means being required. [0004]
  • The problem with maintaining integrity of the neutral is further complicated in a UPS having a power factor correction circuit. The task of connecting the battery to neutral is simple in a power supply unit without a PFC circuit, such as shown in U.S. Pat. No. 4,823,247. But as is well known, there are important reasons for incorporating power factor correction (PFC) into an UPS. And, the incorporation of such a PFC circuit imposes additional difficulties upon the goal of maintaining integrity of a neutral connection from the power line to the load. A design for achieving an uninterrupted power supply system having a PFC circuit is disclosed in U.S. Pat. No. 4,980,812, also assigned to the assignee of this invention. [0005]
  • It is recognized that maintaining the integrity of the neutral in an UPS offers advantages of lower cost, due to lack of need for isolation means, and higher reliability. Because of the design criterion of an undisturbed neutral, an UPS with a PFC circuit has heretofore required three converters. As seen in FIG. 1, such a prior art apparatus contains a converter as part of the power factor correction circuit, the output of which provides DC on a positive high voltage (HV) rail and independent negative HV rail respectively relative to the neutral line. The DC-AC inverter is necessarily a second converter, and, a third converter circuit has been necessary to connect the DC from the battery to the HV rails. Prior art attempts to combine the battery converter with the PFC converter have always resulted in either an isolated UPS, wherein the neutral is not maintained, or some circuit arrangement for connecting the DC output of the battery into an AC voltage which could be utilized by the AC to DC converter portion of the PFC circuit. For safety reasons, it is desirable to effectively connect the battery to the neutral, which leaves an unfulfilled need for an efficient and reliable manner of translating the battery output to the HV rails. The design solution of having a third converter of some different kind, or the option of using an isolation transformer, both have obvious disadvantages. The problem is thus how to provide that the converted output from the PFC circuit, as well as the battery output, can be independently loaded and still balanced around neutral to the plus and minus HV rails without using a separate converter of some sort for each. Stated differently, the problem for which a solution has not heretofore been known is how to connect the battery to the HV rails utilizing the PFC converter, while effectively maintaining a connection from the battery to neutral. [0006]
  • SUMMARY OF THE INVENTION
  • It is an object of this invention to provide a power factor corrected UPS which maintains neutral integrity from the input of the UPS to an output terminal to which the load is connected, the UPS device having a simple and efficient circuit for connecting the battery to the converter of the PFC circuit, whereby whenever the battery provides output power due to deterioration of the utility line voltage, battery voltage is converted through the PFC converter and delivered to the high voltage rails. The UPS achieving this object provides an uninterrupted neutral from its input connection to the AC power line through to an output terminal for connection to the load, balances the battery around neutral, and achieves supply of the battery power independently to the high voltage rails without the need of an independent battery to HV rail converter, or the need for any isolation means. [0007]
  • In a first embodiment, a four diode-two capacitor circuit is used to connect the battery to the PFC converter. During normal operation when the UPS is drawing power from the utility line, the battery is balanced around neutral and is maintained no more than one forward diode drop away from neutral. By using a battery with a voltage less than one-half of the peak of the incoming AC voltage, the PFC circuit is substantially unaffected so that power factors greater than 0.9 can be achieved. During loss of AC input, when the UPS runs on battery, switching elements of the PFC converter are independently turned on and off, enabling conversion of the battery voltage through the PFC converter circuitry to the HV lines. In a second, preferred embodiment, one terminal of the battery is connected directly to neutral, and the other terminal is connected through a normally open switch and a diode to the converting circuit. The switch is closed when low AC power line voltage is sensed. Both embodiments thus enable elimination of a separate converter for the battery while preserving the advantages of prior art power factor corrected UPS devices maintaining integrity of the neutral connection from input to load. [0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified block diagram showing the primary components of a prior art power factor corrected UPS. [0009]
  • FIG. 2 is a simplified circuit diagram of a power factor corrected UPS with neutral integrity, and illustrating the problem of connecting the battery to the HV rails without the aid of a converter dedicated to the battery. [0010]
  • FIG. 3 is a circuit diagram showing a first embodiment of the improved connection circuit of this invention, whereby the battery is connected to the converter of the PFC circuit while maintaining the battery balanced around neutral. [0011]
  • FIGS. 4A and 4B are circuit diagrams illustrating a cycle of operation when the UPS of FIG. 3 is drawing power from the AC input, and the line or energized AC input terminal is positive relative to the neutral terminal. [0012]
  • FIGS. 5A and 5B are circuit diagrams illustrating a cycle of operation when the UPS of FIG. 3 is drawing power from the AC input, and the line or energized AC input terminal is negative relative to the neutral terminal. [0013]
  • FIGS. 6A and 6B illustrate operation of the improved UPS circuit of FIG. 3 during a condition of unacceptable AC input and UPS battery operation. [0014]
  • FIG. 7A is a circuit diagram of a preferred embodiment of the invention, wherein one terminal of the battery is connected directly to neutral. [0015]
  • FIGS. 7B and 7C are circuit diagrams illustrating a cycle of battery-driven operation for the circuit of FIG. 7A. [0016]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to FIG. 2, there is shown a circuit diagram of a typical power factor corrected UPS with an uninterrupted neutral from input to output. The AC input is connected to the UPS at two input terminals, one of which is marked “line” and the other of which is marked “neutral.” The neutral line is connected by an uninterrupted conductor to one of two output terminals, across which AC output power is delivered. The AC input signal is connected across a first capacitor Cl. The line terminal is connected to rectifier diodes D[0017] 1 and D2. D1 is in series with inductor L1, the other side of L1 being connected through switching transistor Q1 to neutral. D2 is connected in series with inductor L2, the other side of L2 being connected through switching transistor Q2 to neutral. The input terminals 31, 32 are driven by switch control means 33 such as illustrated in FIG. 1 of U.S. Pat. No. 4,980,812, incorporated herein by reference. Transistors Q1 and Q2 of FIG. 2 correspond to transistors 86 and 88 seen in FIG. 1 of the referenced patent. Transistors Q1 and Q2 are driven in such a manner as to achieve a power factor close to 1.0, and to maintain needed voltage across C2 and C3. Inductor L1 is also connected through diode D3 and capacitor C2 to neutral; and inductor L2 is connected through diode D4 and capacitor C3 to neutral. When Q1 is turned off after it has been conducting, current is passed through L1 and D3 to charge capacitor C2, maintaining positive voltage on the +HV rail 35. Likewise, when Q2 is turned off after having been turned on during a negative swing of the line voltage, current from inductor L2 passes through diode D4 and charges capacitor C3, maintaining negative voltage on high V rail 36.
  • Still referring to FIG. 2, HV rails [0018] 35 and 36 have connected therebetween transistor switches Q3 and Q4 in series, which are driven at input terminals 38 and 39 by a reference signal in a well known manner, so as to alternately switch on during respective half cycles of positive and negative going voltage. Diode D5 is placed across transistor Q3, and diode D6 is placed across transistor Q4. The switched voltage appearing at the node between transistors Q3 and Q4 is connected to filtering inductor L3, and the AC output which appears across capacitor C4 drives the load 40 connected between line out and neutral.
  • Battery [0019] 30 is shown in FIG. 2, having its negative terminal connected to neutral, but its positive terminal unconnected. The longstanding problem in the art, which this invention meets, is how to connect the battery in such a way as to enable generation of the plus and minus HV rails from such battery at the time of AC input line failure. What is needed is a simple but reliable circuit which can utilize the inductor and switching components of the PFC circuit, i.e., inductors L1 and L2, and transistors Q1 and Q2.
  • Referring now to FIG. 3, there is shown an improved circuit which connects the battery to converter elements of the power factor correction circuit of FIG. 2. In addition to the circuit components illustrated in FIG. 2, there is illustrated a battery [0020] 30 which is tied at its plus terminal to neutral through diode D9, and at its minus terminal to neutral through diode D10. Bypass capacitors C5 and C6 bridge diodes D9 and D10 respectively, and are chosen to have a large capacitance with respect to the switching frequency of switches Q1 and Q2, which is determined by control circuit 33. The positive terminal of the battery is also connected through D7 to a node between D1 and L1, and the negative terminal of the battery is connected through diode D8 to a node between D2 and L2. Instead of connecting Q1 and Q2 to neutral as in FIG. 2, the emitter of Q1 is connected to the negative terminal of the battery, while the collector of Q2 is connected to the positive terminal of the battery. Thus, in terms of extra circuit components, the improved circuit comprises the simple addition of four diodes and two high frequency bypass capacitors. During normal operation the battery is balanced around neutral, and never gets more than a forward biased diode drop away from neutral, e.g., about one-half to three-fourths volts. By utilizing a battery that has a voltage less than one-half the peak of the incoming AC voltage, the power factor correction circuit operates over a sufficiently long portion of each cycle to achieve a power factor greater than 0.9.
  • Referring now to FIGS. 4A and 4B, there are illustrated circuit diagrams showing the equivalent circuit operation under conditions where there is a good input on the AC line, and the input voltage is positive and greater than battery voltage. In FIG. 4A, Q[0021] 1 is illustrated in an on or closed switch position, and in FIG. 4B is illustrated in an off, or open switch position. Note that Q1 is turned on only when the voltage peak is greater than the battery voltage, such that D7 is reversed biased. In this condition, as illustrated in referenced U.S. Pat. No. 4,980,812, capacitor C2 is shunted by Q1 and current builds up in inductor L1. When Q1 opens, as shown in FIG. 4B, L1 acts as a current generator and pumps current into capacitor C2, building up the DC voltage thereacross. FIGS. 5A and 5B show the equivalent circuit diagram when the line terminal is negative and the voltage exceeds the battery voltage. In a similar fashion, when Q2 is closed and thus shunts C3, current builds up through L2. When Q2 is opened, current is pumped from L2 into capacitor C3, thereby generating a negative voltage across C3 with respect to neutral. These respective operations generate the positive and negative HV rails indicated in FIG. 3, in a manner that is substantially unchanged with respect to the embodiment of U.S. Pat. No. 4,980,812. During this typical cycle of operation, forward biased diode D10 connects current through Q1 while it is closed, and forward biased diode D9 is in series with switch Q2 when it is closed, with the result that the improved circuit has no appreciable impact on the operation of the PFC conversion. During the positive line voltage swing, the negative terminal of the battery is tied to neutral through D10; during the negative line voltage swing, the positive terminal of the battery is tied to neutral through D9.
  • Referring now to FIGS. 6A and 6B, there are illustrated the effective circuit diagrams for the UPS circuit of this invention during loss of AC input, i.e., at any time when UPS load is being supplied by the battery. During this time, the improved switching circuit acts to connect the battery to alternately charge C[0022] 2 and C3 so as to maintain the same plus and minus high voltage rails. During such battery back up operation, switches Q1 and Q2 are turned on and off independently, by switch control 33.
  • When the AC source voltage drops to an unacceptable level, switch control [0023] 33 operates to drive Q1 and Q2 through on-off cycles, at a duty cycle as required to provide a regulated output. Note that each of Q1 and Q2 can be switched independently, as may be required for an unbalanced load (not shown unbalanced). Q2 is held off (open) while C2 is charged, and Q1 is held off while C3 is charged.
  • During the period of time that Q[0024] 2 is held off, Q1 is first switched on and then switched off. FIG. 6A shows Q2 off and Q1 switched on. Under these circumstances, current flows from the battery through diode D7, inductor L1, and back through switch Q1 to the negative terminal of the battery, building up current flow in inductor L1. At the same time, remaining current through L2 is discharged through diode D9, diode D10, capacitor C3 and diode D4. When Q1 is turned off (FIG. 6B), the build up of current is passed through diode D3 into capacitor C2, charging it positively with respect to neutral. The current through C2 returns through diode D9. At the same time, current from battery 30 goes around the outer loop of the circuit shown, i.e., through D7, L1, D3, C2, C3, D4, L2 and D8. Following this, the sequence is reversed such that Q1 is turned off, and Q2 is alternatingly turned on and off, resulting in the reverse operation which builds up the negative voltage across capacitor C3. During the battery supply of the output voltage, if capacitor C2 and C3 are loaded in a balanced manner, and if C5 and C6 have large capacitance for the switching frequency, then the voltage across each of capacitors C5 and C6 is held substantially constant and has a value of approximately one-half the voltage of the battery. To the extent that C2 and C3 loading becomes unbalanced, the ratio of the voltages across C5 and C6 likewise is unbalanced.
  • Referring now to FIG. 7A, there is shown a preferred circuit. In this embodiment, battery [0025] 30 has one terminal (illustrated as the negative terminal) connected to neutral. The other terminal is connected through switch S1 to D7. Switch S1 is normally open, but is closed by control 33 whenever low line voltage is detected, in a conventional manner. Compared to FIG. 3, diode D10 and capacitor C6 are eliminated, and switch S1 is added. FIGS. 7B and 7C illustrate the circuit action when the load is battery-driven. In FIG. 7B, each of switches Q1 and Q2 are closed, such that current flows from battery 30 to each inductor L1, L2. In FIG. 7C, Q1 and Q2 are each switched open, so that current flows from L1 to C2, and from L2 to C3. In this embodiment as well, switch control 30 can drive Q1 and Q2 independently when the UPS is in the battery-driving mode due to low source AC voltage.
  • Both the preferred embodiment of FIG. 7A and the embodiment of FIG. 3 illustrate a DC to AC converter (utilizing transistors Q[0026] 3, Q4), for providing uninterrupted AC output. However, the invention also applies to a supply for providing a DC output, such that no DC to AC inverter is utilized. Thus, in general, the invention comprises an output circuit between the HV rails and the output terminals.
  • There is thus illustrated a very simple, inexpensive and reliable circuit which achieves the object of connecting the battery to an UPS having an uninterrupted neutral from input to output, the battery connection being made in such a way as to utilize the PFC circuit for conversion of the battery voltage during times when the battery is supplying output load. At the same time, the circuit ties one terminal of the battery to neutral, or holds the battery balanced around neutral, and does not adversely affect performance of the PFC circuit. The invention thus achieves the object of allowing the battery to be connected to neutral at all times, while utilizing the PFC circuit to convert the battery output to the HV lines at the time of AC power source failure. [0027]

Claims (13)

What is claimed:
1. An uninterrupted power supply (UPS), having first and second input terminals for connection to a power line source, one of said terminals being connected to power line neutral, first and second output terminals, one of said output terminals being connected to said neutral through an uninterrupted conductor, and a battery, comprising
a power factor correction (PFC) circuit having an AC to DC converter circuit, an input connected across said input terminals, and having a positive output terminal providing a positive DC high voltage with respect to said neutral and a negative output terminal providing a negative high DC voltage with respect to neutral,
a high positive voltage rail connected to said positive output terminal and a negative high voltage rail connected to said negative output terminal,
an output circuit having an input connected across said positive and negative rails, and providing an output to said output terminals, and
a battery connection circuit connecting said battery to said PFC converter circuit whereby when the power line voltage fails and said UPS is in battery mode operation, battery voltage is converted through said PFC converter circuit to supply said positive and negative high voltage rails.
2. The UPS of
claim 1
, wherein said PFC converter circuit comprises a first inductance and a first capacitor connected between said positive high voltage rail and neutral, and a second inductor and a second capacitor which is connected between said negative high voltage rail and neutral, and wherein said battery connection circuit operatively connects said battery to drive each of said first and second inductors during power line failure.
3. The UPS as described in
claim 1
, wherein said PFC converter circuit comprises first and second switching elements, and further comprises switching means for switching said switching elements under normal operation and battery mode operation.
4. The UPS as described in
claim 1
, wherein said battery has first and second output terminals and said battery connection circuit connects one of said terminals directly to said neutral.
5. The UPS as described in
claim 1
, wherein said battery has first and second output terminals and wherein said battery connection circuit comprises a respective diode connected between neutral and at least one of said battery terminals.
6. The UPS as described in
claim 5
, wherein said battery connection circuit balances said battery around neutral.
7. The UPS as described in
claim 4
, further comprising a switch connected to the other one of said battery terminals, said switch being normally open, and switching control means for closing said switch when the voltage on said power line source falls to a predetermined unacceptable level.
8. The UPS as described in
claim 1
, wherein said output circuit is a DC to AC converter.
9. An uninterrupted power supply (UPS), having first and second input terminals for connection to a power line source, the first of said input terminals being connected to power line neutral, first and second output terminals, an uninterrupted neutral connection from said first input terminal to said first output terminal, for connecting neutral directly to said first output terminal, comprising:
a rectifier means connected to said input terminals for providing positive and negative rectified voltage outputs,
a power factor correction (PFC) circuit connected to the outputs of said rectifier means, said PFC circuit having an AC to DC converter means for providing positive and negative DC voltage outputs relative to said neutral connection, a battery having first and second output terminals, one of said terminals being connected directly to said neutral connection, and a connection circuit for connecting the other of said battery terminals to said PFC converter circuit, and
an output circuit having an input connected across said positive and negative DC outputs and providing an output across said output terminals.
10. The UPS as described in
claim 9
, wherein said output circuit is a DC to AC converter.
11. The UPS as described in
claim 9
, wherein said battery connection circuit comprises a switch for controllably connecting said battery to said PFC converter circuit.
12. The UPS as described in
claim 9
, comprising control means for controlling said PFC converter circuit when the power line source is below a predetermined voltage level.
13. An uninterrupted power supply (UPS) having first and second input terminals for receiving AC power from a power source, one of said input terminals being connected to the neutral of said power source, said UPS providing AC output power to a pair of output terminals, said UPS being operable in an AC mode when said power source delivers a predetermined satisfactorily high voltage and operable in a battery mode when said power source does not deliver said satisfactorily high voltage, comprising:
only one converter circuit for providing a DC output;
a power factor correction circuit for delivering a power factor corrected power from said input terminals;
a battery for providing energy to said one converter circuit when in said battery mode;
a DC to AC converter for converting the output of said one converter circuit to provide AC power to said output terminals; and
an uninterrupted connection for connecting (a) said one input terminal connected to neutral, (b) one of said battery terminals and (c) one of said AC output terminals, whereby power neutral is connected directly to said battery and to a load connected across said AC output terminals.
US09/812,993 1993-03-29 2001-03-20 Power factor corrected UPS with improved connection of battery to neutral Expired - Lifetime US6400586B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/038,469 US6069412A (en) 1993-03-29 1993-03-29 Power factor corrected UPS with improved connection of battery to neutral
US09/563,462 US6262899B1 (en) 1993-03-29 2000-05-02 Power factor corrected UPS maintaining neutral integrity and methods of operation thereof
US09/812,993 US6400586B2 (en) 1993-03-29 2001-03-20 Power factor corrected UPS with improved connection of battery to neutral

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/812,993 US6400586B2 (en) 1993-03-29 2001-03-20 Power factor corrected UPS with improved connection of battery to neutral
US10/151,449 US6661678B2 (en) 1993-03-29 2002-05-20 Power factor corrected UPS with improved connection of battery to neutral and methods of operation thereof
US10/378,187 US6944035B2 (en) 1993-03-29 2003-03-03 Power factor corrected UPS with improved connection of battery to neutral
US10/809,124 US7082040B2 (en) 1993-03-29 2004-03-25 Power factor corrected UPS with improved connection of battery to neutral

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/563,462 Continuation US6262899B1 (en) 1993-03-29 2000-05-02 Power factor corrected UPS maintaining neutral integrity and methods of operation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/151,449 Continuation US6661678B2 (en) 1993-03-29 2002-05-20 Power factor corrected UPS with improved connection of battery to neutral and methods of operation thereof

Publications (2)

Publication Number Publication Date
US20010012209A1 true US20010012209A1 (en) 2001-08-09
US6400586B2 US6400586B2 (en) 2002-06-04

Family

ID=21900150

Family Applications (6)

Application Number Title Priority Date Filing Date
US08/038,469 Expired - Lifetime US6069412A (en) 1993-03-29 1993-03-29 Power factor corrected UPS with improved connection of battery to neutral
US09/563,462 Expired - Fee Related US6262899B1 (en) 1993-03-29 2000-05-02 Power factor corrected UPS maintaining neutral integrity and methods of operation thereof
US09/812,993 Expired - Lifetime US6400586B2 (en) 1993-03-29 2001-03-20 Power factor corrected UPS with improved connection of battery to neutral
US10/151,449 Expired - Fee Related US6661678B2 (en) 1993-03-29 2002-05-20 Power factor corrected UPS with improved connection of battery to neutral and methods of operation thereof
US10/378,187 Expired - Fee Related US6944035B2 (en) 1993-03-29 2003-03-03 Power factor corrected UPS with improved connection of battery to neutral
US10/809,124 Expired - Fee Related US7082040B2 (en) 1993-03-29 2004-03-25 Power factor corrected UPS with improved connection of battery to neutral

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/038,469 Expired - Lifetime US6069412A (en) 1993-03-29 1993-03-29 Power factor corrected UPS with improved connection of battery to neutral
US09/563,462 Expired - Fee Related US6262899B1 (en) 1993-03-29 2000-05-02 Power factor corrected UPS maintaining neutral integrity and methods of operation thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/151,449 Expired - Fee Related US6661678B2 (en) 1993-03-29 2002-05-20 Power factor corrected UPS with improved connection of battery to neutral and methods of operation thereof
US10/378,187 Expired - Fee Related US6944035B2 (en) 1993-03-29 2003-03-03 Power factor corrected UPS with improved connection of battery to neutral
US10/809,124 Expired - Fee Related US7082040B2 (en) 1993-03-29 2004-03-25 Power factor corrected UPS with improved connection of battery to neutral

Country Status (2)

Country Link
US (6) US6069412A (en)
WO (1) WO1994023482A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112229A1 (en) * 2001-12-14 2003-06-19 Pong Man Hay High efficiency driver for color light emitting diodes (LED)
US20070081419A1 (en) * 2005-10-07 2007-04-12 Duen Gang Mou Portable dc motor driven laboratory assembly for uninterrupted stirred processes
US20100002476A1 (en) * 2008-07-03 2010-01-07 RadioShack Corporation, A Corporation of Delaware Apparatus and method for shaping an input signal to effect a desired output signal
CN102882256A (en) * 2012-10-12 2013-01-16 广东易事特电源股份有限公司 Uninterrupted power supply (UPS) with double-busbar charging circuit
CN106160184A (en) * 2015-04-09 2016-11-23 艾默生网络能源有限公司 A kind of UPS topological circuit

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069412A (en) * 1993-03-29 2000-05-30 Powerware Corporation Power factor corrected UPS with improved connection of battery to neutral
US5631814A (en) * 1995-06-16 1997-05-20 Abraham Lavsky Uninterruptible power supply based on non-invasive connection of backup circuit to switch power supply
US6115276A (en) * 1998-11-24 2000-09-05 Lucent Technologies Inc. AC bus system with battery charger/inverter backup
US6819576B2 (en) 1999-08-13 2004-11-16 Powerware Corporation Power conversion apparatus and methods using balancer circuits
US6483730B2 (en) 1999-08-13 2002-11-19 Powerware Corporation Power converters with AC and DC operating modes and methods of operation thereof
DE60125336T2 (en) * 2000-02-29 2007-08-02 Eaton Power Quality Corp., Cleveland Current converters with ac and dc mode and method of operation thereof
US6297972B1 (en) * 2000-05-10 2001-10-02 Qing Chen Backup power stage associated with a dual input power supply and method of operating the same
WO2002021663A1 (en) * 2000-09-01 2002-03-14 Powerware Corporation Inverter having center switch and uninterruptible power supply implementing same
US6933626B2 (en) * 2001-04-24 2005-08-23 Alphatec Ltd. Ferroelectric transformer-free uninterruptible power supply (UPS) systems and methods for communications signal distribution systems
US6853097B2 (en) * 2001-10-03 2005-02-08 Mitsubishi Denki Kabushiki Kaisha Uniterruptible power supply and its starting method
CN1153328C (en) * 2002-01-28 2004-06-09 艾默生网络能源有限公司 UPS capable of improving system parallel current equalizing
CN1153331C (en) * 2002-02-01 2004-06-09 艾默生网络能源有限公司 Power factor corrector circuit for UPS
DE20211741U1 (en) * 2002-07-30 2002-10-17 Digi Power Mfg Inc Active replacement power supply to compensate for the power factor and to adjust the power output
CA2499617A1 (en) * 2002-09-20 2004-04-08 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Electrical circuit for voltage transformation and use of the electrical circuit
US7333316B1 (en) 2003-04-23 2008-02-19 Littelfuse, Inc. AC power line protection using thyristors
EP1639691A2 (en) * 2003-06-17 2006-03-29 RWE Piller Gmbh Rectifier/power converter for an ac power source having a connection for a back-up power source
US7259477B2 (en) * 2003-08-15 2007-08-21 American Power Conversion Corporation Uninterruptible power supply
US7446433B2 (en) 2004-01-23 2008-11-04 American Power Conversion Corporation Methods and apparatus for providing uninterruptible power
US7612472B2 (en) 2004-01-23 2009-11-03 American Power Conversion Corporation Method and apparatus for monitoring energy storage devices
US7379305B2 (en) 2004-01-23 2008-05-27 American Power Conversion Corporation Modular UPS
US7129822B2 (en) * 2004-03-02 2006-10-31 Powerware Corporation Devices for detecting the presence of a source of power
DE102004019589A1 (en) * 2004-04-22 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit for converting a DC voltage into an AC voltage
US7564148B2 (en) * 2005-02-04 2009-07-21 Libert Corporation UPS having a dual-use boost converter
US7916013B2 (en) * 2005-03-21 2011-03-29 Greatbatch Ltd. RFID detection and identification system for implantable medical devices
TWI301348B (en) * 2005-03-24 2008-09-21 Delta Electronics Inc
ITMO20050082A1 (en) * 2005-04-08 2006-10-09 Meta System Spa continuity 'with additional gear.
US7402921B2 (en) * 2005-04-21 2008-07-22 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
TWI297978B (en) * 2005-04-29 2008-06-11 Ablerex Electronics Co Ltd Harmonic suppressible ac/dc converter
US7508686B2 (en) * 2005-06-29 2009-03-24 Sigmatel, Inc. System and method for configuring direct current converter
US7352083B2 (en) * 2005-09-16 2008-04-01 American Power Conversion Corporation Apparatus for and method of UPS operation
DE102006016284A1 (en) * 2005-12-23 2007-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Direct current-alternating current voltage converting arrangement, comprises inductor in form of twin inductor, which has two windings, which are arranged tightly coupled to one another
US8672732B2 (en) 2006-01-19 2014-03-18 Schneider Electric It Corporation Cooling system and method
US7508094B2 (en) * 2006-03-17 2009-03-24 Eaton Corporation UPS systems having multiple operation modes and methods of operating same
US7586769B2 (en) * 2006-05-12 2009-09-08 Astec International Limited Power converters having balanced power rail currents
KR101003657B1 (en) * 2006-08-09 2010-12-23 미쓰비시덴키 가부시키가이샤 Power converter and controller using such power converter for electric rolling stock
US8327656B2 (en) 2006-08-15 2012-12-11 American Power Conversion Corporation Method and apparatus for cooling
US8322155B2 (en) 2006-08-15 2012-12-04 American Power Conversion Corporation Method and apparatus for cooling
US9568206B2 (en) 2006-08-15 2017-02-14 Schneider Electric It Corporation Method and apparatus for cooling
US7705489B2 (en) * 2006-09-08 2010-04-27 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US7652393B2 (en) * 2006-09-14 2010-01-26 American Power Conversion Corporation Apparatus and method for employing a DC source with an uninterruptible power supply
US7681404B2 (en) 2006-12-18 2010-03-23 American Power Conversion Corporation Modular ice storage for uninterruptible chilled water
US8425287B2 (en) 2007-01-23 2013-04-23 Schneider Electric It Corporation In-row air containment and cooling system and method
US7688048B2 (en) 2007-02-21 2010-03-30 American Power Conversion Corporation 3-phase high power UPS
DE102007029767B3 (en) * 2007-06-22 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Inverter
CN101090203A (en) * 2007-07-06 2007-12-19 艾默生网络能源有限公司 On-line uninterrupted UPS system
CN101409453B (en) 2007-10-12 2011-02-09 深圳科士达科技股份有限公司 Uninterruption power supply
US7615891B2 (en) * 2007-12-19 2009-11-10 American Power Conversion Corporation Systems for and methods of controlling operation of a UPS
US7881079B2 (en) * 2008-03-24 2011-02-01 American Power Conversion Corporation UPS frequency converter and line conditioner
US7759900B2 (en) * 2008-04-02 2010-07-20 American Power Conversion Corporation Non-isolated charger with bi-polar inputs
AU2009240779A1 (en) * 2008-04-23 2009-10-29 Judd Karandikar Pty Ltd Power factor correction apparatus
DE102008002525A1 (en) * 2008-06-19 2009-12-24 Robert Bosch Gmbh DC converter
US9519517B2 (en) 2009-02-13 2016-12-13 Schneider Electtic It Corporation Data center control
US8228046B2 (en) * 2009-06-16 2012-07-24 American Power Conversion Corporation Apparatus and method for operating an uninterruptible power supply
US8385091B2 (en) 2009-08-20 2013-02-26 Electric IT Corporation 3-phase high-power UPS
US8503201B2 (en) 2009-12-03 2013-08-06 Schneider Electric It Corporation Transient clamping circuitry for voltage converter
CN101789690B (en) * 2010-01-26 2011-12-14 山特电子(深圳)有限公司 Ups with anterior boost device
US8575779B2 (en) 2010-02-18 2013-11-05 Alpha Technologies Inc. Ferroresonant transformer for use in uninterruptible power supplies
US8492928B2 (en) * 2010-03-18 2013-07-23 American Power Conversion Corporation AC-to-DC conversion
CN101814762B (en) * 2010-04-02 2012-10-10 艾默生网络能源有限公司 UPS power supply
CN102214944B (en) * 2010-04-06 2015-09-02 力博特公司 Gain control method for a system power-ups
US8552589B2 (en) 2010-05-14 2013-10-08 Schneider Electric It Corporation Digital control method for operating the UPS systems in parallel
US8698354B2 (en) 2010-11-05 2014-04-15 Schneider Electric It Corporation System and method for bidirectional DC-AC power conversion
US8853887B2 (en) 2010-11-12 2014-10-07 Schneider Electric It Corporation Static bypass switch with built in transfer switch capabilities
US8513928B2 (en) 2011-01-05 2013-08-20 Eaton Corporation Bidirectional buck-boost converter
US8878389B2 (en) 2011-01-11 2014-11-04 Schneider Electric It Corporation Method and apparatus for providing uninterruptible power
US8803361B2 (en) 2011-01-19 2014-08-12 Schneider Electric It Corporation Apparatus and method for providing uninterruptible power
CA2825483A1 (en) 2011-01-23 2012-11-01 Alpha Technologies Inc. Switching systems and methods for use in uninterruptible power supplies
US10090777B2 (en) 2011-05-08 2018-10-02 Koolbridge Solar, Inc. Inverter with independent current and voltage controlled outputs
US8937822B2 (en) * 2011-05-08 2015-01-20 Paul Wilkinson Dent Solar energy conversion and utilization system
US9024476B2 (en) * 2011-07-28 2015-05-05 Schneider Electric It Corporation Single-battery power topologies for online UPS systems
US8946931B2 (en) 2011-07-28 2015-02-03 Schneider Electric It Corporation Dual boost converter for UPS system
US8884464B2 (en) 2011-08-29 2014-11-11 Schneider Electric It Corporation Twin boost converter with integrated charger for UPS system
AU2011383606A1 (en) 2011-12-22 2014-07-17 Schneider Electric It Corporation System and method for prediction of temperature values in an electronics system
US9952103B2 (en) 2011-12-22 2018-04-24 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center
JP5403090B2 (en) * 2012-03-09 2014-01-29 富士電機株式会社 Power converter
CN102611295B (en) * 2012-03-13 2014-06-04 华为技术有限公司 Power factor corrector
JP5370519B2 (en) 2012-03-15 2013-12-18 富士電機株式会社 Power converter
US9234916B2 (en) 2012-05-11 2016-01-12 Alpha Technologies Inc. Status monitoring cables for generators
US10459464B2 (en) 2012-09-03 2019-10-29 Schneider Electric It Corporation Method and apparatus for controlling distribution of power
CN103904917A (en) * 2012-12-26 2014-07-02 中兴通讯股份有限公司 AC rectification voltage-boosting circuit and rectification voltage-boosting device
DE102013104944A1 (en) 2013-05-14 2014-11-20 Endress + Hauser Gmbh + Co. Kg Synchronous rectifier, use of such a synchronous rectifier in a switching power supply, and switching power supply
US9537332B2 (en) 2013-05-30 2017-01-03 Canara, Inc. Apparatus, system and method for charge balancing of individual batteries in a string of batteries using battery voltage and temperature, and detecting and preventing thermal runaway
EP3063854A4 (en) 2013-10-30 2017-05-17 Schneider Electric IT Corporation Power supply control
KR101342863B1 (en) 2013-11-14 2014-01-02 (주)현대에스더블유디산업 Using a free voltage solar modules power supplies
CN103762630B (en) * 2014-01-03 2016-02-17 深圳科士达科技股份有限公司 One kind of the rectifier circuit and system ups
US20150280473A1 (en) * 2014-03-26 2015-10-01 Intersil Americas LLC Battery charge system with transition control that protects adapter components when transitioning from battery mode to adapter mode
US20170054383A1 (en) * 2014-05-01 2017-02-23 Schneider Electric It Corporation Power supply control
EP3152814A1 (en) 2014-06-03 2017-04-12 ABB Schweiz AG Uninterruptible power supply system with precharge converter
US10033302B2 (en) 2014-08-29 2018-07-24 Koolbridge Solar, Inc. Rotary solar converter
CN105576961B (en) * 2014-10-10 2018-10-02 维谛技术有限公司 A kind of full-wave rectifying circuit and voltage changer
CN105576813B (en) * 2014-10-17 2019-06-04 维谛技术有限公司 A kind of the battery group mounting circuit and uninterruptible power supply of uninterruptible power supply
US10148093B2 (en) 2015-06-16 2018-12-04 Koolbridge Solar, Inc. Inter coupling of microinverters
CA2997953A1 (en) 2015-09-13 2017-03-16 Alpha Technologies Inc. Power control systems and methods
US10120034B2 (en) 2015-10-07 2018-11-06 Canara, Inc. Battery string monitoring system
US10381867B1 (en) 2015-10-16 2019-08-13 Alpha Technologeis Services, Inc. Ferroresonant transformer systems and methods with selectable input and output voltages for use in uninterruptible power supplies
US10250162B2 (en) 2017-08-14 2019-04-02 Koolbridge Solar, Inc. DC bias prevention in transformerless inverters
US10122219B1 (en) * 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
CN109067205A (en) * 2018-08-02 2018-12-21 佛山市众盈电子有限公司 A kind of PFC inductance and the integrated topological structure of battery booster transformer

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729081A (en) * 1986-12-01 1988-03-01 Nilssen Ole K Power-factor-corrected AC/DC converter
CN1012244B (en) 1987-02-20 1991-03-27 株式会社东芝 Uninterruptible power source equipment
JPH0813171B2 (en) * 1987-06-26 1996-02-07 株式会社ユタカ電機製作所 Stabilized power supply device
US4763013A (en) * 1987-09-21 1988-08-09 American Telephone And Telegraph Company, At&T Bell Laboratories Backup protection switch to prevent reverse power flow in a UPS
US4831508A (en) 1987-10-20 1989-05-16 Computer Products Inc. Power supply system having improved input power factor
DE68922049D1 (en) * 1988-09-06 1995-05-11 Toshiba Kawasaki Kk Pulse-width modulated power supply rejection capability of Modulierungsfrequenzsignalkomponenten of ground potentials.
US4935861A (en) * 1989-06-13 1990-06-19 Exide Electronics Uninterrupted power supply having no low frequency power magnetics
US4980812A (en) * 1989-11-09 1990-12-25 Exide Electronics Uninterrupted power supply system having improved power factor correction circuit
US5057698A (en) 1989-11-13 1991-10-15 Exide Electronics Shunt circuit for reducing audible noise at low loading conditions of a power supply employing a high frequency resonant converter
US5241217A (en) 1991-11-07 1993-08-31 Premier Power, Inc. UPS with input commutation between AC and DC sources of power
WO1993026078A1 (en) 1992-06-10 1993-12-23 Digital Equipment Corporation High power factor switched dc power supply
US5289046A (en) 1992-06-10 1994-02-22 Digital Equipment Corporation Power converter with controller for switching between primary and battery power sources
US5291383A (en) 1992-09-02 1994-03-01 Exide Electronics Corporation Simplified UPS system
US5465011A (en) 1992-12-14 1995-11-07 Square D Company Uninterruptible power supply with improved output regulation
US6069412A (en) * 1993-03-29 2000-05-30 Powerware Corporation Power factor corrected UPS with improved connection of battery to neutral
US5458991A (en) * 1993-05-19 1995-10-17 Sl Waber, Inc. UPS with auto self test
JPH07245955A (en) * 1994-03-02 1995-09-19 Yutaka Denki Seisakusho:Kk Regulated power supply with improved power factor and uninterruptible power supply
US5450315A (en) * 1994-09-26 1995-09-12 Square D Company Apparatus using a neural network for power factor calculation
US6169669B1 (en) 1999-07-15 2001-01-02 Texas Instruments Incorporated Digital signal processor controlled uninterruptable power supply

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112229A1 (en) * 2001-12-14 2003-06-19 Pong Man Hay High efficiency driver for color light emitting diodes (LED)
US7178971B2 (en) * 2001-12-14 2007-02-20 The University Of Hong Kong High efficiency driver for color light emitting diodes (LED)
US20070040514A1 (en) * 2001-12-14 2007-02-22 The University Of Hong Kong High efficiency driver for color light emitting diodes (LED)
US7567040B2 (en) 2001-12-14 2009-07-28 The University Of Hong Kong High efficiency driver for color light emitting diodes (LED)
US20070081419A1 (en) * 2005-10-07 2007-04-12 Duen Gang Mou Portable dc motor driven laboratory assembly for uninterrupted stirred processes
US20100002476A1 (en) * 2008-07-03 2010-01-07 RadioShack Corporation, A Corporation of Delaware Apparatus and method for shaping an input signal to effect a desired output signal
US8089262B2 (en) * 2008-07-03 2012-01-03 Radioshack Corporation Compact and lightweight power converter for high power comsumption loads
CN102882256A (en) * 2012-10-12 2013-01-16 广东易事特电源股份有限公司 Uninterrupted power supply (UPS) with double-busbar charging circuit
CN106160184A (en) * 2015-04-09 2016-11-23 艾默生网络能源有限公司 A kind of UPS topological circuit

Also Published As

Publication number Publication date
US20020130648A1 (en) 2002-09-19
US20040213022A1 (en) 2004-10-28
US6069412A (en) 2000-05-30
US6661678B2 (en) 2003-12-09
US6400586B2 (en) 2002-06-04
US20030137197A1 (en) 2003-07-24
US6262899B1 (en) 2001-07-17
US6944035B2 (en) 2005-09-13
WO1994023482A1 (en) 1994-10-13
US7082040B2 (en) 2006-07-25

Similar Documents

Publication Publication Date Title
JP3644615B2 (en) Switching power supply
CN1255917C (en) Automatic battery equalizing circuit
US5045989A (en) PWM power supply eliminating modulation-frequency components from ground potentials
US7602626B2 (en) Power conversion apparatus
EP1626494B1 (en) Method of converting a DC voltage of a DC source, in particular of a photovoltaic DC source, in an AC voltage
US5956245A (en) Circuit and method for controlling a synchronous rectifier converter
US5334877A (en) Standby power supply with load-current harmonics neutralizer
US5488269A (en) Multi-resonant boost high power factor circuit
JP2680494B2 (en) Single-phase AC power converter
US6833635B2 (en) Dual input DC-to-DC power converter
US6002603A (en) Balanced boost/buck DC to DC converter
US6414403B2 (en) Power unit
CA2332645C (en) Systems and methods for producing standby uninterruptible power for ac loads using rectified ac and battery
US5315497A (en) Symmetrical universal AC-AC power conditioner
US8253273B2 (en) Power system having AC and DC power sources
EP1434341A2 (en) Power supply circuit
US5440179A (en) UPS with bi-directional power flow
US20040095784A1 (en) Reduced capacitance AC/DC/AC power converter
CA1234598A (en) Off-line switching mode power supply
EP0597426B1 (en) AC-to-DC converter
US7432617B2 (en) Uninterruptible power system
US6323623B1 (en) Charging device and charging method thereof
US6111768A (en) Multiple voltage alternator system
US5930122A (en) Inverter and DC power supply apparatus with inverter used therein
US5241217A (en) UPS with input commutation between AC and DC sources of power

Legal Events

Date Code Title Description
AS Assignment

Owner name: POWERWARE SYSTEMS, INC., NORTH CAROLINA

Free format text: CHANGE OF NAME;ASSIGNOR:EXIDE ELECTRONICS CORPORATION;REEL/FRAME:011708/0860

Effective date: 19990222

AS Assignment

Owner name: POWERWARE CORPORATION, NORTH CAROLINA

Free format text: CHANGE OF NAME;ASSIGNOR:POWERWARE SYSTEMS, INC.;REEL/FRAME:011984/0673

Effective date: 19990428

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
AS Assignment

Owner name: EATON POWER QUALITY CORPORATION, OHIO

Free format text: CHANGE OF NAME;ASSIGNOR:POWERWARE CORPORATION;REEL/FRAME:015478/0081

Effective date: 20041025

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12