US20010006015A1 - Removable tool holder - Google Patents

Removable tool holder Download PDF

Info

Publication number
US20010006015A1
US20010006015A1 US09/792,975 US79297501A US2001006015A1 US 20010006015 A1 US20010006015 A1 US 20010006015A1 US 79297501 A US79297501 A US 79297501A US 2001006015 A1 US2001006015 A1 US 2001006015A1
Authority
US
United States
Prior art keywords
tool
spindle
bore
sleeve
retention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/792,975
Other versions
US6343901B2 (en
Inventor
Dale Wheeler
Thomas Wheeler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/792,975 priority Critical patent/US6343901B2/en
Publication of US20010006015A1 publication Critical patent/US20010006015A1/en
Application granted granted Critical
Publication of US6343901B2 publication Critical patent/US6343901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/1207Chucks with simultaneously-acting jaws, whether or not also individually adjustable moving obliquely to the axis of the chuck in a plane containing this axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/22Jaws in the form of balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/223Jaws in the form of cylindrical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S279/00Chucks or sockets
    • Y10S279/904Quick change socket
    • Y10S279/905Quick change socket with ball detent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/17Socket type
    • Y10T279/17128Self-grasping
    • Y10T279/17171One-way-clutch type
    • Y10T279/17188Side detent
    • Y10T279/17196Ball or roller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/17Socket type
    • Y10T279/17411Spring biased jaws
    • Y10T279/17418Unitary
    • Y10T279/17452Unitary with jaw pads or insert
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/17Socket type
    • Y10T279/17666Radially reciprocating jaws
    • Y10T279/17692Moving-cam actuator
    • Y10T279/17743Reciprocating cam sleeve
    • Y10T279/17752Ball or roller jaws
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/94Tool-support
    • Y10T408/95Tool-support with tool-retaining means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30952Milling with cutter holder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2585Tool rest
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2585Tool rest
    • Y10T82/2589Quick release tool or holder clamp

Definitions

  • the present invention relates power tools and, more particularly, to rotary tools.
  • the invention is particularly directed to a tool releasing mechanism for rotary power tools such as rotary tools, routers, and die grinders.
  • Rotary devices are used for numerous tasks by carpenters, artists and do-it-yourselfers. Rotary devices are ideal for cutting, cleaning, engraving, sanding, sharpening and other applications. Rotary devices are utilized in hobbies, woodwork and numerous tasks, both commercially and residential.
  • rotary devices include a collet device to retain a tool within the device.
  • the tools usually include cylindrical shafts with a desired diameter.
  • the collets ordinarily frictionally grab the shafts to retain the tools within the rotary device.
  • the collet has a threaded sleeve which exerts a radial force onto the shaft as it is rotated to tighten down the tool within the device.
  • the present invention provides the art with a quick release tool holder which is easily manipulated by the user.
  • the present invention provides a rotatable device which enables quick removal and retention of tools having cylindrical shanks.
  • the present invention provides retention members which solely retain the tools within the rotary device.
  • a releasable tool holder comprises a spindle having two ends. One of the ends is adapted to secure the spindle to the rotary device. The other end includes a bore to receive a tool.
  • a mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end. The mechanism comprises at least two unlike retention members to apply a force on the tool in the bore to retain the tool within the bore.
  • a sleeve surrounds a portion of the spindle and the at least two retention members. The sleeve includes a common surface in contact with the at least two retention members to apply a force on the two retention members. The surface contacts the retention member and rolls to a force equilibrium.
  • a biasing member maintains the sleeve in a retention position on the spindle.
  • the sleeve common surface is tapered along the spindle axis.
  • a second biasing member may be associated with at least one retention member to register the retention member on the spindle.
  • One of the retention members is a ball while the other is a non-circular elliptical tapered roller.
  • the ball may be a pair of balls.
  • a rotary device comprises a housing with a motor to provide rotary movement.
  • a power source either an AC or a DC source, is coupled with the motor.
  • a spindle is coupled with the motor.
  • An activation member is included to energize the motor.
  • a releasable tool is coupled with the spindle.
  • One of the spindle ends is adapted to secure the spindle to the rotary device.
  • the other end includes a bore to receive a tool.
  • a mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end.
  • the mechanism comprises at least two unlike retention members to apply a force on the tool in the bore to retain the tool within the bore.
  • a sleeve surrounds a portion of the spindle and the at least two retention members.
  • the sleeve includes a common surface in contact with the at least two retention members to apply a force on the two retention members.
  • the surface contacts the retention member and rolls to a force equilibrium.
  • the retention member exerts tremendous force on the tool against the surface which maintains the tool in the bore.
  • a biasing member maintains the sleeve in a retention position on the spindle.
  • the sleeve common surface is tapered along the spindle axis.
  • a second biasing member may be associated with at least one retention member to register the retention member on the spindle.
  • One of the retention members is a ball while the other is a non-circular elliptical tapered roller.
  • the ball may be a pair of balls.
  • a releasable tool comprises a spindle having two ends. One end is adapted to secure the spindle with a rotary device. The other end includes a bore to receive a tool.
  • a mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end.
  • the mechanism includes three retention members, a ball and two non-circular elliptical tapered rollers, to apply force on the tool in the bore to retain the tool in the bore.
  • a sleeve surrounds a portion of the spindle and the three retention members. The sleeve includes a common surface tapered along the spindle axis in contact with each of the three retention members.
  • the tapered surface contacts each of the three retention members and rolls to a force equilibrium.
  • the retention members exert a tremendous force on the tool against the tapered surface which maintains the tool in the bore.
  • the force lessens, which enables the tool to be removed from the bore.
  • a pair of springs are also included. One spring maintains the sleeve in a retention position on the spindle.
  • the other spring which may include a squared end, registers the ball on the spindle.
  • a releasable tool holder comprises a spindle having two ends. One of the ends is adapted to secure the spindle to the rotary device. The other end includes a bore to receive a tool.
  • a mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end.
  • the mechanism comprises at least one retention member to apply a force on the tool in the bore to retain the tool within the bore.
  • a sleeve surrounds a portion of the spindle and the at least one retention member. The sleeve includes a surface in contact with the at least one retention member to apply a force on the retention member. The surface contacts the retention member and rolls to a force equilibrium.
  • the retention member exerts tremendous force on the tool against the surface which maintains the tool in the bore. As the surface moves with respect to the retention member, the force lessens, which enables the tool to be removed from the bore.
  • a biasing member maintains the sleeve in a retention position on the spindle.
  • the sleeve surface is tapered along the spindle axis.
  • the sleeve surface may be arcuate with respect to the circumferential direction with a radius larger than the radius of the retention member.
  • a second biasing member may be associated with the at least one retention member to register the retention member on the spindle and to each other.
  • the bottom of the spindle bore may be angled with respect to the spindle axis to center the tool in the bore.
  • An O-ring seal may be positioned in the bore to prohibit contamination from entering the bore.
  • an additional sleeve may be positioned inside the bore to enable retention of smaller diameter tools as well as to reduce marking or abrading of the shank.
  • a rotary device comprises a housing with a motor to provide rotary movement.
  • a power source either an AC or a DC source, is coupled with the motor.
  • a spindle is coupled with the motor.
  • An activation member is included to energize the motor.
  • a releasable tool is coupled with the spindle.
  • One of the spindle ends is adapted to secure the spindle to the rotary device.
  • the other end includes a bore to receive a tool.
  • a mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end.
  • the mechanism comprises at least one retention member to apply a force on the tool in the bore to retain the tool within the bore.
  • a sleeve surrounds a portion of the spindle and the at least one retention member.
  • the sleeve includes a surface in contact with the at least one retention member to apply a force on the retention member.
  • the surface contacts the retention member and rolls to a force equilibrium.
  • the retention member exerts tremendous force on the tool against the surface which maintains the tool in the bore.
  • a biasing member maintains the sleeve in a retention position on the spindle.
  • the sleeve surface is tapered along the spindle axis.
  • the sleeve surface may be arcuate with respect to the circumferential direction with a radius larger than the radius of the retention member.
  • the retention members rotate to slightly back drive the sleeve until the arcuate surface frictionally pinches the retention members between the sleeve and tool to stop rotation of the retention members to provide a self-locking feature which prevents the retention members from further back driving the sleeve.
  • a second biasing member may be associated with the at least one retention member to register the retention member on the spindle and to each other.
  • the bottom of the spindle bore may be angled with respect to the spindle axis to center the tool in the bore.
  • An O-ring seal may be positioned in the bore to contact the shaft to prohibit contamination from entering the bore.
  • an additional sleeve may be positioned inside the bore to enable retention of smaller diameter tools as well as to reduce marking or abrading of the shank.
  • a releasable tool comprises a spindle having two ends. One end is adapted to secure the spindle with a rotary device. The other end includes a bore to receive a tool. A mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end. The mechanism includes three balls to apply force on the tool in the bore to retain the tool in the bore. A sleeve surrounds a portion of the spindle and the three balls. The sleeve includes a surface tapered along the spindle axis in contact with each of the three balls. The tapered surfaces contact each of the three balls and rolls to a force equilibrium.
  • the balls exert a tremendous force on the tool against the tapered surface which maintains the tool in the bore. As the tapered surface moves with respect to the retention member, the force lessens, which enables the tool to be removed from the bore.
  • a pair of springs are also included. One spring maintains the sleeve in a retention position on the spindle. The other spring, which includes a squared end, registers the balls on the spindle.
  • the tapered surfaces may be arcuate in a circumferential direction and have a radius larger than the balls.
  • the retention members rotate to slightly back drive the sleeve until the arcuate surface frictionally pinches the retention members between the sleeve and tool to stop rotation of the retention members to provide a self-locking feature which prevents the retention members from further back driving the sleeve.
  • the bottom of the spindle bore may be angled with respect to the axis of the bore to center the tool in the bore.
  • a sleeve may be positioned in the bore to retain smaller diameter shafts in the bore.
  • the sleeve may be used to protect the shafts from marking, abrading or the like.
  • the sleeve may be a split sleeve with recesses on its outer periphery. Further, an O-ring may be positioned in the bore to contact the tool shaft to prohibit contamination from entering the bore.
  • FIG. 1 is a perspective view of a rotary device in accordance with the present invention.
  • FIG. 2 is an exploded view of a quick release tool in accordance with the present invention.
  • FIG. 3 is a longitudinal cross-section view of the tool of FIG. 2.
  • FIG. 4 is a cross-section view of FIG. 3 along line 4 - 4 thereof.
  • FIG. 5 is a second embodiment of a quick release mechanism in accordance with the present invention.
  • FIG. 6 is a cross-section view of FIG. 5 along line 6 - 6 thereof.
  • FIG. 7 is a cross-section view of an additional embodiment in accordance with the present invention.
  • FIG. 8 is a cross-section view of FIG. 7 along line 8 - 8 thereof.
  • FIG. 9 is a cross-section view of another embodiment of the present invention.
  • FIG. 10 is a cross-section view of FIG. 9 along line 10 - 10 thereof.
  • FIG. 11 is a cross-section view like FIG. 3 of another embodiment in accordance with the present invention.
  • FIG. 12 is a cross-section view of FIG. 11 along line 12 - 12 thereof.
  • FIG. 13 is a view like FIG. 3 of another embodiment of the present invention.
  • FIG. 14 is a cross-section view of FIG. 13 along line 14 - 14 thereof.
  • FIG. 15 is a view like FIG. 13 of another embodiment of the present invention.
  • FIG. 16 is a cross-section view of another embodiment of the present invention.
  • FIG. 17 is a cross-section view of FIG. 16 along line 17 - 17 thereof.
  • a rotary device is illustrated and designated with the reference numeral 20 .
  • the rotary device includes a motor 22 to provide rotary movement, and a power source 24 .
  • the power source 24 is shown as a power cord providing AC current; however, the device could be battery operated and provided with a battery.
  • An activation member 26 is electrically coupled with the motor 22 to turn the motor on and off to rotate the spindle 28 which is coupled with the motor 22 .
  • a tool 30 is coupled with the spindle 28 via a releasable mechanism 40 .
  • the tool 30 may have some type of head 32 and a shaft 34 secured with the head 32 .
  • the shaft 34 is ordinarily cylindrical and of a desired diameter.
  • the spindle 28 ordinarily includes apertures 42 to receive retention members 44 .
  • three balls retain the tool 30 within the bore 46 of the spindle 28 .
  • a sleeve 48 surrounds the bore end of the spindle 28 .
  • the sleeve 48 also surrounds the balls 44 as will be described herein.
  • a retention member 50 retains the sleeve 48 on the spindle 28 .
  • a spring 52 which provides a biasing force, maintains the sleeve 48 in a retained position as seen in FIG. 3.
  • a spring 54 with a squared or ground end 55 , is included which registers the balls 44 within the apertures 42 .
  • the sleeve 48 includes a bore 56 .
  • the bore 56 has a diameter which enables the bore to slide over the retention member 50 and retain the spring 52 within the bore 56 as seen in FIG. 3.
  • a shoulder 58 separates the bore from a second bore 60 .
  • the second bore 60 includes surfaces 62 , which are tapered along the longitudinal axis of the spindle 28 .
  • the tapered surfaces 62 are in contact with the balls 44 .
  • the tapered surfaces 62 apply the force to the balls 44 which, in turn, apply force to the cylindrical tool shank 34 .
  • the spring 54 urges the balls 44 toward the origin of the tapered surfaces 62 . This causes the balls to roll against the tapered surfaces 62 . Since the balls 44 cannot roll up the tapered surfaces 62 to their origin, the balls exert tremendous retention force on the tool shank 34 to maintain the tool in the bore. Thus, if a withdrawal force is applied on the tool, the balls try to roll up the tapered surfaces 62 which prohibit withdrawal. However, once the sleeve 48 is moved against spring 52 , the distal end of the tapered surfaces 62 moves forward enabling removal of the tool.
  • the tapered surface is angled from the spindle axis at an angle of from about one (1) to about three (3) degrees. This applies a significant amount of force to the balls 44 to retain the shaft 34 within the spindle 28 .
  • the spring 54 applies force to the balls 44 so that the balls 44 are registered on substantially the same plane in the sleeve 48 .
  • the registration spring has ground on planar ends which urges the balls 44 to the end of the apertures. This forces the balls 44 to be in the same plane with respect to one another and with respect to the sleeve 48 . With the balls in registration, the sleeve does not experience binding forces from the balls. Thus, this eliminates friction forces enabling the balls to roll instead of slide in the apertures.
  • the retainer 50 inner surface contacts the outer surface 64 of the spindle to friction-fit the two parts together.
  • the spindle 28 includes a second end 66 which couples with the motor which provides the rotary movement of the spindle 28 .
  • the spindle bore 46 has a bottom 68 which includes side walls which are angled with respect to the bore axis. The angled side walls help to center the tool within the bore. The side walls are angled at about ten to twelve (10-12°) degrees with respect to the spindle axis.
  • the tapered surfaces 62 are arcuate with respect to the circumference of the spindle 28 .
  • the arc of the surfaces 62 define a radius r 2 .
  • the balls have a radius r 1 .
  • the radius r 2 of the arc of the surface 62 is at least two times greater than the radius r 1 of the balls 44 . Accordingly, line I 1 between the center of the tool shaft 34 , passing through the diameter of the ball 44 , and the surface 62 is larger than any line I n from the center of the tool shaft to the surface 62 .
  • the balls 44 begin to rotate, like a gear train, in an opposite direction.
  • the sleeve 44 begins to rotate, or back drive, in the direction of rotation of the balls 44 .
  • the sleeve 48 becomes locked in position. This is due to the fact that I 1 >I n .
  • the balls 44 try to roll against the circumferential surface 62 of the sleeve 48 , the balls 44 are pinched between the surface 62 and the tool shaft 34 , since the balls 44 are no longer on a line defined by I 1 , but, due to their rolling movement, are on a line defined by I n .
  • the balls 44 are prohibited from rolling and exert an extreme force on the tool shaft 34 , locking the tool shaft 34 with the sleeve 48 .
  • This feature also yields a self-energizing lock permitting a low force locking spring.
  • the balls 44 auto lock the spindle 34 .
  • the sleeve 48 may have a smaller outer diameter.
  • the self-energizing feature also enables a single ball to be used to retain the tool within the spindle bore.
  • the sleeve 48 is moved away from the spindle connecting end 66 which, in turn, moves the distal end of the tapered surfaces towards the front bore end of the spindle.
  • This movement of the sleeve 48 enables the tapered surfaces 62 to exert less force on the balls 44 which enables the shaft to be pulled out of the spindle bore 46 .
  • the sleeve 48 is pulled forward, away from the spindle attachment end 66 , to enable the shaft to be inserted into the bore 46 .
  • the force which is exerted onto the shaft 34 is varied.
  • the tool shaft 34 is either retained, as illustrated in FIG. 3, in the spindle, or the shaft 34 may be removed from the spindle bore.
  • FIGS. 5 and 6 an additional embodiment of the invention is shown.
  • the elements which relate to those previously described are marked with the same reference numerals.
  • the spindle 28 is substantially the same as that shown, however the apertures 42 have been replaced with slots 42 ′ which are open to the end of the spindle 28 .
  • the bore 46 is substantially the same as that previously described.
  • the balls 44 are positioned in the slots 42 ′ and are held in registration by a bushing 80 .
  • the bushing 80 has fingers 82 which extend into the slots 42 to maintain balls within the slots.
  • Spring 54 ′ exerts a force on the bushing 80 to provide the biasing force to retain the balls 44 in a registered position.
  • the sleeve 48 ′ has tapered bore 62 ′ which extends from one end of the sleeve 48 ′. The sleeve 48 ′ may rotate with respect to the spindle 28 .
  • a spring 52 ′ maintains the sleeve 48 in a retention position.
  • the tapered bore 62 ′ applies a force on the balls 44 which, in turn, applies a force onto the shank 34 .
  • the sleeve 48 ′ is moved toward the spindle securement end 66 to release the shank 34 from the spindle 28 .
  • the distal end of the tapered surface moves closer to the spindle securement end 66 which applies a lesser force onto the balls 44 which enables the tool shank 34 to be removed from the bore 46 .
  • the sleeve 48 ′ is moved in a direction opposite to that of sleeve 48 of FIG. 3.
  • FIGS. 7 and 8 an additional embodiment of the present invention is shown.
  • the embodiment in FIG. 7 is like that of FIG. 5.
  • the sleeve 48 ′′ has an outer configuration different than that of FIG. 5.
  • the tapered surfaces 62 are like those of FIG. 3 as best seen in FIG. 8.
  • the radius r 2 of the arcs of the tapered surfaces 62 in the circumferential direction is greater than the radius r 1 of the balls 44 .
  • the spindle 28 is like that described in FIG. 5.
  • the difference is a retaining member 50 ′′ which is frictionally fit in the slots 42 ′.
  • a cap 88 is positioned over the retainer 50 ′′ which serves to steady the sleeve 48 ′′ as it is moved inward along the spindle 28 .
  • the spring 54 acts directly on the balls 44 . Accordingly, the bushing 80 as described above has been removed and a retaining member 50 ′′ has been positioned into the slots 42 ′.
  • the sleeve 48 ′′ releases the tool shank 34 like those described above.
  • FIGS. 9 and 10 an additional embodiment of the present invention is shown.
  • the embodiment is like that of FIG. 3.
  • the spindle 28 is like that described above.
  • the sleeve 48 with tapered surfaces 62 is like that previously described.
  • a wave spring 90 which provides higher spring force has been substituted for spring 52 .
  • a cap 92 is positioned on the end of the spindle 28 to retain the spring 90 and, in turn, sleeve 48 on the spindle 28 .
  • a sleeve 100 to adapt to smaller diameter shafts, is positioned within the spindle bore 46 .
  • the sleeve 100 includes a knurled or axially splined portion 102 to retain a tool shank 34 within the bore 46 .
  • the sleeve 100 also includes a chambered end 104 .
  • An O-ring 108 is positioned within a bore step 110 of the cap 92 .
  • the O-ring 108 serves to seal the shank 34 within the bore 46 .
  • an O-ring 106 may seal the cap 92 with the sleeve 48 .
  • the sleeve 0 also includes an axial slit 112 which enable compression of the sleeve 100 when force is applied to the sleeve by balls 44 .
  • the sleeve 100 as force is applied by the balls 44 , applies a circumferential compression force onto the shaft 34 with the knurled surface 102 in contact with and gripping the shaft 34 .
  • the sleeve 100 may be of a different material than the shaft.
  • the balls 44 do not apply a force directly onto the shaft 34 . Accordingly, the shaft 34 does not become marked or abraded by the balls acting on the shaft.
  • the sleeve 100 may have a hardness higher than that of the shaft to enable a strong force to be applied by the balls onto the sleeve 100 and, in turn, onto the shaft 34 .
  • the sleeve 48 is moved outward away from the connection end 66 of the spindle as described above with respect to FIG. 3.
  • the spindle 28 is like that described.
  • the sleeve 48 includes tapered surfaces 62 ′. Tapered surfaces receive discs or rollers 144 .
  • the discs 144 have an arcuate running face 146 .
  • the arcuate running face 146 is on a radius substantially equal to the radius of the tool shaft 34 .
  • the tapered surface 62 ′ is arcuate corresponding to the running face 146 .
  • the discs 144 are enabled to roll against the tapered surface 62 ′.
  • the discs include a wider body portion 148 which mates within the slot 142 of the spindle 28 .
  • the spindle slots 142 act to position the disc 144 within the spindle 28 .
  • a bushing 160 is positioned in the slots 142 to register the discs 144 .
  • the bushing 160 is similar to bushing 82 described above and provides the same function. Also, the spring 52 pushes against the bushing 160 to provide the registration force to keep the disc 144 registered in the same plane within the sleeve 48 .
  • the retention mechanism functions like that described in FIG. 3 above.
  • FIG. 13 is a view like FIG. 3 and like parts will be identified with the same reference numerals.
  • the spindle 28 includes apertures 42 to retain retention members 202 and 204 within the spindle.
  • the retention member 202 is a ball in the aperture 42 or a pair of balls may be maintained in the aperture 42 .
  • the retention members 204 are elliptical tapered rollers.
  • the elliptical tapered rollers have a non-circular elliptical cross-section as seen in FIG. 14. Likewise, the rollers are tapered and increase in size from one end to the other.
  • a sleeve 206 surrounds the bore end of the spindle 28 .
  • the sleeve 206 includes a common tapered surface 208 which also surrounds the retention members 202 and 204 .
  • a spring 210 is positioned within the sleeve which provides a biasing force to maintain the sleeve 206 in a retained position.
  • a retention member 212 retains the sleeve onto the spindle and acts as a dust shield.
  • a sleeve 214 is positioned adjacent the securement end of the spindle to prohibit dust from entering into the apertures 42 inside of the sleeve 206 .
  • the sleeve 206 includes a bore 216 .
  • the bore has a diameter which enables the bore to slide over the retention member 212 and retain the spring 210 within the bore 216 as seen in FIG. 13.
  • a shoulder 218 separates the bore from a second bore which is defined by the common tapered surface 208 .
  • the common tapered surface 208 is in contact with both the ball and the elliptical tapered rollers.
  • the common tapered surface 208 applies the force onto the ball 202 and elliptical tapered rollers 204 which, in turn, apply force to the cylindrical tool shank 34 .
  • a spring 220 urges the ball 202 towards the origin of the tapered surface 208 .
  • the spring 220 acts like the spring 54 previously described.
  • a sleeve like that illustrated in FIG. 9 may be used with the present embodiment to prohibit abrading or to accommodate smaller diameter tool shafts in the retention mechanism.
  • the ball or balls 202 apply a point force onto the tool shaft 34 while the elliptical tapered rollers 204 apply a line contact onto the shaft.
  • the balls act to prohibit the axial withdrawal of the shaft from the spindle while the elliptical tapered rollers prohibit circumferential rotation of the shaft 34 within the spindle 28 .
  • the retention members 202 and 204 positively retain the tool 30 within the spindle.
  • the balls will roll against the tapered surface 208 . Since the ball 202 cannot roll-up the tapered surface 208 to its origin, the ball exerts a tremendous retention force on the tool shank 34 to maintain the tool in the bore. Thus, if a withdrawal force is applied on the tool, the ball or balls try to roll-up the tapered surface 208 which prohibits withdrawal. However, once the sleeve is moved against the spring 210 , the distal end of the tapered surface 208 moves forward enabling removal of the tool.
  • FIG. 15 an additional embodiment is illustrated.
  • the quick release mechanism is like that illustrated in FIG. 13; however, the spindle apertures have different sizes.
  • like elements will be identified with the same reference numerals.
  • the ball retention members 202 are retained in an aperture 232 which has an axial length which is less than the aperture 234 which retains the elliptical tapered rollers. Since the weight of the elliptical tapered rollers are substantially more than the one or two balls 202 , a dynamic imbalance is created. In order to balance the rotational imbalance, the spindle 28 is modified to provide more mass by the balls 202 , e.g. a smaller aperture, and less mass by the rollers 204 , e.g. larger apertures. Thus, if force arrows F 1 , F 2 , F 3 can be balanced with respect to one another, there is no rotational imbalance during operation of the tool.
  • the spindle 28 is substantially the same as those previously described.
  • the bore 46 has been modified to retain a split sleeve 250 .
  • the spindle includes apertures 42 to retain balls 44 .
  • the bore 46 includes a larger diameter portion to receive the split sleeve 250 .
  • the retention member 252 has been modified to include a stepped bore 253 to retain a portion of the split sleeve 250 .
  • the sleeve 254 includes three distinct bore portions 256 , 258 , 260 .
  • the bore portion 256 is sized to fit over the spindle 28 .
  • the bore portion 258 is tapered and is defined by a common tapered surface 262 .
  • the tapered surface 262 acts on the balls 44 like that previously defined.
  • the bore portion 260 is substantially circular having a larger diameter than the tapered bore portion 258 to enable release of the tool when the balls enter into the bore portion 260 .
  • Springs 264 and 266 act like springs 54 ′ and 52 ′ previously described.
  • the sleeve 250 is like sleeve 100 previously described in that the sleeve prohibits the shaft from becoming marked or abraded by the balls acting on the shaft. Further, the sleeve 250 may be of a different hardness than that of the shaft.
  • the sleeve 250 includes two substantially identical halves 270 and 272 .
  • the outer circumference of the halves 270 and 272 include three axially extending recesses or detents 274 , 276 , 278 .
  • the recesses 274 , 276 , 278 are positioned sixty (60°) degrees apart with respect to one another around a three hundred sixty (360°) degree circle.
  • the recesses 274 , 278 being thirty (30°) degrees from the ends 280 , 282 of the halves 270 , 272 with the middle recess being ninety (90°) degrees from the end 280 , 282 as illustrated in FIG. 17.
  • the balls 44 act on the recesses at 274 , 276 , 278 ninety (90°) degrees, two hundred ten (210°) degrees and three hundred thirty (330°) degrees with respect to the circular shaft.
  • the force being sufficient to retain the shaft within the split sleeve 250 .

Abstract

A rotary device has a releasable tool holder. A spindle with two ends has one end adapted to secure to a rotary device and the other includes a bore to receive a tool. A mechanism to retain and release the tool from the spindle bore is coupled with the spindle adjacent the bore end. At least two unlike retention members to apply a force on the tool in the bore are adjacent the bore. A sleeve surrounds the bore end of the spindle as well as the at least two unlike retention members. The sleeve has a common surface to apply a force on the at least two unlike retention members such that when the sleeve is axially moved along the spindle, the force is varied with respect to the position of the surface on the retention member. This force maintains the tool in the bore or enables the tool to be removed from the bore. A biasing member maintains the sleeve in a retention position on the spindle.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates power tools and, more particularly, to rotary tools. The invention is particularly directed to a tool releasing mechanism for rotary power tools such as rotary tools, routers, and die grinders. [0001]
  • Rotary devices are used for numerous tasks by carpenters, artists and do-it-yourselfers. Rotary devices are ideal for cutting, cleaning, engraving, sanding, sharpening and other applications. Rotary devices are utilized in hobbies, woodwork and numerous tasks, both commercially and residential. Ordinarily, rotary devices include a collet device to retain a tool within the device. The tools usually include cylindrical shafts with a desired diameter. The collets ordinarily frictionally grab the shafts to retain the tools within the rotary device. Ordinarily, the collet has a threaded sleeve which exerts a radial force onto the shaft as it is rotated to tighten down the tool within the device. [0002]
  • In order for the user to change tools in the rotary device, he must rotate the collet sleeve with a wrench while locking the spindle against rotation to loosen it and then remove the tool from the collet. To change to an additional tool, the user must place the tool in the collet and rotate the sleeve with a wrench while locking the spindle against rotation which, in turn, tightens the collet device. This process is time consuming and requires a significant amount of user interaction. Thus, it would be desirable to have a collet which quickly enables removal and retention of the tool. Also, the releasable collet should be easily manipulated by the user requiring a minimum amount of user interaction. [0003]
  • SUMMARY OF THE INVENTION
  • The present invention provides the art with a quick release tool holder which is easily manipulated by the user. The present invention provides a rotatable device which enables quick removal and retention of tools having cylindrical shanks. The present invention provides retention members which solely retain the tools within the rotary device. [0004]
  • In accordance with a first aspect of the invention, a releasable tool holder comprises a spindle having two ends. One of the ends is adapted to secure the spindle to the rotary device. The other end includes a bore to receive a tool. A mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end. The mechanism comprises at least two unlike retention members to apply a force on the tool in the bore to retain the tool within the bore. A sleeve surrounds a portion of the spindle and the at least two retention members. The sleeve includes a common surface in contact with the at least two retention members to apply a force on the two retention members. The surface contacts the retention member and rolls to a force equilibrium. Thus, the retention member exerts tremendous force on the tool against the surface which maintains the tool in the bore. As the surface moves with respect to the retention member, the force lessens, which enables the tool to be removed from the bore. A biasing member maintains the sleeve in a retention position on the spindle. Preferably, the sleeve common surface is tapered along the spindle axis. A second biasing member may be associated with at least one retention member to register the retention member on the spindle. One of the retention members is a ball while the other is a non-circular elliptical tapered roller. Also, the ball may be a pair of balls. [0005]
  • In accordance with a second aspect of the invention, a rotary device comprises a housing with a motor to provide rotary movement. A power source, either an AC or a DC source, is coupled with the motor. A spindle is coupled with the motor. An activation member is included to energize the motor. A releasable tool is coupled with the spindle. One of the spindle ends is adapted to secure the spindle to the rotary device. The other end includes a bore to receive a tool. A mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end. The mechanism comprises at least two unlike retention members to apply a force on the tool in the bore to retain the tool within the bore. A sleeve surrounds a portion of the spindle and the at least two retention members. The sleeve includes a common surface in contact with the at least two retention members to apply a force on the two retention members. The surface contacts the retention member and rolls to a force equilibrium. Thus, the retention member exerts tremendous force on the tool against the surface which maintains the tool in the bore. As the surface moves with respect to the retention member, the force lessens, which enables the tool to be removed from the bore. A biasing member maintains the sleeve in a retention position on the spindle. Preferably, the sleeve common surface is tapered along the spindle axis. A second biasing member may be associated with at least one retention member to register the retention member on the spindle. One of the retention members is a ball while the other is a non-circular elliptical tapered roller. Also, the ball may be a pair of balls. [0006]
  • In accordance with a third aspect of the invention, a releasable tool comprises a spindle having two ends. One end is adapted to secure the spindle with a rotary device. The other end includes a bore to receive a tool. A mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end. The mechanism includes three retention members, a ball and two non-circular elliptical tapered rollers, to apply force on the tool in the bore to retain the tool in the bore. A sleeve surrounds a portion of the spindle and the three retention members. The sleeve includes a common surface tapered along the spindle axis in contact with each of the three retention members. The tapered surface contacts each of the three retention members and rolls to a force equilibrium. The retention members exert a tremendous force on the tool against the tapered surface which maintains the tool in the bore. As the tapered surface moves with respect to the three retention members, the force lessens, which enables the tool to be removed from the bore. A pair of springs are also included. One spring maintains the sleeve in a retention position on the spindle. The other spring, which may include a squared end, registers the ball on the spindle. [0007]
  • In accordance with a fourth aspect of the invention, a releasable tool holder comprises a spindle having two ends. One of the ends is adapted to secure the spindle to the rotary device. The other end includes a bore to receive a tool. A mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end. The mechanism comprises at least one retention member to apply a force on the tool in the bore to retain the tool within the bore. A sleeve surrounds a portion of the spindle and the at least one retention member. The sleeve includes a surface in contact with the at least one retention member to apply a force on the retention member. The surface contacts the retention member and rolls to a force equilibrium. Thus, the retention member exerts tremendous force on the tool against the surface which maintains the tool in the bore. As the surface moves with respect to the retention member, the force lessens, which enables the tool to be removed from the bore. A biasing member maintains the sleeve in a retention position on the spindle. Preferably, the sleeve surface is tapered along the spindle axis. The sleeve surface may be arcuate with respect to the circumferential direction with a radius larger than the radius of the retention member. The retention members rotate to slightly back drive the sleeve until the arcuate surface frictionally pinches the retention members between the sleeve and tool to stop rotation of the retention members to provide a self-locking feature which prevents the retention members from further back driving the sleeve. A second biasing member may be associated with the at least one retention member to register the retention member on the spindle and to each other. The bottom of the spindle bore may be angled with respect to the spindle axis to center the tool in the bore. An O-ring seal may be positioned in the bore to prohibit contamination from entering the bore. Also, an additional sleeve may be positioned inside the bore to enable retention of smaller diameter tools as well as to reduce marking or abrading of the shank. [0008]
  • In accordance with a fifth aspect of the invention, a rotary device comprises a housing with a motor to provide rotary movement. A power source, either an AC or a DC source, is coupled with the motor. A spindle is coupled with the motor. An activation member is included to energize the motor. A releasable tool is coupled with the spindle. One of the spindle ends is adapted to secure the spindle to the rotary device. The other end includes a bore to receive a tool. A mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end. The mechanism comprises at least one retention member to apply a force on the tool in the bore to retain the tool within the bore. A sleeve surrounds a portion of the spindle and the at least one retention member. The sleeve includes a surface in contact with the at least one retention member to apply a force on the retention member. The surface contacts the retention member and rolls to a force equilibrium. Thus, the retention member exerts tremendous force on the tool against the surface which maintains the tool in the bore. As the surface moves with respect to the retention member, the force lessens, which enables the tool to be removed from the bore. A biasing member maintains the sleeve in a retention position on the spindle. Preferably, the sleeve surface is tapered along the spindle axis. The sleeve surface may be arcuate with respect to the circumferential direction with a radius larger than the radius of the retention member. The retention members rotate to slightly back drive the sleeve until the arcuate surface frictionally pinches the retention members between the sleeve and tool to stop rotation of the retention members to provide a self-locking feature which prevents the retention members from further back driving the sleeve. A second biasing member may be associated with the at least one retention member to register the retention member on the spindle and to each other. The bottom of the spindle bore may be angled with respect to the spindle axis to center the tool in the bore. An O-ring seal may be positioned in the bore to contact the shaft to prohibit contamination from entering the bore. Also, an additional sleeve may be positioned inside the bore to enable retention of smaller diameter tools as well as to reduce marking or abrading of the shank. [0009]
  • In accordance with a sixth aspect of the invention, a releasable tool comprises a spindle having two ends. One end is adapted to secure the spindle with a rotary device. The other end includes a bore to receive a tool. A mechanism to retain and release the tool from the spindle is coupled with the spindle adjacent the bore end. The mechanism includes three balls to apply force on the tool in the bore to retain the tool in the bore. A sleeve surrounds a portion of the spindle and the three balls. The sleeve includes a surface tapered along the spindle axis in contact with each of the three balls. The tapered surfaces contact each of the three balls and rolls to a force equilibrium. The balls exert a tremendous force on the tool against the tapered surface which maintains the tool in the bore. As the tapered surface moves with respect to the retention member, the force lessens, which enables the tool to be removed from the bore. A pair of springs are also included. One spring maintains the sleeve in a retention position on the spindle. The other spring, which includes a squared end, registers the balls on the spindle. The tapered surfaces may be arcuate in a circumferential direction and have a radius larger than the balls. The retention members rotate to slightly back drive the sleeve until the arcuate surface frictionally pinches the retention members between the sleeve and tool to stop rotation of the retention members to provide a self-locking feature which prevents the retention members from further back driving the sleeve. Also, the bottom of the spindle bore may be angled with respect to the axis of the bore to center the tool in the bore. A sleeve may be positioned in the bore to retain smaller diameter shafts in the bore. Also, the sleeve may be used to protect the shafts from marking, abrading or the like. The sleeve may be a split sleeve with recesses on its outer periphery. Further, an O-ring may be positioned in the bore to contact the tool shaft to prohibit contamination from entering the bore. [0010]
  • Other objects, features and advantages of the present invention will become more fully apparent from the following detailed description of the preferred embodiment and the accompanying drawings. [0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention and together with the description serve to explain the principles of the invention. [0012]
  • FIG. 1 is a perspective view of a rotary device in accordance with the present invention. [0013]
  • FIG. 2 is an exploded view of a quick release tool in accordance with the present invention. [0014]
  • FIG. 3 is a longitudinal cross-section view of the tool of FIG. 2. [0015]
  • FIG. 4 is a cross-section view of FIG. 3 along line [0016] 4-4 thereof.
  • FIG. 5 is a second embodiment of a quick release mechanism in accordance with the present invention. [0017]
  • FIG. 6 is a cross-section view of FIG. 5 along line [0018] 6-6 thereof.
  • FIG. 7 is a cross-section view of an additional embodiment in accordance with the present invention. [0019]
  • FIG. 8 is a cross-section view of FIG. 7 along line [0020] 8-8 thereof.
  • FIG. 9 is a cross-section view of another embodiment of the present invention. [0021]
  • FIG. 10 is a cross-section view of FIG. 9 along line [0022] 10-10 thereof.
  • FIG. 11 is a cross-section view like FIG. 3 of another embodiment in accordance with the present invention. [0023]
  • FIG. 12 is a cross-section view of FIG. 11 along line [0024] 12-12 thereof.
  • FIG. 13 is a view like FIG. 3 of another embodiment of the present invention. [0025]
  • FIG. 14 is a cross-section view of FIG. 13 along line [0026] 14-14 thereof.
  • FIG. 15 is a view like FIG. 13 of another embodiment of the present invention. [0027]
  • FIG. 16 is a cross-section view of another embodiment of the present invention. [0028]
  • FIG. 17 is a cross-section view of FIG. 16 along line [0029] 17-17 thereof.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Turning to the figures, a rotary device is illustrated and designated with the [0030] reference numeral 20. The rotary device includes a motor 22 to provide rotary movement, and a power source 24. The power source 24 is shown as a power cord providing AC current; however, the device could be battery operated and provided with a battery. An activation member 26 is electrically coupled with the motor 22 to turn the motor on and off to rotate the spindle 28 which is coupled with the motor 22. A tool 30 is coupled with the spindle 28 via a releasable mechanism 40. The tool 30 may have some type of head 32 and a shaft 34 secured with the head 32. The shaft 34 is ordinarily cylindrical and of a desired diameter.
  • Turning to FIGS. 2 and 3, a better understanding of the quick release mechanism will be had. The [0031] spindle 28 ordinarily includes apertures 42 to receive retention members 44. In the present case, three balls retain the tool 30 within the bore 46 of the spindle 28. A sleeve 48 surrounds the bore end of the spindle 28. The sleeve 48 also surrounds the balls 44 as will be described herein. A retention member 50 retains the sleeve 48 on the spindle 28. Further, a spring 52, which provides a biasing force, maintains the sleeve 48 in a retained position as seen in FIG. 3. Also, a spring 54, with a squared or ground end 55, is included which registers the balls 44 within the apertures 42.
  • The [0032] sleeve 48 includes a bore 56. The bore 56 has a diameter which enables the bore to slide over the retention member 50 and retain the spring 52 within the bore 56 as seen in FIG. 3. A shoulder 58 separates the bore from a second bore 60. The second bore 60 includes surfaces 62, which are tapered along the longitudinal axis of the spindle 28. The tapered surfaces 62 are in contact with the balls 44. The tapered surfaces 62 apply the force to the balls 44 which, in turn, apply force to the cylindrical tool shank 34.
  • The [0033] spring 54 urges the balls 44 toward the origin of the tapered surfaces 62. This causes the balls to roll against the tapered surfaces 62. Since the balls 44 cannot roll up the tapered surfaces 62 to their origin, the balls exert tremendous retention force on the tool shank 34 to maintain the tool in the bore. Thus, if a withdrawal force is applied on the tool, the balls try to roll up the tapered surfaces 62 which prohibit withdrawal. However, once the sleeve 48 is moved against spring 52, the distal end of the tapered surfaces 62 moves forward enabling removal of the tool.
  • The tapered surface is angled from the spindle axis at an angle of from about one (1) to about three (3) degrees. This applies a significant amount of force to the [0034] balls 44 to retain the shaft 34 within the spindle 28. Also, as can be seen in FIG. 3, the spring 54 applies force to the balls 44 so that the balls 44 are registered on substantially the same plane in the sleeve 48. The registration spring has ground on planar ends which urges the balls 44 to the end of the apertures. This forces the balls 44 to be in the same plane with respect to one another and with respect to the sleeve 48. With the balls in registration, the sleeve does not experience binding forces from the balls. Thus, this eliminates friction forces enabling the balls to roll instead of slide in the apertures.
  • The [0035] retainer 50 inner surface contacts the outer surface 64 of the spindle to friction-fit the two parts together. Also, the spindle 28 includes a second end 66 which couples with the motor which provides the rotary movement of the spindle 28. The spindle bore 46 has a bottom 68 which includes side walls which are angled with respect to the bore axis. The angled side walls help to center the tool within the bore. The side walls are angled at about ten to twelve (10-12°) degrees with respect to the spindle axis.
  • Turning to FIG. 4, all three [0036] balls 44 are illustrated within the sleeve tapered surfaces 62. The tapered surfaces 62 are arcuate with respect to the circumference of the spindle 28. The arc of the surfaces 62 define a radius r2. The balls have a radius r1. The radius r2 of the arc of the surface 62 is at least two times greater than the radius r1 of the balls 44. Accordingly, line I1 between the center of the tool shaft 34, passing through the diameter of the ball 44, and the surface 62 is larger than any line In from the center of the tool shaft to the surface 62. Thus, as the tool shaft begins to rotate, the balls 44 begin to rotate, like a gear train, in an opposite direction. The sleeve 44 begins to rotate, or back drive, in the direction of rotation of the balls 44. After a very brief back driving movement, the sleeve 48 becomes locked in position. This is due to the fact that I1>In. As the balls 44 try to roll against the circumferential surface 62 of the sleeve 48, the balls 44 are pinched between the surface 62 and the tool shaft 34, since the balls 44 are no longer on a line defined by I1, but, due to their rolling movement, are on a line defined by In. Thus, due to the pinching, the balls 44 are prohibited from rolling and exert an extreme force on the tool shaft 34, locking the tool shaft 34 with the sleeve 48. This feature also yields a self-energizing lock permitting a low force locking spring. Thus, the balls 44 auto lock the spindle 34. Accordingly, the sleeve 48 may have a smaller outer diameter. The self-energizing feature also enables a single ball to be used to retain the tool within the spindle bore.
  • In FIG. 3, the [0037] sleeve 48 is moved away from the spindle connecting end 66 which, in turn, moves the distal end of the tapered surfaces towards the front bore end of the spindle. This movement of the sleeve 48 enables the tapered surfaces 62 to exert less force on the balls 44 which enables the shaft to be pulled out of the spindle bore 46. Also, to insert a tool into the release mechanism, the sleeve 48 is pulled forward, away from the spindle attachment end 66, to enable the shaft to be inserted into the bore 46. Accordingly, as the sleeve 46 is moved along the spindle 28 which, in turn, moves the tapered surfaces 62 with respect to the balls 44, the force which is exerted onto the shaft 34 is varied. Thus, depending upon where the tapered surfaces are positioned with respect to the balls 44, the tool shaft 34 is either retained, as illustrated in FIG. 3, in the spindle, or the shaft 34 may be removed from the spindle bore.
  • Turning to FIGS. 5 and 6, an additional embodiment of the invention is shown. Here, the elements which relate to those previously described are marked with the same reference numerals. [0038]
  • The [0039] spindle 28 is substantially the same as that shown, however the apertures 42 have been replaced with slots 42′ which are open to the end of the spindle 28. The bore 46 is substantially the same as that previously described. The balls 44 are positioned in the slots 42′ and are held in registration by a bushing 80. The bushing 80 has fingers 82 which extend into the slots 42 to maintain balls within the slots. Spring 54′ exerts a force on the bushing 80 to provide the biasing force to retain the balls 44 in a registered position. The sleeve 48′ has tapered bore 62′ which extends from one end of the sleeve 48′. The sleeve 48′ may rotate with respect to the spindle 28. A spring 52′ maintains the sleeve 48 in a retention position. As mentioned above, the tapered bore 62′ applies a force on the balls 44 which, in turn, applies a force onto the shank 34. Here, the sleeve 48′ is moved toward the spindle securement end 66 to release the shank 34 from the spindle 28. As the sleeve 48′ is moved, the distal end of the tapered surface moves closer to the spindle securement end 66 which applies a lesser force onto the balls 44 which enables the tool shank 34 to be removed from the bore 46.
  • Accordingly, the [0040] sleeve 48′ is moved in a direction opposite to that of sleeve 48 of FIG. 3.
  • Moving to FIGS. 7 and 8, an additional embodiment of the present invention is shown. The embodiment in FIG. 7 is like that of FIG. 5. [0041]
  • The differences with respect to FIGS. 5 and 8 is that the [0042] sleeve 48″ has an outer configuration different than that of FIG. 5. Also, the tapered surfaces 62 are like those of FIG. 3 as best seen in FIG. 8. Thus, the radius r2 of the arcs of the tapered surfaces 62 in the circumferential direction is greater than the radius r1 of the balls 44. The spindle 28 is like that described in FIG. 5. The difference is a retaining member 50″ which is frictionally fit in the slots 42′. A cap 88 is positioned over the retainer 50″ which serves to steady the sleeve 48″ as it is moved inward along the spindle 28. The spring 54 acts directly on the balls 44. Accordingly, the bushing 80 as described above has been removed and a retaining member 50″ has been positioned into the slots 42′. The sleeve 48″ releases the tool shank 34 like those described above.
  • Turning to FIGS. 9 and 10, an additional embodiment of the present invention is shown. Here, the embodiment is like that of FIG. 3. The [0043] spindle 28 is like that described above. The sleeve 48 with tapered surfaces 62 is like that previously described. Here, a wave spring 90 which provides higher spring force has been substituted for spring 52. Also, a cap 92 is positioned on the end of the spindle 28 to retain the spring 90 and, in turn, sleeve 48 on the spindle 28.
  • A [0044] sleeve 100, to adapt to smaller diameter shafts, is positioned within the spindle bore 46. The sleeve 100 includes a knurled or axially splined portion 102 to retain a tool shank 34 within the bore 46. The sleeve 100 also includes a chambered end 104. An O-ring 108 is positioned within a bore step 110 of the cap 92. The O-ring 108 serves to seal the shank 34 within the bore 46. Also, an O-ring 106 may seal the cap 92 with the sleeve 48.
  • The sleeve [0045] 0 also includes an axial slit 112 which enable compression of the sleeve 100 when force is applied to the sleeve by balls 44. Thus, the sleeve 100, as force is applied by the balls 44, applies a circumferential compression force onto the shaft 34 with the knurled surface 102 in contact with and gripping the shaft 34. Also, the sleeve 100 may be of a different material than the shaft. Thus, the balls 44 do not apply a force directly onto the shaft 34. Accordingly, the shaft 34 does not become marked or abraded by the balls acting on the shaft. Thus, the sleeve 100 may have a hardness higher than that of the shaft to enable a strong force to be applied by the balls onto the sleeve 100 and, in turn, onto the shaft 34. The sleeve 48 is moved outward away from the connection end 66 of the spindle as described above with respect to FIG. 3.
  • Turning to FIGS. 11 and 12, an additional embodiment of the present invention is shown. Here, the embodiment is like that of FIG. 3. The [0046] spindle 28 is like that described. The sleeve 48 includes tapered surfaces 62′. Tapered surfaces receive discs or rollers 144. The discs 144 have an arcuate running face 146. The arcuate running face 146 is on a radius substantially equal to the radius of the tool shaft 34. Thus, as the shaft 34 is inserted into the discs 144, the arcuate running surface 146 rolls along the shaft 34. Also, the tapered surface 62′ is arcuate corresponding to the running face 146. Thus, the discs 144 are enabled to roll against the tapered surface 62′. The discs include a wider body portion 148 which mates within the slot 142 of the spindle 28. Thus, the spindle slots 142 act to position the disc 144 within the spindle 28.
  • A [0047] bushing 160 is positioned in the slots 142 to register the discs 144. The bushing 160 is similar to bushing 82 described above and provides the same function. Also, the spring 52 pushes against the bushing 160 to provide the registration force to keep the disc 144 registered in the same plane within the sleeve 48.
  • The retention mechanism functions like that described in FIG. 3 above. [0048]
  • Turning to FIGS. 13 and 14, an additional embodiment of the present invention is shown. FIG. 13 is a view like FIG. 3 and like parts will be identified with the same reference numerals. The [0049] spindle 28 includes apertures 42 to retain retention members 202 and 204 within the spindle. Here, the retention member 202 is a ball in the aperture 42 or a pair of balls may be maintained in the aperture 42. The retention members 204 are elliptical tapered rollers. The elliptical tapered rollers have a non-circular elliptical cross-section as seen in FIG. 14. Likewise, the rollers are tapered and increase in size from one end to the other.
  • A [0050] sleeve 206 surrounds the bore end of the spindle 28. The sleeve 206 includes a common tapered surface 208 which also surrounds the retention members 202 and 204. A spring 210 is positioned within the sleeve which provides a biasing force to maintain the sleeve 206 in a retained position. Also, a retention member 212 retains the sleeve onto the spindle and acts as a dust shield. Further, a sleeve 214 is positioned adjacent the securement end of the spindle to prohibit dust from entering into the apertures 42 inside of the sleeve 206.
  • The [0051] sleeve 206 includes a bore 216. The bore has a diameter which enables the bore to slide over the retention member 212 and retain the spring 210 within the bore 216 as seen in FIG. 13. A shoulder 218 separates the bore from a second bore which is defined by the common tapered surface 208. The common tapered surface 208 is in contact with both the ball and the elliptical tapered rollers. The common tapered surface 208 applies the force onto the ball 202 and elliptical tapered rollers 204 which, in turn, apply force to the cylindrical tool shank 34. A spring 220 urges the ball 202 towards the origin of the tapered surface 208. The spring 220 acts like the spring 54 previously described. Also, a sleeve like that illustrated in FIG. 9 may be used with the present embodiment to prohibit abrading or to accommodate smaller diameter tool shafts in the retention mechanism.
  • The ball or [0052] balls 202 apply a point force onto the tool shaft 34 while the elliptical tapered rollers 204 apply a line contact onto the shaft. Thus, the balls act to prohibit the axial withdrawal of the shaft from the spindle while the elliptical tapered rollers prohibit circumferential rotation of the shaft 34 within the spindle 28. Thus, the retention members 202 and 204 positively retain the tool 30 within the spindle.
  • To secure an axial pull-out force on the shaft, the balls will roll against the tapered [0053] surface 208. Since the ball 202 cannot roll-up the tapered surface 208 to its origin, the ball exerts a tremendous retention force on the tool shank 34 to maintain the tool in the bore. Thus, if a withdrawal force is applied on the tool, the ball or balls try to roll-up the tapered surface 208 which prohibits withdrawal. However, once the sleeve is moved against the spring 210, the distal end of the tapered surface 208 moves forward enabling removal of the tool.
  • As the shaft tries to rotate against the elliptical [0054] tapered rollers 204, since the major axis of the ellipse is larger than the distance between the shaft and the sleeve, the rollers 204 are pinched between the tapered surface 208 and the tool shaft 34. Thus, due to the pinching, the elliptical tapered rollers 204 are prohibited from rolling and exert an extreme force on the tool shaft 34 locking the tool shaft with the sleeve 206.
  • Moving to FIG. 15, an additional embodiment is illustrated. Here, the quick release mechanism is like that illustrated in FIG. 13; however, the spindle apertures have different sizes. Thus, like elements will be identified with the same reference numerals. [0055]
  • The [0056] ball retention members 202 are retained in an aperture 232 which has an axial length which is less than the aperture 234 which retains the elliptical tapered rollers. Since the weight of the elliptical tapered rollers are substantially more than the one or two balls 202, a dynamic imbalance is created. In order to balance the rotational imbalance, the spindle 28 is modified to provide more mass by the balls 202, e.g. a smaller aperture, and less mass by the rollers 204, e.g. larger apertures. Thus, if force arrows F1, F2, F3 can be balanced with respect to one another, there is no rotational imbalance during operation of the tool.
  • Turning to FIGS. 16 and 17, an additional embodiment of the present invention is shown. The [0057] spindle 28 is substantially the same as those previously described. However, the bore 46 has been modified to retain a split sleeve 250. The spindle includes apertures 42 to retain balls 44. The bore 46 includes a larger diameter portion to receive the split sleeve 250. The retention member 252 has been modified to include a stepped bore 253 to retain a portion of the split sleeve 250. The sleeve 254 includes three distinct bore portions 256, 258, 260. The bore portion 256 is sized to fit over the spindle 28. The bore portion 258 is tapered and is defined by a common tapered surface 262. The tapered surface 262 acts on the balls 44 like that previously defined. The bore portion 260 is substantially circular having a larger diameter than the tapered bore portion 258 to enable release of the tool when the balls enter into the bore portion 260. Springs 264 and 266 act like springs 54′ and 52′ previously described.
  • The [0058] sleeve 250 is like sleeve 100 previously described in that the sleeve prohibits the shaft from becoming marked or abraded by the balls acting on the shaft. Further, the sleeve 250 may be of a different hardness than that of the shaft. The sleeve 250 includes two substantially identical halves 270 and 272. The outer circumference of the halves 270 and 272 include three axially extending recesses or detents 274, 276, 278. The recesses 274, 276, 278 are positioned sixty (60°) degrees apart with respect to one another around a three hundred sixty (360°) degree circle. The recesses 274, 278 being thirty (30°) degrees from the ends 280, 282 of the halves 270, 272 with the middle recess being ninety (90°) degrees from the end 280, 282 as illustrated in FIG. 17. Thus, the balls 44 act on the recesses at 274, 276, 278 ninety (90°) degrees, two hundred ten (210°) degrees and three hundred thirty (330°) degrees with respect to the circular shaft. The force being sufficient to retain the shaft within the split sleeve 250.
  • While the above detailed description describes the preferred embodiment of the present invention, the invention is susceptible to modification, variation, and alteration without deviating from the scope and fair meaning of the subjoined claims. [0059]

Claims (51)

1. A releasable tool holder, comprising:
a spindle having two ends, one end adapted to secure said spindle with a rotary device and the other end including a bore to receive a tool;
a mechanism for retaining and releasing a tool from said spindle bore, said mechanism coupled with said spindle adjacent said bore end, said mechanism comprising at least two unlike retention members for applying a force on a tool in said bore for retaining a tool in said bore;
a sleeve surrounding a portion of said spindle and said at least two retention members, said sleeve including a common surface in contact with said at least two retention members, said surface applying a force on said at least two retention members such that one retention member prohibits axial movement of the tool and the other retention member prohibits circumferential movement of the tool to maintain the tool in the bore, said sleeve movable to enable the tool to be removed from the bore, and a biasing member for maintaining said sleeve in a retention position on said spindle.
2. The releasable tool holder according to
claim 1
, wherein said spindle has at least two axial slots adjacent said bore for receiving said at least one retention member.
3. The releasable tool holder according to
claim 1
, including a spring for registering at least one retention member in said spindle.
4. The releasable tool holder according to
claim 1
, wherein said sleeve common surface is tapered along the spindle axis.
5. The releasable tool holder according to
claim 1
, wherein one of said retention members is a ball.
6. The releasable tool holder according to
claim 5
, wherein the other of said retention members being a non-circular elliptical tapered roller.
7. The releasable tool holder according to
claim 5
, wherein said one retention member being a pair of balls.
8. The releasable tool holder according to
claim 1
, wherein apertures in said spindle receives said at least two retention members.
9. The releasable tool holder according to
claim 2
, wherein one of said slots is axially longer than the other for enhancing rotational balancing of said tool holder.
10. The releasable tool holder according to
claim 8
, wherein one of said apertures is axially longer than the other for enhancing rotational balancing of said tool holder.
11. The relesable tool holder according to
claim 1
, wherein a shield is on said spindle adjacent said securing end of prohibiting dust invasion.
12. The releasable tool holder according to
claim 6
, wherein said retaining mechanism includes three retention members, said third retention member being an ellipsoid.
13. A rotary device, comprising:
a housing;
a motor in said housing for providing rotary movement;
a power source coupled with said motor;
a spindle coupled with said motor;
an activation member coupled with said motor for rotating said spindle; and
a releasable tool holder coupled with said spindle, said spindle having two ends, one end secured to said motor and the other end including a bore to receive a tool;
a mechanism for retaining and releasing a tool from said spindle bore, said mechanism coupled with said spindle adjacent said bore end, said mechanism comprising at least two unlike retention members for applying a force on a tool in said bore for retaining a tool in said bore;
a sleeve surrounding a portion of said spindle and said at least two retention members, said sleeve including a common surface in contact with said at least two retention members, said surface applying a force on said at least two retention members such that one retention member prohibits axial movement of the tool and the other retention member prohibits circumferential movement of the tool to maintain the tool in the bore, said sleeve movable to enable the tool to be removed from the bore, and a biasing member for maintaining said sleeve in a retention position on said spindle.
14. The rotary device according to
claim 13
, wherein said spindle has at least two axial slots adjacent said bore for receiving said at least one retention member.
15. The rotary device according to
claim 13
, including a spring for registering at least one retention member in said spindle.
16. The rotary device according to
claim 13
, wherein said sleeve common surface is tapered along the spindle axis.
17. The rotary device according to
claim 13
, wherein one of said retention members is a ball.
18. The rotary device according to
claim 17
, wherein the other of said retention members being a non-circular elliptical tapered roller.
19. The rotary device according to
claim 17
, wherein said one retention member being a pair of balls.
20. The rotary device according to
claim 13
, wherein apertures in said spindle receives said at least two retention members.
21. The rotary device according to
claim 14
, wherein one of said slots is axially longer than the other for enhancing rotational balancing of said tool holder.
22. The rotary device according to
claim 20
, wherein one of said apertures is axially longer than the other for enhancing rotational balancing of said tool holder.
23. The rotary device according to
claim 13
, wherein a shield is on said spindle adjacent said securing end for prohibiting dust invasion.
24. The rotary device according to
claim 17
, wherein said retaining mechanism includes three retention members, said third retention member being a non-circular elliptical tapered roller.
25. A releasable tool holder, comprising:
a spindle having two ends, one end adapted to secure said spindle with a rotary device and the other end including a bore to receive a tool;
a mechanism for retaining and releasing a tool from said spindle bore, said mechanism coupled with said spindle adjacent said bore end, said mechanism comprising three retention members, one ball and two non-circular elliptical tapered rollers, for applying force on a tool in said bore for retaining the tool in said bore;
a sleeve surrounding a portion of said spindle and said three retention members, said sleeve including a common tapered surface in contact with each of said three retention members, said tapered surface applying a force on said three retention members such that as said sleeve is axially moved on said spindle, said force varies with respect to the position of said tapered surface on said three retention members which, in turn, maintains the tool in the bore or enables the tool to be removed from the bore, and a pair of springs, one for maintaining said sleeve in a retention position on said spindle and the other for registering the ball on the spindle.
26. The releasable tool holder according to
claim 25
, wherein said spindle has three axial slots adjacent said bore for receiving said three retention members.
27. The releasable tool holder according to
claim 26
, wherein said slots have different axial lengths.
28. A releasable tool holder, comprising:
a spindle having two ends, one end adapted to secure said spindle with a rotary device and the other end including a bore to receive a tool;
a mechanism for retaining and releasing a tool from said spindle bore, said mechanism coupled with said spindle adjacent said bore end, said mechanism comprising at least one retention member for applying a force on a tool in said bore for retaining a tool in said bore;
a sleeve surrounding a portion of said spindle and said at least one retention member, said sleeve including a surface in contact with said at least one retention member, said surface applying a force on said at least one retention member such that as said sleeve is axially moved on said spindle, said force varies with respect to the position of said surface on said at least one retention member which, in turn, maintains the tool in the bore or enables the tool to be removed from the bore, and a biasing member for maintaining said sleeve in a retention position on said spindle.
29. The releasable tool holder according to
claim 28
, wherein a tool receiving sleeve is positioned in said bore.
30. The releasable tool holder according to
claim 29
, wherein said receiving sleeve includes at least one axial slit for enabling yielding of said sleeve.
31. The releasable tool holder according to
claim 29
, wherein an inner surface of said receiving sleeve being textured for ensuring contact with the tool.
32. The releasable tool holder according to
claim 29
, wherein in an end of said receiving sleeve being chamfered to enable said tool shaft to be positioned in said receiving sleeve.
33. The releasable tool holder according to
claim 29
, wherein said tool receiving sleeve being two semi-circular parts.
34. The releasable tool holder according to
claim 33
, wherein said tool receiving sleeve includes recesses on its outer surface.
35. A rotary device, comprising:
a housing;
a motor in said housing for providing rotary movement;
a power source coupled with said motor;
a spindle coupled with said motor;
an activation member coupled with said motor for rotating said spindle; and
a releasable tool holder coupled with said spindle, said spindle having two ends, one end secured to said motor and the other end including a bore to receive a tool;
a mechanism for retaining and releasing a tool from said spindle bore, said mechanism coupled with said spindle adjacent said bore end, said mechanism comprising at least one retention member for applying a force on a tool in said bore for retaining a tool in said bore;
a sleeve surrounding a portion of said spindle and said at least one retention member, said sleeve including a surface in contact with said at least one retention member, said surface applying a force on said at least one retention member such that as said sleeve is axially moved on said spindle, said force varies with respect to the position of said surface on said at least one retention member which, in turn, maintains the tool in the bore or enables the tool to be removed from the bore, and a biasing member for maintaining said sleeve in a retention position on said spindle.
36. The rotary device according to
claim 35
, wherein a tool receiving sleeve is positioned in said bore.
37. The rotary device according to
claim 36
, wherein said receiving sleeve includes at least one axial slit for enabling yielding of said sleeve.
38. The rotary device according to
claim 36
, wherein an inner surface of said receiving sleeve being textured for ensuring contact with the tool.
39. The rotary device according to
claim 36
, wherein in an end of said receiving sleeve being chamfered to enable said tool shaft to be positioned in said receiving sleeve.
40. The rotary device according to
claim 36
, wherein said tool receiving sleeve being two semi-circular parts.
41. The rotary device according to
claim 40
, wherein said tool receiving sleeve includes recesses on its outer surface.
42. A releasable tool holder, comprising:
a spindle having two ends, one end adapted to secure said spindle with a rotary device and the other end including a bore to receive a tool;
a mechanism for retaining and releasing a tool from said spindle bore, said mechanism coupled with said spindle adjacent said bore end, said mechanism comprising three balls for applying force on a tool in said bore for retaining the tool in said bore;
a sleeve surrounding a portion of said spindle and said three balls, said sleeve including a common tapered surface in contact with each of said three balls, said tapered surface applying a force on said three balls such that as said sleeve is axially moved on said spindle, said force varies with respect to the position of said tapered surface on said balls which, in turn, maintains the tool in the bore or enables the tool to be removed from the bore, and a pair of springs, one for maintaining said sleeve in a retention position on said spindle and the other for registering the balls on the spindle.
43. The releasable tool holder according to
claim 42
, wherein a tool receiving sleeve is positioned in said bore.
44. The releasable tool holder according to
claim 43
, wherein said receiving sleeve includes at least one axial slit for enabling yielding of said sleeve.
45. The releasable tool holder according to
claim 43
, wherein an inner surface of said receiving sleeve being textured for ensuring contact with the tool.
46. The releasable tool holder according to
claim 43
, wherein in an end of said receiving sleeve being chamfered to enable said tool shaft to be positioned in said receiving sleeve.
47. The releasable tool holder according to
claim 43
, wherein said tool receiving sleeve being two semi-circular parts.
48. The releasable tool holder according to
claim 47
, wherein said tool receiving sleeve includes recesses on its outer surface.
49. The releasable tool holder according to
claim 28
, wherein the retention members being discs.
50. The releasable tool holder according to
claim 49
, wherein the discs have arcuate running faces with a radius about equal to a radius of a tool shaft.
51. The releasable tool holder according to
claim 1
, wherein a tool receiving sleeve is positioned in said bore.
US09/792,975 1998-07-22 2001-02-26 Removable tool holder Expired - Fee Related US6343901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/792,975 US6343901B2 (en) 1998-07-22 2001-02-26 Removable tool holder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/120,915 US6126370A (en) 1998-07-22 1998-07-22 Removable tool holder
US09/653,797 US6224303B1 (en) 1998-07-22 2000-09-01 Removable tool holder
US09/792,975 US6343901B2 (en) 1998-07-22 2001-02-26 Removable tool holder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/653,797 Continuation US6224303B1 (en) 1998-07-22 2000-09-01 Removable tool holder

Publications (2)

Publication Number Publication Date
US20010006015A1 true US20010006015A1 (en) 2001-07-05
US6343901B2 US6343901B2 (en) 2002-02-05

Family

ID=22393256

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/120,915 Expired - Lifetime US6126370A (en) 1998-07-22 1998-07-22 Removable tool holder
US09/653,797 Expired - Lifetime US6224303B1 (en) 1998-07-22 2000-09-01 Removable tool holder
US09/792,975 Expired - Fee Related US6343901B2 (en) 1998-07-22 2001-02-26 Removable tool holder

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/120,915 Expired - Lifetime US6126370A (en) 1998-07-22 1998-07-22 Removable tool holder
US09/653,797 Expired - Lifetime US6224303B1 (en) 1998-07-22 2000-09-01 Removable tool holder

Country Status (1)

Country Link
US (3) US6126370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130134684A1 (en) * 2011-05-25 2013-05-30 Hilti Aktiengesellschaft Electric screwdriver
US20130214496A1 (en) * 2012-02-18 2013-08-22 Jack Lin Chuck

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126370A (en) * 1998-07-22 2000-10-03 Black & Decker Inc. Removable tool holder
US6688610B2 (en) 2000-05-12 2004-02-10 Power Tool Holders Incorporated Chuck with quick change
CA2411405C (en) * 2000-06-09 2006-07-11 Nathan C. Cantlon Workpiece connector for a power tool
DE10044387A1 (en) * 2000-09-08 2002-04-04 Bosch Gmbh Robert Tool holder for a hand machine tool
US6533291B2 (en) 2001-02-14 2003-03-18 Power Tool Holders Incorporated Chuck having quick change mechanism
US7083003B1 (en) * 2001-04-23 2006-08-01 Snap-On Incorporated Power tool with detachable drive end
US6834864B2 (en) 2001-10-24 2004-12-28 Power Tool Holders Incorporated Chuck having quick change mechanism
JP2003136354A (en) * 2001-11-01 2003-05-14 Big Alpha Co Ltd Tool holder
US6948527B2 (en) * 2001-11-24 2005-09-27 Gary Dean Ragner Pressure-actuated linearly retractable and extendible hose
US6616149B1 (en) 2002-03-19 2003-09-09 S-B Power Tool Corporation Quick-release chuck having compact collar
US6929266B2 (en) * 2002-06-18 2005-08-16 Black & Decker Inc. Bit holder
US6908264B1 (en) 2002-11-06 2005-06-21 William P. Gundy Quick change drill bit
FR2863518B1 (en) * 2003-12-15 2006-01-13 Montabert Roger DEVICE FOR ASSEMBLING THE HOUSING AND BODY OF A HYDRAULIC ROCK BREEZE
US8132990B2 (en) * 2003-12-23 2012-03-13 Lynn Everett Bauman Bit holding apparatus for use with a power tool
US7354230B2 (en) 2003-12-23 2008-04-08 Lynn Bauman Bit holding apparatus for use with a power tool
DE102004003778B4 (en) * 2004-01-23 2008-01-31 Robert Schröder GmbH & Co. KG chuck
DE102004035873B4 (en) * 2004-07-23 2007-08-30 Hilti Ag tool holder
US20060064869A1 (en) * 2004-09-27 2006-03-30 Shipper Terry J Tool holder
DE102005007708A1 (en) * 2005-02-18 2006-08-31 Zettl GmbH CNC Präzisions- und Sonderwerkzeuge Taps recording
IL170101A (en) * 2005-08-04 2010-05-17 Hanoch Guy Tool assembly
US7186064B1 (en) 2005-12-14 2007-03-06 Kennametal Inc. Rotary tapered tool holder with adapter sleeve
US7740249B1 (en) 2006-05-01 2010-06-22 Bradshaw Medical, Inc. Holder for replaceable tools
WO2008020828A2 (en) * 2006-08-08 2008-02-21 Rinner James A Tool chuck
US7823890B2 (en) * 2006-11-01 2010-11-02 Tsai-Ching Chen Chuck
DE102006035434A1 (en) * 2006-11-13 2008-05-15 Hilti Ag Hand tool machine e.g. percussion drilling machine, has housing part, and shaft that is rotatably supported in housing part over shaft bearing, where housing part forms snap retainer for bearing and shaft is designed as spindle
US7810817B1 (en) 2006-11-20 2010-10-12 Bradshaw Medical, Inc. Holder for replaceable tools
US8172642B2 (en) 2008-08-20 2012-05-08 Black & Decker Inc. Multi-sander
US8267748B2 (en) * 2008-09-17 2012-09-18 Ryh Hsiung Lee Safe guarding assembly for a grinding gun
TW201012600A (en) * 2008-09-25 2010-04-01 chong-yuan He Riveter
US8381830B2 (en) 2009-05-05 2013-02-26 Black & Decker Inc. Power tool with integrated bit retention device
US8800999B2 (en) * 2009-02-27 2014-08-12 Black & Decker Inc. Bit retention device
US8622401B2 (en) 2009-02-27 2014-01-07 Black & Decker Inc. Bit retention device
CN201446519U (en) * 2009-06-05 2010-05-05 南京德朔实业有限公司 Electric tool
US8708346B2 (en) 2010-01-08 2014-04-29 Techtronic Power Tools Technology Limited Rotary tool including a collet
KR101056036B1 (en) * 2010-04-09 2011-08-10 김경진 A polishing holder removing device for grinder
GB201017004D0 (en) * 2010-10-08 2010-11-24 Henrob Ltd Fastener delivery apparatus
US9421682B2 (en) 2011-07-18 2016-08-23 Black & Decker Inc. Multi-head power tool with reverse lock-out capability
US9156147B2 (en) 2012-02-15 2015-10-13 Black & Decker Inc. Quick change bit holder with ring magnet
US9505108B2 (en) 2012-02-15 2016-11-29 Black & Decker Inc. Bit holder with floating magnet sleeve
US9227309B2 (en) 2012-02-15 2016-01-05 Black & Decker Inc. Quick change bit holder with ring magnet
US9943946B2 (en) 2012-02-15 2018-04-17 Black & Decker Inc. Tool bits with floating magnet sleeves
US10150205B2 (en) 2012-02-15 2018-12-11 Black & Decker Inc. Fastening tools with floating magnet sleeves
US9956677B2 (en) 2013-05-08 2018-05-01 Black & Decker Inc. Power tool with interchangeable power heads
US11007631B2 (en) * 2014-01-15 2021-05-18 Milwaukee Electric Tool Corporation Bit retention assembly for rotary hammer
WO2017019497A1 (en) * 2015-07-24 2017-02-02 Lewis Terry A Thread repair tools and methods of making and using the same
USD789761S1 (en) 2015-11-02 2017-06-20 Black & Decker Inc. Torsion bit
US9726318B2 (en) 2015-12-15 2017-08-08 John Bean Technologies Corporation Roller brush mounting assembly
US10821579B2 (en) * 2016-11-07 2020-11-03 Jacques Rajotte Screw driving device for use with an impact driver
US10226825B2 (en) 2016-11-20 2019-03-12 Charles Michael Berg Tool holding apparatus
DE202017103050U1 (en) * 2017-05-19 2018-08-22 Joh. Friedrich Behrens Ag Drive-in device for driving fasteners into workpieces

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190908248A (en) * 1909-05-17 1910-02-03 Sydney Bernard Bignold An Automatic Chuck like Tubular Gripping Device for Coupling Rods or Tubes together and for Holding a Drill Bit or other Tool.
US1124981A (en) * 1913-02-20 1915-01-12 William Arthur Weaver Tool-holder.
US1955642A (en) * 1933-05-11 1934-04-17 Laughlin Guy Collet
US2069527A (en) * 1935-02-08 1937-02-02 Arthur I Kirkland Chuck adapted for stud driver or the like
US2290215A (en) * 1938-11-21 1942-07-21 Stenberg Sigfrid Linus Tool holder for machine tools
GB636021A (en) * 1948-02-18 1950-04-19 Helge Goesta Norlander Improvements in or relating to tool holders or chucks for twist drills
GB664443A (en) * 1949-02-22 1952-01-09 Edmund Geoffrey Garthwaite Quick change holder for rotary cutting tools
US2662773A (en) * 1951-01-12 1953-12-15 Richard H Parsons Construction of interchangeable dies, punches, etc.
US2926020A (en) * 1958-01-02 1960-02-23 Pacific Tool And Mfg Co Quick-change chuck
AT211629B (en) * 1959-05-19 1960-10-25 Friedrich Pongracz Feed cartridge or retraction lock for single and multi-spindle machines, turret lathes, precision engineering lathes, etc. Like. Machine tools to be processed
US3436086A (en) * 1966-05-31 1969-04-01 Hanson Whitney Co The Tool holder
US3529842A (en) * 1968-11-26 1970-09-22 Erickson Tool Co Quick release tool holder
US3674281A (en) * 1971-01-21 1972-07-04 Pevrick Eng Co Inc Tool chuck assembly
US3720417A (en) * 1971-07-19 1973-03-13 T Smith Quick change spindle adapter or chuck
US3756737A (en) * 1972-02-14 1973-09-04 Smith Trust T Quick change spindle adapter with two-piece nut assembly
US3851890A (en) * 1972-04-21 1974-12-03 Smith L Quick change spindle adapter and nut assembly
US3767218A (en) * 1973-02-21 1973-10-23 Carrier Corp Tool chuck
US3893677A (en) * 1973-12-26 1975-07-08 Smith Trustee Lucille G Quick change spindle adapter for tool holder
US3975032A (en) * 1974-04-15 1976-08-17 Minnesota Mining And Manufacturing Company Surgical wire driving assembly
US4184692A (en) * 1977-05-23 1980-01-22 The Boeing Company Motor quick-change chuck system for tool having cylindrically shaped adapter portion
US4188041A (en) * 1977-05-23 1980-02-12 The Boeing Company Motor quick-change chuck system for tool having cylindrically shaped adapter portion
US4211425A (en) * 1977-10-25 1980-07-08 Bryant Grinder Corporation Replaceable collet in double diaphragm chuck
US4171821A (en) * 1978-02-16 1979-10-23 Chamberlain Manufacturing Company Quick change collet tool holder assembly
US4273344A (en) * 1978-08-08 1981-06-16 The Boeing Company Motor quick-change chuck system for tool having cylindrically shaped adapter portion
US4188014A (en) 1978-10-11 1980-02-12 Acf Industries, Incorporated Gate valve with position responsive interlock
US4290617A (en) * 1979-06-11 1981-09-22 The Boeing Company Motor quick-change chuck system for tool having cylindrically shaped adapter portion wherein relative longitudinal movement between chuck and tool being driven is eliminated
US4395051A (en) * 1980-02-20 1983-07-26 Kabushiki Kaisha Fujikoshi Quick-change holder
SU1144793A1 (en) * 1983-10-04 1985-03-15 Московский автомобильный завод им.И.А.Лихачева Quick-change drilling chuck
FR2576775B1 (en) * 1985-02-04 1990-03-16 Micro Mega Sa CONTRA-ANGLE OR TURBINE HEAD OF A DENTAL HANDPIECE
US4692073A (en) * 1985-02-25 1987-09-08 Martindell J Richard Handle adapter and chuck apparatus for power bits
US4626152A (en) * 1985-04-08 1986-12-02 Milwaukee Electric Tool Corporation Quick change tool retainer
US4710079A (en) * 1985-06-11 1987-12-01 T. M. Smith Tool International Corp. Quick change spindle adapter for tool holder
US4795291A (en) * 1986-08-25 1989-01-03 Ettco Tool & Machine Co., Inc. Method for achieving interchangeability of tool inserts
IT1201872B (en) * 1986-09-30 1989-02-02 Orthofix Srl SELF-LOCKING SPINDLE FOR DRILLS AND SIMILAR EQUIPMENT, PARTICULARLY SUITABLE FOR PORTABLE DRILLS FOR SURGICAL USE
US4858939A (en) * 1987-02-09 1989-08-22 The Aro Corporation Bit retention and release mechanism
US5188378A (en) * 1990-01-11 1993-02-23 Wera Werk Hermann Werner Gmbh & Co. Chuck for polygonal shank ends of tools
US4989887A (en) * 1990-06-15 1991-02-05 Jacobs Chuck Technology Corporation Methods and apparatus for adjusting the center of a collet
US5193825A (en) * 1991-10-03 1993-03-16 Jacobs Chuck Technology Corporation Apparatus for adjusting the center of a collet
JP3261180B2 (en) * 1992-10-26 2002-02-25 エヌティーツール株式会社 Tool mounting device
US5411275A (en) * 1993-09-27 1995-05-02 Jacobs Chuck Technology Corporation Chuck with torque limiting mechanism and inclined plane for final tightening
US5531461A (en) * 1993-09-27 1996-07-02 Jacobs Chuck Technology Corporation Chuck with torque limiting mechanism and inclined plane for final tightening
US5354075A (en) * 1993-11-02 1994-10-11 Smith & Nephew Richards Inc. Keyless drill chuck
US5511801A (en) * 1994-04-01 1996-04-30 Power Tool Holders, Inc. Integrated collet and chuck device
AU2650395A (en) * 1994-05-26 1995-12-21 Power Tool Holders Incorporated Quick release chuck device
US5464229A (en) * 1994-05-26 1995-11-07 Power Tool Holders, Inc. Quick release chuck device
AU699271B2 (en) * 1994-12-22 1998-11-26 Power Tool Holders Incorporated Clamp screw
US5573255A (en) * 1995-05-05 1996-11-12 Power Tool Holders, Inc. Quick release chuck device for saw blades
US5577743A (en) * 1995-05-10 1996-11-26 Power Tool Holders, Inc. Quick release chuck device
US5678961A (en) * 1995-05-11 1997-10-21 Fleege; Dennis W. Quick change adapter
ES2106710T1 (en) * 1995-05-31 1997-11-16 Power Tool Holders Inc QUICK RELEASE CHUCK DEVICE.
US5586847A (en) * 1995-06-06 1996-12-24 Mattern, Jr.; Charles J. Power tool adapter
HUP9802503A2 (en) * 1995-06-07 1999-02-01 Power Tool Holders Incorporated Lever actuated keyless chuck
JPH09250528A (en) * 1996-01-08 1997-09-22 Jacobs Japan Inc Fastening screw
EP0876236A4 (en) * 1996-01-22 1999-04-14 Power Tool Holders Inc Tool chuck
US5820135A (en) * 1996-03-01 1998-10-13 Power Tool Holders Incorporated Counter centrifugal chuck and mounting systems
US5810366A (en) * 1996-06-19 1998-09-22 Power Tool Holders Incorporated Tool-less machine tool chuck
US5775704A (en) * 1996-06-22 1998-07-07 Power Tool Holders Incorporated Reverse lever actuated keyless chuck
WO1997049514A1 (en) * 1996-06-24 1997-12-31 Power Tool Holders Incorporated Chuck with torque limiting mechanism and inclined plane for final tightening
US5820136A (en) * 1996-10-24 1998-10-13 Power Tool Holders Incorporated Quick release integrated collet and chuck device
US5788248A (en) * 1996-10-24 1998-08-04 Power Tool Holders Incorprated Collet chuck device
US5816583A (en) * 1996-12-04 1998-10-06 Power Tool Holders, Inc. Integral locking sleeve chuck
AU3530497A (en) * 1996-12-05 1998-06-11 Power Tool Holders Incorporated Improved ball screw clamping device
US5816584A (en) * 1997-01-02 1998-10-06 Power Tool Holders, Inc. Chuck with improved jaw bite
US5908076A (en) * 1997-01-10 1999-06-01 Power Tool Holders Incorporated Impact tool driver
US5775981A (en) * 1997-03-12 1998-07-07 Yang; Maw-Chyuan Air die grinder
US6126370A (en) * 1998-07-22 2000-10-03 Black & Decker Inc. Removable tool holder
US5988957A (en) * 1998-12-21 1999-11-23 Black & Decker Inc. Quick clamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130134684A1 (en) * 2011-05-25 2013-05-30 Hilti Aktiengesellschaft Electric screwdriver
US9434057B2 (en) * 2011-05-25 2016-09-06 Hilti Aktiengesellschaft Electric screwdriver
US20130214496A1 (en) * 2012-02-18 2013-08-22 Jack Lin Chuck

Also Published As

Publication number Publication date
US6343901B2 (en) 2002-02-05
US6224303B1 (en) 2001-05-01
US6126370A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US6224303B1 (en) Removable tool holder
US5577743A (en) Quick release chuck device
US5988957A (en) Quick clamp
US5195761A (en) Chuck for tool inserts, especially screwdriver bits
US8132990B2 (en) Bit holding apparatus for use with a power tool
US7374377B2 (en) Bit holding apparatus for use with a power tool
US5464229A (en) Quick release chuck device
US6135462A (en) Snap-in chuck
AU724736B2 (en) Tool-less machine tool chuck
US5553873A (en) Keyless chuck
US6007071A (en) Chuck with locking body
US4834596A (en) Quick change spindle adaptor for tool holder
US5826888A (en) Quick release chuck device
US20060027979A1 (en) Lockable chuck
JPH11510744A (en) Chuck
US5947484A (en) Quick-change chuck device
JP3108654B2 (en) Keyless drill chuck
US6173972B1 (en) Locking chuck
WO1998047652A1 (en) Quick release integrated collet and chuck device
JP2001501541A (en) Quick release chuck device
US5816584A (en) Chuck with improved jaw bite
US6398226B1 (en) Chuck with one-way lock
CN105592962A (en) Self-tightening rotary tool holding system
US6505840B2 (en) Quick change chuck
US6520508B1 (en) Keyless router chuck

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100205