US20010012192A1 - Active current limiter - Google Patents

Active current limiter Download PDF

Info

Publication number
US20010012192A1
US20010012192A1 US09/782,122 US78212201A US2001012192A1 US 20010012192 A1 US20010012192 A1 US 20010012192A1 US 78212201 A US78212201 A US 78212201A US 2001012192 A1 US2001012192 A1 US 2001012192A1
Authority
US
United States
Prior art keywords
current
distribution system
power
active current
power distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/782,122
Other versions
US6449136B2 (en
Inventor
Steven Galecki
Victor Falk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertiv Energy Systems Inc
Original Assignee
Galecki Steven M.
Falk Victor A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/607,239 external-priority patent/US5706157A/en
Application filed by Galecki Steven M., Falk Victor A. filed Critical Galecki Steven M.
Priority to US09/782,122 priority Critical patent/US6449136B2/en
Publication of US20010012192A1 publication Critical patent/US20010012192A1/en
Application granted granted Critical
Publication of US6449136B2 publication Critical patent/US6449136B2/en
Assigned to MARCONI INTELLECTUAL PROPERTY ( RINGFENCE) INC. reassignment MARCONI INTELLECTUAL PROPERTY ( RINGFENCE) INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARCONI COMMUNICATIONS, INC.
Assigned to EMERSUB XCII, INC. reassignment EMERSUB XCII, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARCONI INTELLECTUAL PROPERTY (RINGFENCE) INC.
Assigned to EMERSON NETWORK POWER, ENERGY SYSTEMS, NORTH AMERICA, INC. reassignment EMERSON NETWORK POWER, ENERGY SYSTEMS, NORTH AMERICA, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EMERSUB XCII, INC.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/001Current supply source at the exchanger providing current to substations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/18Automatic or semi-automatic exchanges with means for reducing interference or noise; with means for reducing effects due to line faults with means for protecting lines

Definitions

  • Another advantage of the invention is realized by the use of active current limiters to provide active control up to a maximum limit.
  • a concern of such communication power distribution systems is that a short circuit on one of the ONU lines will disrupt the power (and, therefore, the service) of other ONUs connected to the local power hub, LPH. Therefore, the configuration of the local power hub, LPE, of the subject invention acts to localize any problems at an ONU to the particular ONU with the problem.
  • Comparator U 2 changes state whenever the voltage on the filter capacitor, C 1 , exceeds the threshold voltage.
  • Capacitor Cfb provides positive AC feedback to insure proper switching.
  • Rt, CT, R 2 , R 4 and C 2 . determine the reset time of the gate, i.e. t reset
  • the simplest method of varying the reset time is by varying Ct, whereby the reset time, is increased by increasing the value of Ct. In the same manner to decrease the reset time, the value of Ct is decreased. It is to be appreciated that the other components in the network also affect the amount of positive feedback for U 4 .
  • the over-current protection circuit will average approximately 0.74A into the load. Capacitor loads must not discharge completely while the protection circuit is in the reset mode. This will allow the protection circuit to “ratchet” the voltage across the capacitor up.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

A communication power distribution system including a single power regulator which feeds a plurality of transmission lines current limited by corresponding active current limiters.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 09/480,797 filed Jan. 10, 2000, which is a continuation of U.S. patent application Ser. No. 08/997,443 filed on Dec. 23, 1997, which is a continuation of Ser. No. 08/607,239, filed on Feb. 26, 1996, now U.S. Pat. No. 5,706,157. [0001]
  • BACKGROUND OF THE INVENTION
  • This invention pertains to the art of power and signal distribution and, more particularly, to a communication power distribution system with current limiting capabilities. [0002]
  • The invention is particularly applicable to controlling fiber-to-the-curb distribution of power and transmission of signals from a central office to a desired destination in accordance with existing electric code requirements. However, it is to be appreciated that the application has broader applications and may be advantageously employed in other power distribution environments and uses. [0003]
  • In supplying power to end users such as homes, businesses, etc., electrical safety considerations need to be addressed. The National Electric Safety Code allows the distribution of power on a “utility right of way.” The term “utility right of way” as used in this context is meant to define the geographic area where utility companies have the right to run power lines, prior to entry into homes, businesses, etc. When this distributed power is led off the “utility right of way”, into a home, business, etc. other regulations take effect, such as those set forth in the National Electric Code (see for example table 725-31B, National Electric Code, 1993 Edition). [0004]
  • One type of communication power distribution system is set forth in FIG. 1, which illustrates a typical set-up of a fiber-to-the-curb distribution system. Optical fiber, OF, connects the central office, CO, to the host digital terminal, EDT. The central office is a main switching location and the host digital terminal is an intermediate device which provides remote switching capabilities. Optical fiber, OF, is also used to connect the host digital terminal, EDT, to individual optical network units, ONU. Each optical network unit, ONU, supplies individual lines to a number of users. In this example configuration, an ONU which supplies 12 lines will be used to service four end users (i.e. 3 lines per end user). It is to be appreciated, however, that while in this example 3 lines are provided for an end user, different numbers of lines may be provided. [0005]
  • The local power hub, LPE, supplies power to each of the optical network units, ONUs, via conductors such as 2-pair wire, W. [0006]
  • In the example of FIG. 1, the LPE is on the “utility right of way”, and the ONUs supplied by the LPH are of f the “utility right of way”. Therefore, the output of the LPU must be within parameters set forth in existing code regulations. However, once the distribution system leaves the “utility right of way” other code regulations must be followed. [0007]
  • Prior art systems such as that shown in FIG. 2 have achieved the required power distribution by relying on individual power supplies, PS, to feed each ONU with limited power. Such a system increases the physical size of the local power hub and also increases the cost by requiring a plurality of individual power supplies. [0008]
  • The present invention contemplates a new and improved power distribution system which utilizes a bulk rectifier, and limits power by use of active current limit devices in order to overcome the above-referenced problems and others, and to provide an economically feasible installation. [0009]
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, a communication power distribution system is provided which includes a bulk rectifier at a local power hub used to distribute power to a plurality of optical network units. At least one of the lines from the local power hub being connected to an active current limiting device. [0010]
  • A principal advantage of the invention is providing an economical communication power distribution system where the cost of a bulk rectifier is distributed over several optical network units. [0011]
  • Another advantage of the invention is realized by the use of active current limiters to provide active control up to a maximum limit. [0012]
  • Still other advantages and benefits of the invention will become apparent to those skilled in the art upon a reading and understanding of the following detailed description. [0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention may take physical form in certain parts and arrangements of parts, a preferred embodiment of which will be described in detail in the specification and illustrated in the accompanying drawings which form a part hereof, and wherein: [0014]
  • FIG. 1 is an illustration of a typical fiber-to-the-curb configuration; [0015]
  • FIG. 2 is an expanded view of a section of FIG. 1 wherein the local power hub depicts a prior art use of a plurality of power supplies individually connected to optical network units; [0016]
  • FIG. 3 is an embodiment of the subject invention wherein a local power hub includes a bulk rectifier having individual lines from the rectifier associated with active current limiters; [0017]
  • FIG. 4 is a block diagram showing protection circuits in one of the active current limiters between a local power hub and an optical network unit; [0018]
  • FIG. 5 is a detailed schematic of an active current limiter according to the present invention; [0019]
  • FIGS. [0020] 6A-6D are time versus voltage and current graphs of the active current limiter with over-current protection according to the present invention;
  • FIG. 7 is a schematic of another embodiment of an active current limiter; and [0021]
  • FIG. 8 is a graph comparing active versus non-active current limiter action. [0022]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring now to the drawings wherein the showings are for purposes of illustrating the preferred embodiment of the invention only and not for purposes of limiting same, FIG. 3 illustrates a fiber-to-the-curb “star” distribution system from a local power hub, LPH, to a plurality of optical network units, ONU[0023] 1-ONU3. Within the local power hub is a bulk rectifier 10. Leading from rectifier 10 are a plurality of rectifier output lines 12. A plurality of active current limiters 14 located within the LPH are each connected to a corresponding one of the rectifier output lines 12. Leading from the current limiters 14 are distribution lines 16 extending f rpm the LPH module and connected to individual optical network units, ONU1-ONU3. Each of the distribution lines 16 carry current limited power to the individual optical network units, ONU1-ONU3. Host digital terminal, HDT, distributes and receives signals to and from the ONUS over optical fiber lines 18.
  • Through such a distribution arrangement each local power hub, LPH, in a distribution system needs to contain only a single [0024] bulk rectifier system 10. By providing active current limiting to the individual distribution lines a compact precise system is designed which increases the ease of configuring the distribution system, and distributes the cost of the bulk rectifier 10 over a plurality of optical network units, ONUs.
  • The local power hub, LPH, performs four functions. First, it generates a DC voltage to provide power to the ONUs. Next it distributes the power to the different ONUs. Third, it isolates the ONUs from faults such as over-voltage stresses and over-current conditions that any other of the ONUs may experience. Finally it sends alarms and other telemetric information back to the host digital terminal, HDT. [0025]
  • A concern of such communication power distribution systems is that a short circuit on one of the ONU lines will disrupt the power (and, therefore, the service) of other ONUs connected to the local power hub, LPH. Therefore, the configuration of the local power hub, LPE, of the subject invention acts to localize any problems at an ONU to the particular ONU with the problem. [0026]
  • It is to be appreciated that whereas in FIG. 3 the [0027] bulk rectifier 10 and the active current limiters 14 are found within the local power hub LPH, in certain environments it may be desirable to provide these elements in a different arrangement. For example, the active current limiter can be placed outside of the LPH in a closer physical proximity to or even within the same housing as the ONUs they are supplying. Still further, while FIG. 3 shows a “star” configuration, the subject invention can be implemented in other arrangements as well.
  • Active current limiter [0028] 14 used in the embodiments can be constructed in a plurality of arrangements. In one particular arrangement active current limiter 14 is configured to address at least three (3) fault conditions. In the first fault condition an unwanted one (1) amp load is, for instance, applied to one of power limiter modules PL_-PL_, when this occurs current limiter 14 needs to limit the current to less than one (1) amp within sixty seconds. The second fault condition concerns an external AC line cross. Current limiter 14 needs to reduce the current within 200 ms with a 5 amp load applied. This protection reflects the capability of polymer positive temperature coefficient resistors. The third fault condition occurs after a lightening strike on the line between the ONUs and the LPH. The lightening strike will trigger primary over-voltage protection. The over-voltage protection creates a low impedance to ground and shunts the current surge from the lightening to ground. The lightening surge decays within microseconds, but the over-voltage protection will remain on, and shunt the power supply from the LPH to ground, effecting the other ONUs until active current limiter circuit 14 reacts.
  • FIG. 4 sets forth a block diagram depicting the protection circuits between the local power hub, LPH, and the optical network unit, ONUs. Using these protection circuits the above three fault conditions can be controlled. [0029]
  • Active current limiter [0030] 14, which is an over-current protector, not only protects against external line faults and surges, but also allows power supplies of the ONUs to start. Since the power supplies may have relatively large capacitors (up to 4 SOμF.), active current limiter 14 is required to charge these capacitors while limiting the average load current to 74 OmA.
  • The maximum voltage which will be seen by current limiter [0031] 14 depends on the primary over-voltage protection used. The primary over-voltage protection is located in a separate plug-in module and may consist of a solid state device (Vmax=400V), a gas discharge tube (Vmax=750V), or even a carbon block (Vmax=1,000V).
  • The active current limiter [0032] 14 can be divided into six sections, a power switch, current sensing area, control bias, gate alarm, alarm out and reverse current protection. One embodiment of such an over-current protection circuit i.e. active current limiter 14 is depicted in FIG. 5. While FIG. 5 does not show an error alarm, an additional MOSFET, with its gate connected to the gate of IGBT, can be used to provide a high impedance status signal. Connecting an indication light to the MOSFET drain to ground would therefore provide an ‘on’ indication. Active current limiter 14 of FIG. 5 reacts to short circuits in less than 10 ms and resets in 11 ms, averaging less than 740 m.k of current passing through it during a fault condition. The power switch of current limiter 14, is. implemented as an IGBT. For this IGBT the minimum breakdown voltage rating is the same as the maximum over-voltage protection ating of 1,000V.
  • Current sensing is accomplished by a low inductance resistor R[0033] 1. This resistor allows each of the ONUs' capacitors to charge. The current signal is filtered by a variable time constant filter consisting of P.11, P.9, Cl and D4. When the load current is less than 1 amp, the filtered time constant is 20 ms. When the load current is greater than 1 amp, the filter time constant decreases to 10 ms. The faster time constant lowers the average current and power on the IGBT for larger currents.
  • Comparator U[0034] 4 turns off the IGBT quickly whenever very high current passes through the IGET. This action prevents the IGBT from overheating when it leaves the linear region. The threshold of U4 should, therefore, occur at some point below the saturated current level of the IGBT. P.2, P.S and P.4 and a zener clamp voltage from diode D1 determine the threshold voltage on comparator U4. Capacitor C2 is used to reduce the noise on the threshold voltage. Resistor Rt provides positive feedback for comparator U4 when the comparator is to switch.
  • Data gathered from a current limiter as described above, with 4.37V threshold for fast turn-off, includes: [0035]
    (too/ms Iload/amps
    65.30 0.8
    20.73 1.0
    7.88 1.5
    4.59 2.0
    3.18 2.5
    2.44 3.0
    2.01 3.5
    1.70 4.0
    1.26 5.0
    1.034 6.0
    0.853 7.0
    0.766 8.0
    0.029 8.4
  • FIGS. [0036] 6A-6D provide graphs of data for the active current limiter of FIG. 5, wherein channel 1 is gate voltage (Vgs)i channel 2 is a current load (I˜), channel 3 is the voltage across capacitor, and channel 4 is the voltage across the current limiter.
  • FIG. 7 discloses an alternative current limiter circuit for a fiber-in-the-loop configuration (FITL). While this circuit is similar to that of FIG. 5 it is configured to limit heating occurring in the circuit and to provide secondary current protection. [0037]
  • Returning attention to the circuit depicted in FIG. 5, the on-time of the IGBT, t[0038] on, can be calculated as, t on = - T * ln ( 1 - V threshold R 1 × I on )
    Figure US20010012192A1-20010809-M00001
  • where, T is a filter time constant, I[0039] on is current through the sense resistor R1, and Vthreshold is the reference voltage determined by the resistor divider string R6 and R7. The average current can then be calculated as: I ave = - I on × t on t on × t reset
    Figure US20010012192A1-20010809-M00002
  • The reset time of the circuit is less than the filter time constant, so comparator U[0040] 3 resets the filter whenever the IGBT is of if.
  • Comparator U[0041] 2 changes state whenever the voltage on the filter capacitor, C1, exceeds the threshold voltage. Capacitor Cfb provides positive AC feedback to insure proper switching. The threshold voltage is determined by a resistor divider string (R6 and R7) and power supply which in this example is taken to be 135V. The following relationship determines the DC load current: I load_min = V ps * R7 R7 + R6 + V offset _ U2 R1
    Figure US20010012192A1-20010809-M00003
  • Variations in the source voltage, resistor divider string, comparator offset and the sense resistor determine the minimum guaranteed load current which may be calculated by: [0042] I load_min = I load_max * 100 - 2 * R1 - 2 * RS - ps 100 * [ 1 - 2 * V off _ at2 V ps * R7 R7 + R6 ]
    Figure US20010012192A1-20010809-M00004
  • where, [0043]
  • I[0044] load min: Guaranteed maximum DC load current; 0.63A
  • I[0045] load max: Maximum current allowed out of LPH; 100 VA/135V=0.741A
  • */ri: Percent tolerance error of sense resistor over temperature and devices; 1.5% [0046]
  • */[0047] rs: Percent ratio mismatch between R6 and R7 over temperature and devices; 0.5%
  • */[0048] ps Percent variation of 135 Volt power supply; 6%
  • V[0049] off u2: Maximum offset voltage of comparator U2;. 9 mV
  • The voltage drop across the load and external wiring will depend upon current as well as the “on” voltage of the IGBT and the source power supply, and may be described as: V[0050] load=Vps−Von IGBT−Iload*R1.
  • The minimum load voltage will be 125 volts and the minimum guaranteed power to the load and external wiring will be 80VA. [0051]
  • The current sense resistor RI also limits the peak current through the IGBT. As the load current increases, the voltage across R[0052] 1 increases. Since the voltage on the gate of the IGBT stays the same, the gate-emitter voltage on the IGBT decreases. In this arrangement the saturation current through IGBT is related to the gate-emitter voltage. The value of P.1 is selected to limit the current through IGBT to 12 amps.
  • With continuing reference to FIG. 5, control of the gate of IGBT switch is now set forth. Resistor .R[0053] 8 and comparator U1. are used to turn off the gate of IGBT. Comparator U1, an open collector comparator, pulls the gate low whenever its positive input goes below a threshold voltage. Resistor P.10 pulls up the gate to the potential on the 16V zener D1. The lower the value of resistor P.10, the faster IGBT turns on and the sense circuit detects a short. The faster IGBT turns on, the larger the current required to flow through M2. Diode D3 clamps the voltage on the gate to the zener's potential where diode D3 is used to protect the gate from voltages coupled across the collector-gate capacitance.
  • The positive input of comparator U[0054] 1 switches to a low voltage whenever comparator U2 senses a fault. When the fault clears, an RC network determines how long the gate stays off. The reset time should be less than 16 .Gms but greater than 8.33 ms which allows the circuit to synchronize with any 60 Hz fault conditions. The circuit restarts during reverse current conditions and turn-off of the circuit will occur when forward current flows through the IGBT, i.e. at a low-voltage low-current condition. The above described arrangement will minimize the power dissipated by the IGBT during a situation of high-voltage line cross.
  • Rt, CT, R[0055] 2, R4 and C2., determine the reset time of the gate, i.e. treset The simplest method of varying the reset time is by varying Ct, whereby the reset time, is increased by increasing the value of Ct. In the same manner to decrease the reset time, the value of Ct is decreased. It is to be appreciated that the other components in the network also affect the amount of positive feedback for U4.
  • The control bias of the subject circuit is provided by M[0056] 2, P.3, and D1. D1 is a 16 volt zener diode that clamps the Vcc voltage for the comparator and the IGBT gate to 16 volts. 142 is a 500 volt depletion mode transistor that acts as a current source. Using this current source provides a clean start-up of the circuit. However, it is to be appreciated that it would be possible to also use a bias resistor in place of the current source.
  • R3 determines the amount of current flowing through [0057] 142, wherein the minimum current flowing through 142 must supply the comparators, resistor voltage divider, and resistor pull-ups during a low threshold voltage condition. A comparator which may be used is the LP339, which requires no more than 100 microamps bias current. The other resistors all have high impedances to minimize the current drain through the depletion mode transistor. By minimizing 142 the current drain through 142 minimizes the heat generated from the control section.
  • The subject circuit of FIG. 5 is also provided with reverse current/voltage protection. This portion of the circuit includes diode D[0058] 2 which is a 1,000 volt diode used to protect against over-current situations in case of a reverse current. If the current should flow in the reverse direction, D2 limits the voltage across the circuit to one volt. The local power hub, LPH, would then absorb all the reverse current. If it is desired that no reverse current flow into the local power hub, then D2 is connected (by itself) to −130V instead of a negative input position.
  • In configuring the current limiter [0059] 14 for use in the subject invention, it is important to also take thermal conditions into consideration. The power dissipated by the circuit is crucial for two reasons: the heating of the devices on the circuit and the heat load presented to the rest of the system.
  • The thermal impedance of the devices to air will be approximately 14.3° C./watts, and depend upon the air flow across the circuit. If the circuit dissipates 1.4 watts, the temperature of the device will increase from an ambient temperature of 65° C. to 85° C. Most devices used are rated for a maximum of 85° C. The circuit shown in FIG. 5 has the IGBT dissipating 0.9 watts, the sense resistor P.[0060] 1 dissipating 0.3 watt, and the control section dissipating 0.2 watt.
  • The heat load of one circuit to the entire local power hub, LPH, system may not be overly significant, however, the LPH may have up to one hundred of these protector modules. That number of modules can impose a significant heat load, therefore heating of each protector module must be minimized. [0061]
  • It should be noted that the current limiter [0062] 14 may experience troubles starting up the capacitive loads expected in the external ONU's power supply. The circuit cannot distinguish between a capacitor placed close to the LPH and an external short. The circuit must protect itself in case of a short circuit and will turn off quickly when the current through the switch exceeds eight (8) amps. The short duration of current may not be enough to charge the capacitors on the ONUs.
  • For currents less than eight (8) amps, the over-current protection circuit will average approximately 0.74A into the load. Capacitor loads must not discharge completely while the protection circuit is in the reset mode. This will allow the protection circuit to “ratchet” the voltage across the capacitor up. [0063]
  • By using one of the current limiters disclosed in FIGS. [0064] 5 or 7, active current limiting is achieved. This results in the ability to provide accurate control of current out to a defined limit. On the other hand, non-active current limiters begin to lose control of the current prior to the predetermined limit; this difference is depicted in FIG. 9. By use of active current limiters 14 a precise power distribution system using a single bulk rectifier is developed.
  • The invention has been described with reference to the preferred embodiment. Obviously, modifications and alterations will occur to others upon a reading and understanding of this specification. It is intended to include all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof. [0065]

Claims (8)

Having thus described the invention, it is now claimed:
1. A communication power distribution system comprising:
a single power regulator configured to supply a predetermined regulated power over a first set of a plurality of transmission lines;
a plurality of active current limiters, at least one of the plurality in operative connection with one of the first set of plurality of transmission lines;
a second set of a plurality of transmission lines, at least one of the plurality in operative connection with said at least one of the active current limiters; and,
a plurality of optical network units, at least one of the plurality in operative connection with one of the second set of transmission lines.
2. The communication power distribution system according to
claim 1
wherein an IGBT is used as a switch of the active current limiters.
3. The communication power distribution system according to
claim 1
further including a single housing holding the active current limiters and the single power regulator.
4. The communication power distribution system according to
claim 1
, wherein the first and second set of transmission lines are comprised of at least one of optical fibers, coaxial cable, and 2-wired twisted pairs.
5. The power distribution system according to
claim 2
wherein the power is distributed in a star configuration.
6. The power distribution system according to
claim 1
wherein the active current limiters include thermal protection.
7. The power distribution system according to
claim 2
wherein the active current limiters include thermal protection.
8. A communication power distribution system comprising:
a central office which generates system operating parameters;
a host digital terminal in operative connection with the central office, configured to receive the system operating instructions from the central office;
a plurality of optical network units, each arranged to receive control signals from the host digital -terminal; and
a local power hub in operative connection with the host digital terminal to receive control signals from the host digital terminal and in operative connection with each of the optical network units over individual transmission lines for carrying power to the optical network units, the local power hub including a single power regulator with a plurality of output lines, at least some of the output lines having an associated current limiting circuit used to current limit its associated output line, the output of the active current limiters connected to associated ones of the transmission lines.
US09/782,122 1996-02-26 2001-02-13 Active current limiter Expired - Fee Related US6449136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/782,122 US6449136B2 (en) 1996-02-26 2001-02-13 Active current limiter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/607,239 US5706157A (en) 1996-02-26 1996-02-26 Power distribution system with over-current protection
US99744397A 1997-12-23 1997-12-23
US09/480,797 US6215633B1 (en) 1996-02-26 2000-01-10 Active current limiter
US09/782,122 US6449136B2 (en) 1996-02-26 2001-02-13 Active current limiter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/480,797 Continuation US6215633B1 (en) 1996-02-26 2000-01-10 Active current limiter

Publications (2)

Publication Number Publication Date
US20010012192A1 true US20010012192A1 (en) 2001-08-09
US6449136B2 US6449136B2 (en) 2002-09-10

Family

ID=27085461

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/480,797 Expired - Fee Related US6215633B1 (en) 1996-02-26 2000-01-10 Active current limiter
US09/630,715 Expired - Fee Related US6362943B1 (en) 1996-02-26 2000-08-02 Active current limiter
US09/782,122 Expired - Fee Related US6449136B2 (en) 1996-02-26 2001-02-13 Active current limiter

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/480,797 Expired - Fee Related US6215633B1 (en) 1996-02-26 2000-01-10 Active current limiter
US09/630,715 Expired - Fee Related US6362943B1 (en) 1996-02-26 2000-08-02 Active current limiter

Country Status (1)

Country Link
US (3) US6215633B1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624993B1 (en) * 2000-11-22 2003-09-23 The Regents Of The University Of California Adjustable direct current and pulsed circuit fault current limiter
US6847513B2 (en) * 2000-12-27 2005-01-25 Agere Systems Inc. Current limiter for magneto-resistive circuit element
JP2004247588A (en) * 2003-02-14 2004-09-02 Auto Network Gijutsu Kenkyusho:Kk Protective circuit
US7194639B2 (en) * 2003-06-30 2007-03-20 Tellabs Vienna, Inc. Power adapter and broadband line extender system and method
US7111180B2 (en) * 2003-08-29 2006-09-19 Dell Products L.P. Information handling system interrupting current to external module if current exceeds different current limits when handling system receives current from battery and alternating current source
US20050275065A1 (en) * 2004-06-14 2005-12-15 Tyco Electronics Corporation Diode with improved energy impulse rating
DE102007022631B3 (en) * 2007-05-11 2008-12-18 Phoenix Contact Gmbh & Co. Kg Parameter monitoring for analog signal modules
US7868483B2 (en) * 2007-09-06 2011-01-11 O2Micro, Inc. Power management systems with current sensors
US8618462B2 (en) 2010-05-26 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Photoelectric transducer device having a rectifier is a second transistor with diode-connected and normally on
JP2012015491A (en) 2010-06-04 2012-01-19 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
CN102455381A (en) * 2010-10-29 2012-05-16 登丰微电子股份有限公司 Current detecting circuit and current overcurrent protection controller
CN103389673B (en) * 2012-05-11 2016-01-13 登丰微电子股份有限公司 Control circuit and synchronous protection control system
JP6470284B2 (en) 2013-11-15 2019-02-13 日本テキサス・インスツルメンツ合同会社 Method and circuit element for controlling a depletion mode transistor
US11394192B2 (en) * 2018-09-10 2022-07-19 Gyrus Acmi, Inc. Power supply delivery system for splitting and combining power
DE102020127777A1 (en) * 2020-10-22 2022-04-28 Phoenix Contact Gmbh & Co. Kg Device for communication between a controller and a field device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579036A (en) 1969-01-24 1971-05-18 Ncr Co Crowbar circuit for voltage cutoff with series and shunt switchable means
US3729671A (en) 1972-03-22 1973-04-24 Gte Automatic Electric Lab Inc Power control and supervisory system
US4173714A (en) 1977-06-03 1979-11-06 Tie/Communications, Inc. Communication circuit with combined power feed and data transmission over a phantom channel
DE2747136C2 (en) 1977-10-18 1984-08-23 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Control procedure for an HVDC close coupling
US4311986A (en) 1978-09-13 1982-01-19 The Bendix Corporation Single line multiplexing system for sensors and actuators
US4438473A (en) 1981-07-21 1984-03-20 The United States Of America As Represented By The Secretary Of The Interior Power supply for an intrinsically safe circuit
US4458288A (en) 1982-05-28 1984-07-03 At&T Technologies, Inc. Electrical protective devices
US4620271A (en) 1984-07-13 1986-10-28 Siemens Aktiengesellschaft Circuit arrangement for feeding electrical users via a switch controller
US5440441A (en) * 1984-10-24 1995-08-08 Ahuja; Om Apparatus for protecting, monitoring, and managing an AC/DC electrical line or a telecommunication line using a microprocessor
US4638396A (en) 1984-12-31 1987-01-20 Motorola, Inc. Intrinsically safe battery circuit
US4733325A (en) 1986-09-23 1988-03-22 American Telephone And Telegraph Company At&T Technologies, Inc. Electrical protective devices
US4736269A (en) 1986-12-19 1988-04-05 American Telephone And Telegraph Company, At&T Technologies, Inc. Voltage surge limiter with grounding assembly
DE3701493A1 (en) 1987-01-20 1988-07-28 Nixdorf Computer Ag CIRCUIT ARRANGEMENT FOR DISTRIBUTING ELECTRICAL POWER TO MULTIPLE FUNCTIONAL UNITS
US5117219A (en) 1987-10-21 1992-05-26 Pittway Corporation Smoke and fire detection system communication
US4926288A (en) 1988-03-31 1990-05-15 Wiltron Company Over-current protection circuit
FR2651398B1 (en) 1989-08-31 1995-08-25 Alcatel Business Systems SUPPLY ARRANGEMENT FOR TELEPHONE AND / OR TELEMATIC TERMINAL.
GB9027111D0 (en) 1990-12-13 1991-02-06 Raychem Ltd Circuit protection device
US5239255A (en) 1991-02-20 1993-08-24 Bayview Technology Group Phase-controlled power modulation system
NZ243764A (en) 1991-07-30 1995-05-26 Alcatel Australia Optical fibre network: mechanised subscriber loop testing
EP1209751A3 (en) 1991-08-08 2002-07-31 Kabushiki Kaisha Toshiba Self turn-off insulated-gate power semiconductor device with injection-enhanced transistor structure
JPH05300279A (en) 1992-04-20 1993-11-12 Fujitsu Ltd Feeding protection system
US5642002A (en) 1993-10-29 1997-06-24 Alpha Technologies Apparatus and methods for generating uninterruptible AC power signals
CA2146619C (en) 1994-04-14 2005-02-08 Kevin M. Huczko Intrinsically safe power source
JP3193827B2 (en) * 1994-04-28 2001-07-30 三菱電機株式会社 Semiconductor power module and power converter
JP3216972B2 (en) * 1995-08-04 2001-10-09 株式会社日立製作所 Ignition device for internal combustion engine
CA2183176C (en) 1995-08-18 2000-10-24 Brian R. Pelly High power dc blocking device for ac and fault current grounding
US5706157A (en) 1996-02-26 1998-01-06 Reltec Corporation Power distribution system with over-current protection

Also Published As

Publication number Publication date
US6449136B2 (en) 2002-09-10
US6362943B1 (en) 2002-03-26
US6215633B1 (en) 2001-04-10

Similar Documents

Publication Publication Date Title
US5706157A (en) Power distribution system with over-current protection
US20010012192A1 (en) Active current limiter
CA1266883A (en) Protector circuit
US7456522B2 (en) Line powering of auxiliary equipment
KR100200469B1 (en) Circuit protection device
US6150771A (en) Circuit for interfacing between a conventional traffic signal conflict monitor and light emitting diodes replacing a conventional incandescent bulb in the signal
US5319515A (en) Circuit protection arrangement
US6288883B1 (en) Power input protection circuit
US5694283A (en) Intrinsically safe power source
EP0248035B1 (en) Telephone subscriber loop overvoltage protection integrated circuit
JPH10507059A (en) Protection of active telephone line interface circuits
US6066979A (en) Solid-state high voltage linear regulator circuit
EP0186873A2 (en) Protector circuit
US5801933A (en) High efficiency voltage converter and regulator circuit
US5050060A (en) Intrinsically safe power supply unit
US6954347B1 (en) Overvoltage and overcurrent protection system
CN1007770B (en) Circuit arrangement for protecting electronic device to counteract excessive load
EP0593588B1 (en) Circuit protection arrangement
US7106573B2 (en) Protection circuit for a digital subscriber line device
EP0425675B1 (en) Ground fault detecting circuit for subscriber lines
US6069950A (en) Dual-limit current-limiting battery-feed circuit for a digital line
US20040042135A1 (en) Circuit configuration for monitoring and/or regulating supply voltages
US6982860B2 (en) Technique for fault isolation and transient load isolation for multiple electrical loads connected to a common electrical power source
JPH0847171A (en) Overvoltage protection method and overvoltage protective device
CN220254717U (en) Dimmable LED driving circuit

Legal Events

Date Code Title Description
CC Certificate of correction
AS Assignment

Owner name: MARCONI INTELLECTUAL PROPERTY ( RINGFENCE) INC., P

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARCONI COMMUNICATIONS, INC.;REEL/FRAME:014675/0855

Effective date: 20031028

AS Assignment

Owner name: EMERSUB XCII, INC., MISSOURI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARCONI INTELLECTUAL PROPERTY (RINGFENCE) INC.;REEL/FRAME:015394/0222

Effective date: 20040812

AS Assignment

Owner name: EMERSON NETWORK POWER, ENERGY SYSTEMS, NORTH AMERI

Free format text: CHANGE OF NAME;ASSIGNOR:EMERSUB XCII, INC.;REEL/FRAME:015452/0663

Effective date: 20041119

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140910