US20010008865A1 - Matrix for high-performance ceramic matrix composite - Google Patents

Matrix for high-performance ceramic matrix composite Download PDF

Info

Publication number
US20010008865A1
US20010008865A1 US09/257,214 US25721499A US2001008865A1 US 20010008865 A1 US20010008865 A1 US 20010008865A1 US 25721499 A US25721499 A US 25721499A US 2001008865 A1 US2001008865 A1 US 2001008865A1
Authority
US
United States
Prior art keywords
matrix
silicon carbide
ceramic
oxide phase
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/257,214
Other versions
US6331496B2 (en
Inventor
Tetsuo Nakayasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Advanced Material Gas-Generator Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to RESEARCH INSTITUTE OF ADVANCED MATERIAL GAS-GENERATOR, LTD. reassignment RESEARCH INSTITUTE OF ADVANCED MATERIAL GAS-GENERATOR, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKAYASU, TETSUO
Publication of US20010008865A1 publication Critical patent/US20010008865A1/en
Application granted granted Critical
Publication of US6331496B2 publication Critical patent/US6331496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide

Definitions

  • the present invention relates to a matrix for ceramic matrix composite which contains inorganic fiber for reinforcement.
  • a ceramic matrix composite is typical of various materials having excellent heat resistance and mechanical characteristics that have been proposed for use in the aerospace industry.
  • Ceramic matrix composites include one composed of silicon carbide ceramic as a matrix and silicon carbide fiber as reinforcing inorganic fiber for its high heat resistance and high-temperature oxidation resistance.
  • Composites for large-sized parts are generally produced by forming a silicon carbide matrix on fabric of silicon carbide fiber by chemical vapor infiltration (CVI), polymer impregnation and pylorysis (PIP), or a like technique.
  • CVI chemical vapor infiltration
  • PIP polymer impregnation and pylorysis
  • pores or microcracks often remain in the silicon carbide matrix. Stress is concentrated around the pores and microcracks, and the stress cannot be transmitted sufficiently to the reinforcing fiber, resulting in reduction of the strength of the composite. Further, oxygen tends to enter through the pores or microcracks to oxidize the fiber in an elevated temperature oxidizing atmosphere, also resulting in reduction of the strength.
  • an object of the present invention is to provide a matrix for high-strength composites excellent in heat resistance, oxidation resistance and mechanical characteristics.
  • the present invention provides a matrix for high-performance ceramic matrix composite containing inorganic fiber for reinforcement, which comprises silicon carbide ceramic and an oxide phase having dispersed in the silicon carbide ceramic.
  • a matrix for a high-performance composite having excellent heat resistance, oxidation resistance and mechanical characteristics in high temperature.
  • Ceramic matrix composites produced by using the matrix of the present invention are particularly useful for various formed parts in the aerospace industry.
  • the matrix for high-performance ceramic matrix composite according to the present invention will hereinafter be described in detail.
  • the matrix comprises silicon carbide ceramic and an oxide phase that is dispersed in the silicon carbide ceramic.
  • the matrix is a complex matrix comprising the silicon carbide ceramic and the oxide phase.
  • the oxide phase includes a crystalline oxide, glass such as amorphous silicate glass, phosphate glass and borate glass, and glass-ceramics (crystallized glass).
  • the crystalline oxide are oxides and complex oxides of aluminum, magnesium, silicon, yttrium, calcium, titanium, zirconium, niobium, iron, barium, strontium, beryllium, indium, uranium, tantalum, neodymium, scandium, ruthenium, rhodium, nickel, cobalt, molybdenum, manganese, germanium, hafnium, vanadium, gallium, iridium, rare earth elements, etc.
  • those having a coefficient of thermal expansion of 8 ⁇ 10 6 or smaller at 1000° C. e.g., SiO 2 , Al 2 O 3 , Y 2 O 3 , HfO 2 , MgO.Al 2 O 3 , BaO.ZrO 2 , MgO.Cr 2 O 3 , ZrSiO 4 , 3Al 2 O 3 .2SiO 2 , 2MgO.2Al 2 O 3 .5SiO 2 , and ⁇ -Al 2 O 3 .TiO 2 , are preferred, and ZrSiO 4 is particularly preferred.
  • the glass-ceramics include LiO 2 —Al 2 O 3 —MgO—SiO 2 glass-ceramics and LiO 2 —Al 2 O 3 —MgO—SiO 2 —Nb 2 O 5 glass-ceramics whose main crystalline phase is ⁇ -spodumene; MgO—Al 2 O 3 —SiO 2 glass-ceramics whose main crystalline phase is cordierite; BaO—Al 2 O 3 —SiO 2 glass-ceramics and SrO—Al 2 O 3 —SiO 2 glass-ceramics whose main crystalline phase is mullite or celsian; CaO—Al 2 O 3 —SiO 2 glass-ceramics whose main crystalline phase is anorthite; and BaO—MgO—Al 2 O 3 —SiO 2 glass-ceramics whose main crystalline phase is barium osumilite.
  • Preference is
  • the oxide phase may be dispersed in the form of particles or may form a continuous phase (a network structure) in the matrix.
  • the oxide phase can be made up of a single substance or a combination of two or more substances.
  • the method for forming the oxide phase is not particularly limited, the following methods A to C are preferred for ease of formation.
  • a method comprising impregnating silicon carbide ceramic with a solution of an oxide precursor capable of forming the oxide phase after being rendered inorganic, for example, a solution of an alkoxide (precursor) in a solvent, e.g., an alcohol (called a sol-gel solution), or a solution of a salt (precursor) in a solvent, e.g., water, and heat treating the impregnated ceramic in an atmosphere containing NO 2 gas and/or O 2 gas and/or H 2 O gas.
  • a solvent e.g., an alcohol
  • a salt precursor
  • Vapor phase techniques such as chemical vapor deposition (CVD), CVI or physical vapor deposition (PVD).
  • CVD or CVI can be carried out in a known manner by using a mixture of gas or steam of at least one of a halide, a hydride and an organometallic compound of the metal(s) constituting the oxide phase and NO 2 gas and/or O 2 gas and/or H 2 O gas as a raw material gas.
  • a compound or a mixture having the same or nearly the same composition as the desired oxide phase is used as a target, or a plurality of such compounds or mixtures are used alternately to give the same composition as the desired oxide phase.
  • PVD treatment is followed by heat treatment to form the oxide phase.
  • the oxide phase be present in the matrix in an amount of 1 to 80% by weight, particularly 5 to 60% by weight, based on the whole weight of the matrix.
  • the silicon carbide ceramics preferably include those having the following structure (1) or (2) from the standpoint of elastic modulus, heat resistance, oxidation resistance, creep resistance and the like.
  • (b) (b-1) the amorphous substance (a) and (b-2) an aggregate of a crystalline substance having a grain size of 1000 nm or smaller, particularly 10 to 500 nm, comprising ⁇ -SiC and TiC and/or ZrC; or
  • the average elemental composition of structure (d), (e) and (f) comprising 30 to 80 wt % of Si, 10 to 65 wt % of C, and 0.005 to 25 wt % of O.
  • an aggregate of a crystalline substance denotes an aggregate comprising a plurality of crystals having a grain size of 0.1 to 1000 nm.
  • the term “in the vicinity of” as used for the structure (c) preferably means the region within a distance of 100 nm from the crystalline particle.
  • the above-specified average elemental composition of Si, C and O of the structure (a), (b) and (c) is preferred for strength, elastic modulus, heat resistance, oxidation resistance, creep resistance, and the like.
  • a still preferred elemental composition comprises 40 to 70 wt % of Si, 20 to 40 wt % of C, and 0.005 to 18 wt % of O.
  • an aggregate of a crystalline substance as used for the structure (e) has the same meaning as that used for the structure (b).
  • the language “an aggregate of (e-1) an aggregate of crystalline substance and (e-2) amorphous SiO 2 and/or the amorphous substance (d)” as used for the structure (e) is intended to mean a plurality of aggregates each comprising (e-1) an aggregate of crystals having a grain size of 0.1 to 1000 nm and (e-2) a plurality of amorphous SiO 2 particles and/or a plurality of the amorphous particles (d), the particles (e-2) gathering in the vicinity (in the above-defined meaning) of the aggregate (e-1).
  • carbon flocculate as used for the structure (f) denotes a plurality of crystalline and/or amorphous carbon particles having a particle size of 100 nm or smaller.
  • the above-specified average elemental composition of Si, C and O of the structure (d), (e) and (f) is preferred for strength, elastic modulus, heat resistance, oxidation resistance, creep resistance, and the like.
  • a still preferred elemental composition comprises 40 to 70 wt % of Si, 20 to 40 wt % of C, and 0.005 to 20 wt % of O.
  • the method for forming the silicon carbide ceramic is not particularly limited, the following methods D to F are preferred for ease of formation.
  • a method comprising mixing powdered raw materials for silicon carbide ceramic, and subjecting the mixed powder to heat treatment or pressing at high-temperature.
  • a method comprising impregnating a preform of inorganic fiber with a solution of a precursor polymer capable of becoming silicon carbide ceramic after being rendered inorganic, such as polycarbosilane, polyzirconocarbosilane, polytitanocarbonosilane, perhydropolysilazane, polysilastyrene, polycarbosilazane, and polysilazane, in an organic solvent capable of easily dissolving the precursor, such as toluene, xylene and tetrahydrofuran, removing the solvent from the impregnated preform, and heat treating the impregnated preform to form silicon carbide ceramics.
  • a series of the steps of impregnation, solvent removal, and heat treatment are preferably repeated several times for obtaining void-free silicon carbide ceramic. In this method rendering the polymeric precursor inorganic and consolidation or sintering proceed simultaneously.
  • a vapor phase techniques such as CVD, CVI and PVD.
  • CVD or CVI can be carried out in a known manner by using a mixture of gas or steam of at least one of a halide, a hydride and an organometallic compound of the metal(s) constituting silicon carbide ceramic and C n H 2n+2 (n is equal to or greater than 1) gas and/or H 2 gas as a raw material gas.
  • a compound or a mixture having the same or nearly the same composition as the desired silicon carbide ceramic is used as a target, or a plurality of such compounds or mixtures are used alternately to give the same composition as the desired silicon carbide ceramic.
  • PVD treatment is followed by heat treatment to form the silicon carbide ceramic.
  • the heat treating temperature in methods D to F usually ranges from 800 to 2000° C.
  • the heat treatment is carried out in an inert atmosphere such as N 2 gas and Ar gas, in vacuum, or in a reducing atmosphere such as H 2 gas and CO gas.
  • the silicon carbide ceramic be present in an amount of 20 to 99% by weight, particularly 40 to 95% by weight, based on the whole weight of the matrix.
  • the ceramic matrix composite obtained by using the matrix of the present invention exhibits excellent mechanical characteristics and fatigue characteristics in high temperature for unknown reasons, probably because (i) the oxide phase reduces stress concentration in the matrix thereby transmitting the stress to reinforcing fibers effectively, which brings about improvement in strength of the composite and (ii) the oxide phase hinders crack extension and seals the microcracks in the matrix thereby to improve the durability of the composite.
  • the inorganic fiber which can be used as a reinforcing material of the ceramic matrix composite is not particularly limited.
  • silicon carbide fiber, silicon nitride fiber, alumina fiber and carbon fiber are suitable, with silicon carbide fiber being preferred.
  • Useful silicon carbide fibers include inorganic fiber comprising Si—Ti or Zr—C—O, polycrystalline inorganic fiber comprising Si—Al—C—O available from Ube Industries, Ltd. under the trade name “TYRANO FIBER” and inorganic fiber comprising Si—C—O available from Nippon Carbon Co., Ltd. under the trade name “NICALON”, “HI NICALON”, or “HI NICALON TYPE S”.
  • the inorganic fiber is preferably used in an amount of 5 to 85% by volume based on the total ceramic matrix composite.
  • the ceramic composite material can be produced easily by using the matrix obtained by a combination of method D, E or F (method for forming the silicon carbide ceramic) and method A, B or C (method for forming the oxide phase) and the inorganic fiber in accordance with the following methods G or H.
  • a method comprising mixing or combining the inorganic fiber with the matrix comprising the powdered material forming an oxide phase (used in method A) and the powdered material forming silicon carbide ceramic (used in method D), and subjecting the resulting mixture or combination to heat treatment or pressing at high-temperature.
  • the fibers are mixed with the mixed powder providing the matrix.
  • nonwoven fabric or sheeting of inorganic fibers such a fibrous layer and the mixed powder are built up alternately, or bundles of the long fibers having adhered thereto the mixed powder of the matrix are fabricated into woven fabric, nonwoven fabric or sheeting, and the resulting structures are laid up.
  • the resulting powder mixture or overlaid structure is shaped as desired. After or simultaneously with the shaping, heat treatment is conducted to consolidate or sinter the mixed powder for the matrix to obtain a ceramic matrix composite.
  • a method comprising forming an oxide phase by method A, B or C and silicon carbide ceramic by method E or F in the inside of the above-mentioned woven fabric, nonwoven fabric or sheeting of the inorganic fiber or an aggregate of small cut pieces thereof.
  • formation of the oxide phase and formation of the silicon carbide ceramic can alternate. Alternatively, formation of the oxide phase and formation of the silicon carbide ceramic can proceed simultaneously.
  • the powdered material providing an oxide phase (used in method A) is dispersed in the solution of a silicon carbide ceramic precursor polymer used in method E, the resulting dispersion is infiltrated into the inorganic fiber aggregate, and the impregnated fiber aggregate is rendered inorganic.
  • the ceramic matrix composite obtained by using the matrix according to the present invention exhibits excellent mechanical characteristics and fatigue characteristics at high temperature. It is therefore useful as a forming material for various parts particularly in the aerospace industry which are used under extremely severe conditions.
  • BaO powder, MgO powder, Al 2O 3 powder and SiO 2 powder were weighed out and mixed to prepare mixed powder for glass having a total weight of 1000 g at a BaO:MgO:Al 2 O 3 :SiO 2 ratio of 14:8:28:50.
  • the mixed powder was packed into a platinum crucible, fused by heating to 1600° C. or higher, and quenched.
  • the resulting glass was ground to glass-ceramic powder having an average particle size of 10 ⁇ m or smaller (hereinafter designated BMAS glass-ceramic powder).
  • the impregnated fiber bundle was heated at 100° C. in an argon gas stream to remove xylene by evaporation.
  • the fiber bundle was then fired in an electric furnace by heating up to 1300° C. at a rate of temperature rise of 50° C./hr in a nitrogen gas stream, maintaining at that temperature for 1 hour, cooling to 1000° C. at a rate of temperature drop of 100° C./hr, and allowing to further cool to room temperature.
  • the impregnation and firing were repeated 5 times to obtain a composite using the matrix of the present invention.
  • the tensile strength of the resulting composite was measured in accordance with “Test method for stress-strain behavior of continuous fiber reinforced ceramic matrix composite at room and elevated temperatures (PEC-TS CMC 01-1997)” specified in the standards of Petroleum Energy Center, Japan. The results of the measurement are shown in Table 1 below.
  • Ceramic matrix composites were prepared in the same manner as in Example 1, except for varying the weight ratio of the BMAS glass-ceramic powder as shown in Table 1. The tensile strength of the resulting composites is shown in Table 1.
  • a ceramic matrix composite was prepared in the same manner as in Example 1, except for replacing TYRANNO FIBER TM-S6 with TYRANNO FIBER ZMI-S5 produced by Ube Industries, Ltd. and replacing BMAS glass-ceramic powder with commercially available ZrSiO 4 powder produced by Wako Pure Chemical Industries, Ltd.
  • the tensile strength of the resulting composite is shown in Table 2 below.
  • Ceramic matrix composites were prepared in the same manner as in Example 6, except for varying the weight ratio of ZrSiO 4 powder as shown in Table 2. The tensile strength of the resulting composite materials is shown in Table 2.
  • the impregnated fiber bundle prepared in Example 6 was fired once to partially form a silicon carbide matrix.
  • the fiber bundle in which a silicon carbide matrix had been partially formed was soaked in the SAS sol-gel solution prepared in Preparation Example 3. After deairing under reduced pressure of 500 Torr, the fiber bundle was impregnated with the sol-gel solution in an argon atmosphere at 4 atm.
  • the impregnated fiber bundle was heated at 80° C. in an air stream to remove isopropyl alcohol by evaporation and then fired in an electric furnace by heating up to 800° C. at a rate of 50° C./hr and maintaining at that temperature for 1 hour, followed by allowing to cool to room temperature thereby to render the impregnated fiber bundle inorganic.
  • the tensile strength of the resulting composite material is shown in Table 3 below. TABLE 1 BMAS Glass- ceramic Tensile Strength (MPa) Powder room 1000° (%) temp. C. 1200° C. 1300° C. 1400° C.
  • Example 1 10 500 320 290 260 200 Example 2 20 520 330 300 270 220 Example 3 30 440 390 380 340 280 Example 4 50 380 300 270 220 170 Example 5 80 320 260 230 180 150 Compara- 0 250 200 180 160 140 tive Example 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

A matrix for high-performance ceramic matrix composite containing inorganic fiber for reinforcement, which comprises silicon carbide ceramic and an oxide phase having dispersed in the solicon carbide ceramic.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a matrix for ceramic matrix composite which contains inorganic fiber for reinforcement. [0002]
  • 2. Related Art [0003]
  • A ceramic matrix composite is typical of various materials having excellent heat resistance and mechanical characteristics that have been proposed for use in the aerospace industry. [0004]
  • Conventional ceramic matrix composites include one composed of silicon carbide ceramic as a matrix and silicon carbide fiber as reinforcing inorganic fiber for its high heat resistance and high-temperature oxidation resistance. Composites for large-sized parts are generally produced by forming a silicon carbide matrix on fabric of silicon carbide fiber by chemical vapor infiltration (CVI), polymer impregnation and pylorysis (PIP), or a like technique. [0005]
  • However, where the conventional techniques are followed, pores or microcracks often remain in the silicon carbide matrix. Stress is concentrated around the pores and microcracks, and the stress cannot be transmitted sufficiently to the reinforcing fiber, resulting in reduction of the strength of the composite. Further, oxygen tends to enter through the pores or microcracks to oxidize the fiber in an elevated temperature oxidizing atmosphere, also resulting in reduction of the strength. [0006]
  • SUMMARY OF THE INVENTION
  • Accordingly, an object of the present invention is to provide a matrix for high-strength composites excellent in heat resistance, oxidation resistance and mechanical characteristics. [0007]
  • As a result of extensive studies, the inventors of the present invention have found that the above object can be accomplished by using a matrix comprising silicon carbide ceramic having dispersed therein an oxide phase. [0008]
  • Having been completed based on the above finding, the present invention provides a matrix for high-performance ceramic matrix composite containing inorganic fiber for reinforcement, which comprises silicon carbide ceramic and an oxide phase having dispersed in the silicon carbide ceramic. [0009]
  • According to the present invention, there is provided a matrix for a high-performance composite having excellent heat resistance, oxidation resistance and mechanical characteristics in high temperature. Ceramic matrix composites produced by using the matrix of the present invention are particularly useful for various formed parts in the aerospace industry. [0010]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The matrix for high-performance ceramic matrix composite according to the present invention will hereinafter be described in detail. The matrix comprises silicon carbide ceramic and an oxide phase that is dispersed in the silicon carbide ceramic. In other words, the matrix is a complex matrix comprising the silicon carbide ceramic and the oxide phase. [0011]
  • The oxide phase includes a crystalline oxide, glass such as amorphous silicate glass, phosphate glass and borate glass, and glass-ceramics (crystallized glass). [0012]
  • Specific examples of the crystalline oxide are oxides and complex oxides of aluminum, magnesium, silicon, yttrium, calcium, titanium, zirconium, niobium, iron, barium, strontium, beryllium, indium, uranium, tantalum, neodymium, scandium, ruthenium, rhodium, nickel, cobalt, molybdenum, manganese, germanium, hafnium, vanadium, gallium, iridium, rare earth elements, etc. Among of them, those having a coefficient of thermal expansion of 8×10[0013] 6 or smaller at 1000° C., e.g., SiO2, Al2O3, Y2O3, HfO2, MgO.Al2O3, BaO.ZrO2, MgO.Cr2O3, ZrSiO4, 3Al2O3.2SiO2, 2MgO.2Al2O3.5SiO2, and α-Al2O3.TiO2, are preferred, and ZrSiO4 is particularly preferred.
  • Specific examples of the glass-ceramics include LiO[0014] 2—Al2O3—MgO—SiO2 glass-ceramics and LiO2—Al2O3—MgO—SiO2—Nb2O5 glass-ceramics whose main crystalline phase is β-spodumene; MgO—Al2O3—SiO2 glass-ceramics whose main crystalline phase is cordierite; BaO—Al2O3—SiO2 glass-ceramics and SrO—Al2O3—SiO2 glass-ceramics whose main crystalline phase is mullite or celsian; CaO—Al2O3—SiO2 glass-ceramics whose main crystalline phase is anorthite; and BaO—MgO—Al2O3—SiO2 glass-ceramics whose main crystalline phase is barium osumilite. Preference is given to SrO—Al2O3-SiO2 glass-ceramics and BaO—MgO—Al2O3—SiO2glass-ceramics.
  • The oxide phase may be dispersed in the form of particles or may form a continuous phase (a network structure) in the matrix. The oxide phase can be made up of a single substance or a combination of two or more substances. [0015]
  • While the method for forming the oxide phase is not particularly limited, the following methods A to C are preferred for ease of formation. [0016]
  • Method A [0017]
  • A method using powdered substance or substances forming the oxide phase. [0018]
  • Method B [0019]
  • A method comprising impregnating silicon carbide ceramic with a solution of an oxide precursor capable of forming the oxide phase after being rendered inorganic, for example, a solution of an alkoxide (precursor) in a solvent, e.g., an alcohol (called a sol-gel solution), or a solution of a salt (precursor) in a solvent, e.g., water, and heat treating the impregnated ceramic in an atmosphere containing NO[0020] 2 gas and/or O2 gas and/or H2O gas.
  • Method C [0021]
  • Vapor phase techniques, such as chemical vapor deposition (CVD), CVI or physical vapor deposition (PVD). CVD or CVI can be carried out in a known manner by using a mixture of gas or steam of at least one of a halide, a hydride and an organometallic compound of the metal(s) constituting the oxide phase and NO[0022] 2 gas and/or O2 gas and/or H2O gas as a raw material gas. In carrying out PVD, a compound or a mixture having the same or nearly the same composition as the desired oxide phase is used as a target, or a plurality of such compounds or mixtures are used alternately to give the same composition as the desired oxide phase. If desired, PVD treatment is followed by heat treatment to form the oxide phase.
  • It is preferable in view of the characteristics of the ceramic matrix composite that the oxide phase be present in the matrix in an amount of 1 to 80% by weight, particularly 5 to 60% by weight, based on the whole weight of the matrix. [0023]
  • The silicon carbide ceramics preferably include those having the following structure (1) or (2) from the standpoint of elastic modulus, heat resistance, oxidation resistance, creep resistance and the like. [0024]
  • Structure (1) [0025]
  • (a) an amorphous substance substantially comprising Si, Ti and/or Zr, C, and O; [0026]
  • (b) (b-1) the amorphous substance (a) and (b-2) an aggregate of a crystalline substance having a grain size of 1000 nm or smaller, particularly 10 to 500 nm, comprising β-SiC and TiC and/or ZrC; or [0027]
  • (c) a mixed system of (c-1) the crystalline substance (b-2) and (c-2) an amorphous structure which is present in the vicinity of the crystalline substance and comprises SiO[0028] x and TiOx and/or ZrOx (0<X≦2); and
  • the average elemental composition of (a), (b) and (c) comprising 30 to 80 wt % of Si, 15 to69 wt % of C, and 0.005 to 20 wt % of O. [0029]
  • Structure (2) [0030]
  • (d) an amorphous substance substantially comprising Si, C, and O; [0031]
  • (e) an aggregate of (e-1) an aggregate of a crystalline substance comprising β-SiC having a grain size of 1000 nm or smaller, particularly 10 to 500 nm, and (e-2) amorphous SiO[0032] 2 and/or the amorphous substance (d); or
  • (f) a mixture of (f-1) the crystalline substance (e-1) and/or the aggregate (e) and (f-2) a carbon flocculate; and [0033]
  • the average elemental composition of structure (d), (e) and (f) comprising 30 to 80 wt % of Si, 10 to 65 wt % of C, and 0.005 to 25 wt % of O. [0034]
  • The term “an aggregate of a crystalline substance” as used for the structure (b) denotes an aggregate comprising a plurality of crystals having a grain size of 0.1 to 1000 nm. The term “in the vicinity of” as used for the structure (c) preferably means the region within a distance of 100 nm from the crystalline particle. The above-specified average elemental composition of Si, C and O of the structure (a), (b) and (c) is preferred for strength, elastic modulus, heat resistance, oxidation resistance, creep resistance, and the like. A still preferred elemental composition comprises 40 to 70 wt % of Si, 20 to 40 wt % of C, and 0.005 to 18 wt % of O. [0035]
  • The term “an aggregate of a crystalline substance” as used for the structure (e) has the same meaning as that used for the structure (b). The language “an aggregate of (e-1) an aggregate of crystalline substance and (e-2) amorphous SiO[0036] 2 and/or the amorphous substance (d)” as used for the structure (e) is intended to mean a plurality of aggregates each comprising (e-1) an aggregate of crystals having a grain size of 0.1 to 1000 nm and (e-2) a plurality of amorphous SiO2 particles and/or a plurality of the amorphous particles (d), the particles (e-2) gathering in the vicinity (in the above-defined meaning) of the aggregate (e-1). The term “carbon flocculate” as used for the structure (f) denotes a plurality of crystalline and/or amorphous carbon particles having a particle size of 100 nm or smaller. The above-specified average elemental composition of Si, C and O of the structure (d), (e) and (f) is preferred for strength, elastic modulus, heat resistance, oxidation resistance, creep resistance, and the like. A still preferred elemental composition comprises 40 to 70 wt % of Si, 20 to 40 wt % of C, and 0.005 to 20 wt % of O.
  • While the method for forming the silicon carbide ceramic is not particularly limited, the following methods D to F are preferred for ease of formation. [0037]
  • Method D [0038]
  • A method comprising mixing powdered raw materials for silicon carbide ceramic, and subjecting the mixed powder to heat treatment or pressing at high-temperature. [0039]
  • Method E [0040]
  • A method comprising impregnating a preform of inorganic fiber with a solution of a precursor polymer capable of becoming silicon carbide ceramic after being rendered inorganic, such as polycarbosilane, polyzirconocarbosilane, polytitanocarbonosilane, perhydropolysilazane, polysilastyrene, polycarbosilazane, and polysilazane, in an organic solvent capable of easily dissolving the precursor, such as toluene, xylene and tetrahydrofuran, removing the solvent from the impregnated preform, and heat treating the impregnated preform to form silicon carbide ceramics. A series of the steps of impregnation, solvent removal, and heat treatment are preferably repeated several times for obtaining void-free silicon carbide ceramic. In this method rendering the polymeric precursor inorganic and consolidation or sintering proceed simultaneously. [0041]
  • Method F [0042]
  • A vapor phase techniques, such as CVD, CVI and PVD. CVD or CVI can be carried out in a known manner by using a mixture of gas or steam of at least one of a halide, a hydride and an organometallic compound of the metal(s) constituting silicon carbide ceramic and C[0043] nH2n+2 (n is equal to or greater than 1) gas and/or H2 gas as a raw material gas. In carrying out PVD, a compound or a mixture having the same or nearly the same composition as the desired silicon carbide ceramic is used as a target, or a plurality of such compounds or mixtures are used alternately to give the same composition as the desired silicon carbide ceramic. If desired, PVD treatment is followed by heat treatment to form the silicon carbide ceramic.
  • The heat treating temperature in methods D to F usually ranges from 800 to 2000° C. The heat treatment is carried out in an inert atmosphere such as N[0044] 2 gas and Ar gas, in vacuum, or in a reducing atmosphere such as H2 gas and CO gas.
  • It is preferable for the characteristics of the ceramic matrix composite that the silicon carbide ceramic be present in an amount of 20 to 99% by weight, particularly 40 to 95% by weight, based on the whole weight of the matrix. [0045]
  • The ceramic matrix composite obtained by using the matrix of the present invention exhibits excellent mechanical characteristics and fatigue characteristics in high temperature for unknown reasons, probably because (i) the oxide phase reduces stress concentration in the matrix thereby transmitting the stress to reinforcing fibers effectively, which brings about improvement in strength of the composite and (ii) the oxide phase hinders crack extension and seals the microcracks in the matrix thereby to improve the durability of the composite. [0046]
  • The inorganic fiber which can be used as a reinforcing material of the ceramic matrix composite is not particularly limited. For example, silicon carbide fiber, silicon nitride fiber, alumina fiber and carbon fiber are suitable, with silicon carbide fiber being preferred. [0047]
  • Useful silicon carbide fibers include inorganic fiber comprising Si—Ti or Zr—C—O, polycrystalline inorganic fiber comprising Si—Al—C—O available from Ube Industries, Ltd. under the trade name “TYRANO FIBER” and inorganic fiber comprising Si—C—O available from Nippon Carbon Co., Ltd. under the trade name “NICALON”, “HI NICALON”, or “HI NICALON TYPE S”. [0048]
  • The inorganic fiber is preferably used in an amount of 5 to 85% by volume based on the total ceramic matrix composite. [0049]
  • The ceramic composite material can be produced easily by using the matrix obtained by a combination of method D, E or F (method for forming the silicon carbide ceramic) and method A, B or C (method for forming the oxide phase) and the inorganic fiber in accordance with the following methods G or H. [0050]
  • Method G [0051]
  • A method comprising mixing or combining the inorganic fiber with the matrix comprising the powdered material forming an oxide phase (used in method A) and the powdered material forming silicon carbide ceramic (used in method D), and subjecting the resulting mixture or combination to heat treatment or pressing at high-temperature. When in using inorganic short fibers, the fibers are mixed with the mixed powder providing the matrix. When in using long fibers or woven fabric, nonwoven fabric or sheeting of inorganic fibers, such a fibrous layer and the mixed powder are built up alternately, or bundles of the long fibers having adhered thereto the mixed powder of the matrix are fabricated into woven fabric, nonwoven fabric or sheeting, and the resulting structures are laid up. The resulting powder mixture or overlaid structure is shaped as desired. After or simultaneously with the shaping, heat treatment is conducted to consolidate or sinter the mixed powder for the matrix to obtain a ceramic matrix composite. [0052]
  • Method H [0053]
  • A method comprising forming an oxide phase by method A, B or C and silicon carbide ceramic by method E or F in the inside of the above-mentioned woven fabric, nonwoven fabric or sheeting of the inorganic fiber or an aggregate of small cut pieces thereof. In order to change the degree of dispersion of the oxide phase or the proportion of the oxide phase, formation of the oxide phase and formation of the silicon carbide ceramic can alternate. Alternatively, formation of the oxide phase and formation of the silicon carbide ceramic can proceed simultaneously. For example, the powdered material providing an oxide phase (used in method A) is dispersed in the solution of a silicon carbide ceramic precursor polymer used in method E, the resulting dispersion is infiltrated into the inorganic fiber aggregate, and the impregnated fiber aggregate is rendered inorganic. [0054]
  • The ceramic matrix composite obtained by using the matrix according to the present invention exhibits excellent mechanical characteristics and fatigue characteristics at high temperature. It is therefore useful as a forming material for various parts particularly in the aerospace industry which are used under extremely severe conditions. [0055]
  • Having generally described the present invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified. [0056]
  • EXAMPLES
  • The present invention will now be illustrated in greater detail with reference to Examples, but it should be understood that the present invention is not construed as being limited thereto. Unless otherwise noted, all the parts and percents are by weight. [0057]
  • Preparation Example 1 Preparation of Raw Material for Silicon Carbide Ceramic
  • In a 5 liter three-necked flask were charged 2.5 liters of anhydrous xylene and 400 g of sodium. After the mixture was heated to the boiling point of xylene in an N[0058] 2 gas stream, 1 liter of dimethyldichlorosilane was added thereto dropwise over 1 hour, followed by heating under reflux for 10 hours. The precipitate thus formed was collected by filtration, washed successively with methanol and water to obtain 410 g of polydimethylsilane as white powder.
  • Separately, 750 g of diphenyldichlorosilane and 124 g of boric acid were heated in n-butyl ether under an N[0059] 2 gas stream at 100 to 120° C. The white resinous substance thus formed was heat treated in vacuo at 400° C. for 1 hour to obtain 515 g of polyborodiphenylsiloxane. A 8.2 g portion of the resulting polyborodiphenylsiloxane and 250 g of the above-obtained polydimethylsilane were mixed and heated to 350° C. in a quartz tube equipped with a refluxing tube in an N2 gas stream and maintained at that temperature for 6 hours while stirring to obtain 138 g of polycarbosilane having a siloxane bond in parts. In 0.3 liters of xylene were dissolved 40 g of the polycarbosilane and 7.3 g of titanium tetrabutoxide, and the solution was refluxed at 120° C. for 30 minutes in an N2 gas stream while stirring. Thereafter, xylene was evaporated, and the residue was further heated at 300° C. for 1 hour in an N2 gas stream and allowed to cool to give solid polytitanocarbosilane which was solid at room temperature.
  • Preparation Example 2 Preparation of Raw Material for Oxide Phase
  • BaO powder, MgO powder, Al[0060] 2O 3 powder and SiO2 powder were weighed out and mixed to prepare mixed powder for glass having a total weight of 1000 g at a BaO:MgO:Al2O3:SiO2 ratio of 14:8:28:50. The mixed powder was packed into a platinum crucible, fused by heating to 1600° C. or higher, and quenched. The resulting glass was ground to glass-ceramic powder having an average particle size of 10 μm or smaller (hereinafter designated BMAS glass-ceramic powder).
  • Preparation Example 3 Preparation of Raw Material for Oxide Phase
  • A hundred parts of a mixture consisting of 17.7% of strontium diethoxide (Sr(OC[0061] 2H5)2), 40.7% of aluminum isopropoxide (Al(OCH(CH3)2)3), and 41.6% of tetraethoxysilane (Si(OC2H5)4) were heat-refluxed in 100 parts of isopropyl alcohol to prepare a solution (hereinafter designated SAS sol-gel solution).
  • Example 1
  • In a mixed solution of 100parts of the polytitanocarbosilane obtained in Preparation Example 1 and 100 parts of xylene was added 10% of the BMAS glass-ceramic powder obtained in Preparation Example 2 to preparer a slurry in such a manner that the weight ratio of the BMAS glass-ceramic powder becomes 10% based on the whole weight of the resulting matrix. Commercially available silicon carbide fiber “TYRANNO FIBER TM-S6” produced by Ube Industries, Ltd. was disentangled and soaked in the resulting slurry. After deairing under reduced pressure of 500 Torr, the fiber bundle was impregnated with the slurry in an argon atmosphere at 4 atm. The impregnated fiber bundle was heated at 100° C. in an argon gas stream to remove xylene by evaporation. The fiber bundle was then fired in an electric furnace by heating up to 1300° C. at a rate of temperature rise of 50° C./hr in a nitrogen gas stream, maintaining at that temperature for 1 hour, cooling to 1000° C. at a rate of temperature drop of 100° C./hr, and allowing to further cool to room temperature. The impregnation and firing were repeated 5 times to obtain a composite using the matrix of the present invention. The tensile strength of the resulting composite was measured in accordance with “Test method for stress-strain behavior of continuous fiber reinforced ceramic matrix composite at room and elevated temperatures (PEC-TS CMC 01-1997)” specified in the standards of Petroleum Energy Center, Japan. The results of the measurement are shown in Table 1 below. [0062]
  • Examples 2 to 5 and Comparative Example 1
  • Ceramic matrix composites were prepared in the same manner as in Example 1, except for varying the weight ratio of the BMAS glass-ceramic powder as shown in Table 1. The tensile strength of the resulting composites is shown in Table 1. [0063]
  • Example 6
  • A ceramic matrix composite was prepared in the same manner as in Example 1, except for replacing TYRANNO FIBER TM-S6 with TYRANNO FIBER ZMI-S5 produced by Ube Industries, Ltd. and replacing BMAS glass-ceramic powder with commercially available ZrSiO[0064] 4 powder produced by Wako Pure Chemical Industries, Ltd. The tensile strength of the resulting composite is shown in Table 2 below.
  • Examples 7 to 10 and Comparative Example 2
  • Ceramic matrix composites were prepared in the same manner as in Example 6, except for varying the weight ratio of ZrSiO[0065] 4 powder as shown in Table 2. The tensile strength of the resulting composite materials is shown in Table 2.
  • Example 11
  • The impregnated fiber bundle prepared in Example 6 was fired once to partially form a silicon carbide matrix. The fiber bundle in which a silicon carbide matrix had been partially formed was soaked in the SAS sol-gel solution prepared in Preparation Example 3. After deairing under reduced pressure of 500 Torr, the fiber bundle was impregnated with the sol-gel solution in an argon atmosphere at 4 atm. The impregnated fiber bundle was heated at 80° C. in an air stream to remove isopropyl alcohol by evaporation and then fired in an electric furnace by heating up to 800° C. at a rate of 50° C./hr and maintaining at that temperature for 1 hour, followed by allowing to cool to room temperature thereby to render the impregnated fiber bundle inorganic. The impregnation and rendering inorganic, which formed an oxide phase comprising SrO—Al[0066] 2O3—SiO2 glass-ceramics, were repeated three times to obtain a ceramic matrix composite using the matrix of the present invention. The weight ratio of the oxide phase was 35% based on the whole weight of the resulting matrix. The tensile strength of the resulting composite material is shown in Table 3 below.
    TABLE 1
    BMAS
    Glass-
    ceramic Tensile Strength (MPa)
    Powder room 1000°
    (%) temp. C. 1200° C. 1300° C. 1400° C.
    Example 1 10 500 320 290 260 200
    Example 2 20 520 330 300 270 220
    Example 3 30 440 390 380 340 280
    Example 4 50 380 300 270 220 170
    Example 5 80 320 260 230 180 150
    Compara-  0 250 200 180 160 140
    tive
    Example 1
  • [0067]
    TABLE 2
    ZrSiO4 Tensile Strength (MPa)
    powder room 1000°
    (%) temp. C. 1200° C. 1300° C. 1400° C.
    Example 6 10 450 400 390 380 360
    Example 7 20 480 410 400 390 380
    Example 8 30 500 430 420 410 400
    Example 9 50 420 400 380 340 300
    Example 80 380 360 330 300 250
    10
    Compara-  0 310 250 220 190 180
    tive
    Example 2
  • [0068]
    TABLE 3
    Tensile Strength (MPa)
    room
    temp. 1000° C. 1200° C. 1300° C. 1400° C.
    Example 11 490 420 400 380 370
  • While the matrix according to the present invention has been described by reference to its preferred embodiments, it should be understood that the present invention is not limited thereto, and various changes and modifications can be made without departing from the spirit and scope of the present invention. [0069]
  • This application claims the priority of Japanese Patent Application No. 10-261934 filed Sep. 16, 1998 which is incorporated herein by reference. [0070]

Claims (6)

What is claimed is:
1. A matrix for high-performance ceramic matrix composite containing inorganic fiber for reinforcement, which comprises silicon carbide ceramic and an oxide phase having dispersed in said silicon carbide ceramic.
2. The matrix according to
claim 1
, wherein said oxide phase comprises an oxide, glass or glass-ceramic.
3. The matrix according to
claim 1
, wherein said silicon carbide ceramic comprises:
(a) an amorphous substance substantially comprising Si, Ti and/or Zr, C, and O;
(b) (b-1) the amorphous substance (a) and (b-2) an aggregate of a crystalline substance having a grain size of 1000 nm or smaller comprising β-SiC and TiC and/or ZrC; or
(c) a mixed system of (c-1) the crystalline substance (b-2) and (c-2) an amorphous structure which is present in the vicinity of the crystalline substance and comprises SiOx and TiOx and/or ZrOx (0<X≦2); and
the average elemental composition of (a), (b) and (c) comprising 30 to 80 wt % of Si, 15 to 69 wt/ of C, and 0.005 to 20 wt % of O.
4. The matrix according to
claim 1
, wherein said silicon carbide ceramic comprises:
(d) an amorphous substance substantially comprising Si, C, and O;
(e) an aggregate of (e-1) an aggregate of a crystalline substance comprising β-SiC having a grain size of 1000 nm or smaller and (e-2) amorphous SiO2 and/or the amorphous substance (d); or
(f) a mixture of (f-1) the crystalline substance (e-1) and/or the aggregate (e) and (f-2) a carbon flocculate; and
the average elemental composition of structure (d), (e) and (f) comprising 30 to 80 wt % of Si, 10 to 65 wt % of C, and 0.005 to 25 wt % of O.
5. The matrix according to
claim 1
, wherein said oxide phase is present in the matrix in an amount of 1 to 80% by weight based on the whole weight of the matrix.
6. The matrix according to
claim 1
, wherein said oxide phase is present in the form of particles or forms a continuous network structure.
US09/257,214 1998-09-16 1999-02-25 High performance ceramic matrix composite Expired - Fee Related US6331496B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10-261934 1998-09-16
JP26193498 1998-09-16

Publications (2)

Publication Number Publication Date
US20010008865A1 true US20010008865A1 (en) 2001-07-19
US6331496B2 US6331496B2 (en) 2001-12-18

Family

ID=17368728

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/257,214 Expired - Fee Related US6331496B2 (en) 1998-09-16 1999-02-25 High performance ceramic matrix composite

Country Status (3)

Country Link
US (1) US6331496B2 (en)
EP (1) EP0987232A3 (en)
CA (1) CA2264213A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001219A1 (en) * 2006-12-07 2009-01-01 Honeywell International, Inc. Fiber polymer matrix composites having silicon-containing inorganic-organic matrices and methods of making the same
US20120076927A1 (en) * 2010-02-01 2012-03-29 United States Government As Represented By The Secretary Of The Army Method of improving the thermo-mechanical properties of fiber-reinforced silicon carbide matrix composites
US20130074730A1 (en) * 2007-07-17 2013-03-28 United Technologies Corporation High temperature refractory coatings for ceramic substrates
US20130167374A1 (en) * 2011-12-29 2013-07-04 General Electric Company Process of producing ceramic matrix composites and ceramic matrix composites formed thereby
US20170341986A1 (en) * 2014-12-12 2017-11-30 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material
US20180170811A1 (en) * 2015-06-17 2018-06-21 National Institute For Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition
US10406556B2 (en) * 2013-10-14 2019-09-10 United Technologies Corporation Assembly and method for transfer molding
CN112876255A (en) * 2021-03-15 2021-06-01 洛阳索莱特材料科技有限公司 Silicon carbide ceramic product and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176180A (en) * 2000-12-06 2002-06-21 Hitachi Ltd Thin film semiconductor element and its manufacturing method
JP4586310B2 (en) * 2001-07-04 2010-11-24 株式会社Ihi Manufacturing method of ceramic composite member
US7300621B2 (en) * 2005-03-16 2007-11-27 Siemens Power Generation, Inc. Method of making a ceramic matrix composite utilizing partially stabilized fibers
US7726936B2 (en) * 2006-07-25 2010-06-01 Siemens Energy, Inc. Turbine engine ring seal
US7950234B2 (en) * 2006-10-13 2011-05-31 Siemens Energy, Inc. Ceramic matrix composite turbine engine components with unitary stiffening frame
US8118546B2 (en) * 2008-08-20 2012-02-21 Siemens Energy, Inc. Grid ceramic matrix composite structure for gas turbine shroud ring segment
RU2447039C1 (en) * 2010-10-05 2012-04-10 Российская Федерация в лице Министерства промышленности и торговли Российской Федерации (Минпромторг России) Ceramic composite material
US9650303B2 (en) 2013-03-15 2017-05-16 Rolls-Royce Corporation Silicon carbide ceramic matrix composites
CN110483080B (en) * 2019-09-06 2021-12-21 唐山市瑞兆碳化硅制品有限公司 Silicon carbide powder and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990470A (en) * 1987-11-05 1991-02-05 Ube Industries, Ltd. High-strength and high-toughness sinter and process for producing the same
US5354602A (en) * 1991-02-12 1994-10-11 Allied-Signal Inc. Reinforced silicon carboxide composite with boron nitride coated ceramic fibers
EP0519641A1 (en) * 1991-06-17 1992-12-23 General Electric Company Silicon carbide composite with coated fiber reinforcement and method of forming
JP2926468B2 (en) 1995-08-30 1999-07-28 株式会社日立製作所 Silicon carbide ceramics and method for producing the same
JP3598726B2 (en) 1997-04-15 2004-12-08 宇部興産株式会社 SiC-based composite material with improved oxidation resistance and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001219A1 (en) * 2006-12-07 2009-01-01 Honeywell International, Inc. Fiber polymer matrix composites having silicon-containing inorganic-organic matrices and methods of making the same
US20130074730A1 (en) * 2007-07-17 2013-03-28 United Technologies Corporation High temperature refractory coatings for ceramic substrates
US9315674B2 (en) * 2007-07-17 2016-04-19 United Technologies Corporation High temperature refractory coatings for ceramic substrates
US20120076927A1 (en) * 2010-02-01 2012-03-29 United States Government As Represented By The Secretary Of The Army Method of improving the thermo-mechanical properties of fiber-reinforced silicon carbide matrix composites
US20130167374A1 (en) * 2011-12-29 2013-07-04 General Electric Company Process of producing ceramic matrix composites and ceramic matrix composites formed thereby
US10406556B2 (en) * 2013-10-14 2019-09-10 United Technologies Corporation Assembly and method for transfer molding
US20170341986A1 (en) * 2014-12-12 2017-11-30 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material
US11142483B2 (en) * 2014-12-12 2021-10-12 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material
US20180170811A1 (en) * 2015-06-17 2018-06-21 National Institute For Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition
US10822277B2 (en) * 2015-06-17 2020-11-03 National Institute For Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic compositions
CN112876255A (en) * 2021-03-15 2021-06-01 洛阳索莱特材料科技有限公司 Silicon carbide ceramic product and preparation method thereof

Also Published As

Publication number Publication date
CA2264213A1 (en) 2000-03-16
EP0987232A3 (en) 2000-08-30
US6331496B2 (en) 2001-12-18
EP0987232A2 (en) 2000-03-22

Similar Documents

Publication Publication Date Title
US6331496B2 (en) High performance ceramic matrix composite
Mouchon et al. Oxide ceramic matrix/oxide fibre woven fabric composites exhibiting dissipative fracture behaviour
US5039635A (en) Carbon-coated reinforcing fibers and composite ceramics made therefrom
US5198302A (en) Coated inorganic fiber reinforcement materials and ceramic composites comprising the same
JPH0239468B2 (en)
US5132256A (en) Fiber-reinforced composite comprising mica-doped ceramic matrix
JP2016188439A (en) Crystalline silicon carbide-based ceramic fiber and manufacturing method therefor
JP3557939B2 (en) Matrix for high performance ceramic matrix composites
US20210300829A1 (en) Crystalline silicon carbide fiber and method for manufacturing same, and ceramic composite substrate
JP2004277890A (en) Silicon carbide ceramic fiber and method for producing the same
Greil Thermodynamic calculations of Si-CO fiber stability in ceramic matrix composites
Rice Processing of ceramic composites
Doreau et al. The complexity of the matrix micro structure in SiC-fiber-reinforced glass ceramic composites
JP3141512B2 (en) Silicon carbide based inorganic fiber reinforced ceramic composite
JP3374169B2 (en) Ceramic composite materials
EP1043293A1 (en) Ceramics-based composite material excellent in high-temperature durability
JP3193911B2 (en) Ceramic-based composite material with excellent high-temperature durability
Naslain Recent advances in the field of ceramic fibers and ceramic matrix composites
Naslain LCTS, University of Bordeaux 33600-Pessac, France
Chawla et al. Ceramic matrix materials
JP3617092B2 (en) Inorganic fiber reinforced ceramic composite material
JP3097894B2 (en) Preparation of inorganic fiber reinforced ceramic composites.
JPH11171658A (en) Crystalline silicon carbide-based fiber-reinforced ceramic composite material
Wilson et al. Ceramic fibers
JPH09309743A (en) Ceramic composite material

Legal Events

Date Code Title Description
AS Assignment

Owner name: RESEARCH INSTITUTE OF ADVANCED MATERIAL GAS-GENERA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKAYASU, TETSUO;REEL/FRAME:009802/0312

Effective date: 19990216

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20051218