US20010003339A1 - Method and apparatus for heating ultrapure water using microwave energy - Google Patents

Method and apparatus for heating ultrapure water using microwave energy Download PDF

Info

Publication number
US20010003339A1
US20010003339A1 US09/376,270 US37627099A US2001003339A1 US 20010003339 A1 US20010003339 A1 US 20010003339A1 US 37627099 A US37627099 A US 37627099A US 2001003339 A1 US2001003339 A1 US 2001003339A1
Authority
US
United States
Prior art keywords
ultrapure water
water
product
chamber
transporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/376,270
Other versions
US6369371B2 (en
Inventor
Daniel A. Havens
Ralph N. Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CH2M Hill Industrial Design Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/376,270 priority Critical patent/US6369371B2/en
Assigned to CH2MHILL INDUSTRIAL DESIGN CORPORATION reassignment CH2MHILL INDUSTRIAL DESIGN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WILLIAMS, RALPH N., HAVENS, DANIEL A.
Publication of US20010003339A1 publication Critical patent/US20010003339A1/en
Application granted granted Critical
Publication of US6369371B2 publication Critical patent/US6369371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/802Apparatus for specific applications for heating fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use

Definitions

  • the present invention is related to water heating systems and more specifically to heating systems for ultrapure water.
  • Some purification systems produce ultrapure water. Such systems remove from a water supply particulates, ions, organic matter and microbes that could otherwise contaminate the process or device that uses the ultrapure water.
  • One example of a system for producing ultrapure water is described in Sauer & Vedova, “A New Water Treatment System for the latest Generation of Semiconductor Devices”, Ultrapure Water, December 1996.
  • Some processes require heated ultrapure water or ultrapure steam.
  • some manufacturing processes may use heated ultrapure water for producing and cleaning semiconductor wafers used to manufacture electronic devices.
  • Other manufacturing processes may use heated ultrapure water for producing and cleaning components used to manufacture disk drives.
  • Pharmaceutical and biotechnology manufacturing processes use heated ultrapure water for cleaning and sterilizing, and can also include ultrapure water in the finished product.
  • heated ultrapure water may be used to clean the filters that make up the purification system. It is therefore desirable to heat ultrapure water.
  • a method and apparatus uses microwave energy to heat ultrapure water in a chamber that does not release contaminants to the water when heated. Because fluid-fluid heat exchange techniques are not used to heat the water, thermally conductive materials need not be used to transport the ultrapure water, and tubing made of inert materials may be used instead, maintaining the purity of the water. Because the heat source itself is not in contact with the water, the purity of the water is maintained.
  • FIG. 1A is a block schematic diagram of an apparatus for producing ultrapure water, heating the ultrapure water and using the heated ultrapure water according to one embodiment of the present invention.
  • FIG. 1B is a block schematic diagram of a conventional apparatus for producing ultrapure water.
  • FIG. 2A is a top view of a block schematic diagram of an apparatus for heating ultrapure water according to one embodiment of the present invention.
  • FIG. 2B is a side view of an apparatus for heating ultrapure water according to another embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of heating ultrapure water according to one embodiment of the present invention.
  • An ultrapure water purification system 102 described below receives raw water from a source 104 and purifies it to ultrapure standards of 18.2 megaohm-cm (if the water is at a temperature of 25 degrees Celsius), and containing silicon dioxide of under 0.5 parts per billion, total organic carbon of under 1 part per billion, total ionic content of less than 1 part per billion and dissolved oxygen of under 5 parts per billion.
  • the ultrapure water contains less than one thousand 0.05 micrometer sized particles per liter, less than fifty 0.1 micrometer sized particles per liter, and microorganism contamination of no more than 1 cfu/L. In other embodiments, the specifications above are 5%, 10%, 15%, 20% or 25% higher or lower than described above.
  • the ultrapure water purification system 102 feeds a microwave system 104 described in more detail below, which adds heat to the ultrapure water.
  • the heated ultrapure water is provided to process 106 , which uses the heated ultrapure water or steam produced therefrom and materials 108 to produce a product 110 , such as a disk drive, semiconductor device, pharmaceutical or biotechnology product.
  • the heated ultrapure water or steam may also be used for a process, such as to mix ultrapure chemicals or to clean filters in the ultrapure water purification system 102 .
  • ultrapure water purification system 102 includes pretreatment filtration 114 , which includes multimedia filters 116 to filter particulate contaminants such as silt, and activated carbon filters 118 to filter total organic carbon and chlorine.
  • pretreatment filtration 114 includes multimedia filters 116 to filter particulate contaminants such as silt, and activated carbon filters 118 to filter total organic carbon and chlorine.
  • Precoat filters 120 containing diatomaceous earth perform additional filtration of particulate and other matter. Water flows in the direction of the arrows in the Figure.
  • Precipitation inhibitor 122 adds antiscalant based on polyacrylic acid to the water to avoid calcium carbonate precipitation in subsequent portions of the apparatus, though conventional acid dosing techniques may be used.
  • Reverse osmosis membrane 128 separates ionic, colloidal and organic matter from the water and supplies the water to a tank 130 .
  • a loop 132 containing a vacuum degasifier 134 to remove gases such as carbon dioxide and oxygen and reduce total organic matter, UV radiator 136 to kill microorganisms and oxidize organic matter and mixed bed deionizers 135 to remove residual ions is operated by pump 138 to keep the water from stagnating.
  • the loop system feeds a second tank 140 , which has a layer of nitrogen above the surface of the water it contains to prevent absorption of oxygen and carbon dioxide.
  • Water is fed from tank 140 to a loop 141 containing another UV radiator 142 , mixed bed ion exchange 144 and ultrafilters 146 to remove residual particulate matter, and circulated by means of pump 148 .
  • Tapped off the loop 141 and downstream of all of the filters is outlet 150 , coupled to microwave heating unit described below, which heats the water.
  • Microwave heating unit 104 of FIG. 1A contains a conventional microwave generator 210 such as a magnetron, clystron or other microwave generating source aimed at chamber 216 , which may be pipes, carrying ultrapure water, purified as described above.
  • Chamber 216 carrying the ultrapure water received at input 218 coupled to outlet 150 of FIG. 1B allow microwaves to pass through to the water contained therein. Chamber 216 withstands the heat produced by the microwaved water without significantly contaminating the water.
  • chamber 216 is made of quartz, and in another embodiment, chamber 216 is made of polyvinylidene fluoride resin, referred to as PVDF, or Teflon PFA commercially available from E. I. du Pont de Nemours and Company of Wilmington, Del., although any chamber that admits microwaves and does not significantly contaminate the water may be used.
  • Chamber 216 may be in the shape of one or more pipes or may be other shapes. Chamber 216 may be straight or not straight in shape. Shapes that are not straight may allow the water to come into contact with microwaves for a longer time.
  • Microwave generator 210 generates microwaves which heats the water in the pipes to produce hot water or steam, which is provided to output 220 .
  • microwave heating unit 104 includes the components of FIG. 2A and also includes rotating fan 212 and reflectors 214 .
  • Microwaves emitted from microwave generator 210 are disbursed by rotating fan 212 and reflected by reflectors 214 , both of which reflect microwave energy without significant absorption. These components operate as if they were in a conventional microwave oven for use in household cooking. Such embodiment may make more efficient use of the microwaves generated by microwave generator 210 .
  • a sensor 222 is coupled to controller 224 which controls the operation of microwave generator 210 to provide a desired temperature of the water flowing past the sensor 222 . If the water sensed by sensor 222 is too warm, controller 224 reduces the output of microwave generator 210 to reduce the temperature of the water. If the water sensed by sensor 222 is too cold, controller 224 increases the output of microwave generator 210 .
  • the output of microwave generator may be adjusted by cycling microwave generator 210 on and off or by varying the power input to microwave generator 210 .
  • sensor 222 , controller 224 and a valve 226 are used to control the temperature of the water.
  • Sensor 222 is coupled to controller 224 , which is in turn coupled to control valve 226 .
  • Controller 224 opens valve 226 when water reaches a desired temperature as indicated by sensor 222 , and otherwise keeps water from flowing out of microwave heating unit 104 . If it is desirable to achieve a constant flow of water, unheated ultrapure water may be routed from input 218 to output 216 to make up water restricted by valve 226 .
  • a valve similar to valve 226 is used on the supply of unheated ultrapure water and this valve is also controlled by controller 224 to provide a constant flow of ultrapure water.
  • a second sensor (not shown) coupled to controller 224 may allow for detection of the temperature of the unheated ultrapure water to allow controller 224 to provide the proper mix of heated and unheated ultrapure water to provide ultrapure water at a desired temperature or within a desired temperature range.
  • the water is purified to ultrapure standards 310 as described above.
  • the water that is purified in step 310 is provided 312 to an inert chamber, such as piping made from quartz, PVDF or Teflon PFA.
  • Microwaves are generated 314 and applied 316 to the chamber, which transmits the microwaves to the water in the chamber as described above.
  • Step 316 may include disbursing the microwaves.
  • the microwaves alternately polarize the water molecules and then reverse polarize them over and over again at high speed, which generates heat in the water.
  • the water is thus heated or turned to steam, and the heated water or steam is provided 318 to a process.
  • Step 318 may include sensing the temperature of the water at one or more locations as described above and using the temperature of the water to control one or more valves or to control the generation of microwaves in step 314 in order to provide water at a desired temperature.
  • a product is manufactured 320 using the ultrapure hot water or steam, or the ultrapure water is used in a process as described above.

Abstract

A method and apparatus heats ultrapure water using microwaves. Chambers such as pipes containing the water are capable of admitting microwaves to the water, allowing the microwaves to heat the water. The pipes may be made of inert material such as PVDF or quartz that will not introduce contamination into the water.

Description

    FIELD OF THE INVENTION
  • The present invention is related to water heating systems and more specifically to heating systems for ultrapure water. [0001]
  • BACKGROUND OF THE INVENTION
  • Some purification systems produce ultrapure water. Such systems remove from a water supply particulates, ions, organic matter and microbes that could otherwise contaminate the process or device that uses the ultrapure water. One example of a system for producing ultrapure water is described in Sauer & Vedova, “A New Water Treatment System for the latest Generation of Semiconductor Devices”, [0002] Ultrapure Water, December 1996.
  • Some processes require heated ultrapure water or ultrapure steam. For example, some manufacturing processes may use heated ultrapure water for producing and cleaning semiconductor wafers used to manufacture electronic devices. Other manufacturing processes may use heated ultrapure water for producing and cleaning components used to manufacture disk drives. Pharmaceutical and biotechnology manufacturing processes use heated ultrapure water for cleaning and sterilizing, and can also include ultrapure water in the finished product. In addition, heated ultrapure water may be used to clean the filters that make up the purification system. It is therefore desirable to heat ultrapure water. [0003]
  • Many conventional techniques exist for heating water. For example, conventional systems for heating water may use heat exchange techniques. In these techniques, heat is transferred from a liquid or gas to the liquid to be heated. Conventional heat exchange techniques use a plate and frame, double pipe, shell & tube, or other form of heat exchanger to transfer heat from a non-purified aqueous- or steam- heat source to the liquid to be heated, separated by a heat conductor. Other heat exchange techniques include cross flow systems in which heated air is passed over pipes containing the water. The pipes used in the heat exchanger have fins to improve the effective heat transfer from the air to the water. Pipes or heat conductors for such systems may be made of aluminum, copper, stainless steel, or nickel alloys, exotic metals, such as titanium, or plastics in order to maximize the heat transfer to the water. [0004]
  • While such systems can provide efficient heat transfer, they can contaminate ultrapure water. When heated, the conductive materials used for the piping or heat conductors can leach particulate and ionic contamination into the ultrapure water. Titanium pipes or conductors have been used in the heat exchangers instead of the other types of pipes, but as standards for ultrapure water improve, titanium introduces unacceptable amounts of impurities into the ultrapure water. Fluoropolymer pipes have also been used in heat exchangers, but such pipes are not good conductors of heat, and thus, they adversely impact the efficiency of the heat exchange. [0005]
  • Other heating techniques have been attempted to heat ultrapure water such as running a thin stream of ultrapure water past a current-carrying wire used as a heat source. Here too, the contamination introduced by the heated metal wire is sufficiently high to contaminate the ultrapure water. Radiant heat can be passed through quartz pipes, but quartz pipes are fragile and relatively difficult to seal. [0006]
  • What is needed is a method and apparatus for heating ultrapure water while minimizing the amount of contamination introduced to the water by the heating process. [0007]
  • SUMMARY OF INVENTION
  • A method and apparatus uses microwave energy to heat ultrapure water in a chamber that does not release contaminants to the water when heated. Because fluid-fluid heat exchange techniques are not used to heat the water, thermally conductive materials need not be used to transport the ultrapure water, and tubing made of inert materials may be used instead, maintaining the purity of the water. Because the heat source itself is not in contact with the water, the purity of the water is maintained. [0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a block schematic diagram of an apparatus for producing ultrapure water, heating the ultrapure water and using the heated ultrapure water according to one embodiment of the present invention. [0009]
  • FIG. 1B is a block schematic diagram of a conventional apparatus for producing ultrapure water. [0010]
  • FIG. 2A is a top view of a block schematic diagram of an apparatus for heating ultrapure water according to one embodiment of the present invention. [0011]
  • FIG. 2B is a side view of an apparatus for heating ultrapure water according to another embodiment of the present invention. [0012]
  • FIG. 3 is a flowchart illustrating a method of heating ultrapure water according to one embodiment of the present invention. [0013]
  • DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
  • Referring now to FIG. 1A, a system for producing and heating ultrapure water is shown according to one embodiment of the present invention. An ultrapure [0014] water purification system 102 described below receives raw water from a source 104 and purifies it to ultrapure standards of 18.2 megaohm-cm (if the water is at a temperature of 25 degrees Celsius), and containing silicon dioxide of under 0.5 parts per billion, total organic carbon of under 1 part per billion, total ionic content of less than 1 part per billion and dissolved oxygen of under 5 parts per billion. The ultrapure water contains less than one thousand 0.05 micrometer sized particles per liter, less than fifty 0.1 micrometer sized particles per liter, and microorganism contamination of no more than 1 cfu/L. In other embodiments, the specifications above are 5%, 10%, 15%, 20% or 25% higher or lower than described above.
  • The ultrapure [0015] water purification system 102 feeds a microwave system 104 described in more detail below, which adds heat to the ultrapure water. The heated ultrapure water is provided to process 106, which uses the heated ultrapure water or steam produced therefrom and materials 108 to produce a product 110, such as a disk drive, semiconductor device, pharmaceutical or biotechnology product. The heated ultrapure water or steam may also be used for a process, such as to mix ultrapure chemicals or to clean filters in the ultrapure water purification system 102.
  • Referring now to FIG. 1B, a conventional ultrapure [0016] water purification system 102 of FIG. 1A is shown although any ultrapure water purification system may be used. In one embodiment, ultrapure water purification system 102 includes pretreatment filtration 114, which includes multimedia filters 116 to filter particulate contaminants such as silt, and activated carbon filters 118 to filter total organic carbon and chlorine. Precoat filters 120 containing diatomaceous earth perform additional filtration of particulate and other matter. Water flows in the direction of the arrows in the Figure.
  • [0017] Precipitation inhibitor 122 adds antiscalant based on polyacrylic acid to the water to avoid calcium carbonate precipitation in subsequent portions of the apparatus, though conventional acid dosing techniques may be used.
  • Reverse [0018] osmosis membrane 128 separates ionic, colloidal and organic matter from the water and supplies the water to a tank 130. A loop 132 containing a vacuum degasifier 134 to remove gases such as carbon dioxide and oxygen and reduce total organic matter, UV radiator 136 to kill microorganisms and oxidize organic matter and mixed bed deionizers 135 to remove residual ions is operated by pump 138 to keep the water from stagnating.
  • The loop system feeds a [0019] second tank 140, which has a layer of nitrogen above the surface of the water it contains to prevent absorption of oxygen and carbon dioxide. Water is fed from tank 140 to a loop 141 containing another UV radiator 142, mixed bed ion exchange 144 and ultrafilters 146 to remove residual particulate matter, and circulated by means of pump 148. Tapped off the loop 141 and downstream of all of the filters is outlet 150, coupled to microwave heating unit described below, which heats the water.
  • Referring now to FIG. 2A, the [0020] microwave heating unit 104 of FIG. 1A is shown according to one embodiment of the present invention. Microwave heating unit 104 contains a conventional microwave generator 210 such as a magnetron, clystron or other microwave generating source aimed at chamber 216, which may be pipes, carrying ultrapure water, purified as described above. Chamber 216 carrying the ultrapure water received at input 218 coupled to outlet 150 of FIG. 1B allow microwaves to pass through to the water contained therein. Chamber 216 withstands the heat produced by the microwaved water without significantly contaminating the water. In one embodiment, chamber 216 is made of quartz, and in another embodiment, chamber 216 is made of polyvinylidene fluoride resin, referred to as PVDF, or Teflon PFA commercially available from E. I. du Pont de Nemours and Company of Wilmington, Del., although any chamber that admits microwaves and does not significantly contaminate the water may be used. Chamber 216 may be in the shape of one or more pipes or may be other shapes. Chamber 216 may be straight or not straight in shape. Shapes that are not straight may allow the water to come into contact with microwaves for a longer time. Microwave generator 210 generates microwaves which heats the water in the pipes to produce hot water or steam, which is provided to output 220.
  • In another embodiment of the present invention, shown in FIG. 2B, [0021] microwave heating unit 104 includes the components of FIG. 2A and also includes rotating fan 212 and reflectors 214. Microwaves emitted from microwave generator 210 are disbursed by rotating fan 212 and reflected by reflectors 214, both of which reflect microwave energy without significant absorption. These components operate as if they were in a conventional microwave oven for use in household cooking. Such embodiment may make more efficient use of the microwaves generated by microwave generator 210.
  • Referring again to FIG. 2A, in one embodiment, a [0022] sensor 222 is coupled to controller 224 which controls the operation of microwave generator 210 to provide a desired temperature of the water flowing past the sensor 222. If the water sensed by sensor 222 is too warm, controller 224 reduces the output of microwave generator 210 to reduce the temperature of the water. If the water sensed by sensor 222 is too cold, controller 224 increases the output of microwave generator 210. The output of microwave generator may be adjusted by cycling microwave generator 210 on and off or by varying the power input to microwave generator 210.
  • In another embodiment, [0023] sensor 222, controller 224 and a valve 226 are used to control the temperature of the water. Sensor 222 is coupled to controller 224, which is in turn coupled to control valve 226. Controller 224 opens valve 226 when water reaches a desired temperature as indicated by sensor 222, and otherwise keeps water from flowing out of microwave heating unit 104. If it is desirable to achieve a constant flow of water, unheated ultrapure water may be routed from input 218 to output 216 to make up water restricted by valve 226. In one embodiment, a valve similar to valve 226 is used on the supply of unheated ultrapure water and this valve is also controlled by controller 224 to provide a constant flow of ultrapure water. A second sensor (not shown) coupled to controller 224 may allow for detection of the temperature of the unheated ultrapure water to allow controller 224 to provide the proper mix of heated and unheated ultrapure water to provide ultrapure water at a desired temperature or within a desired temperature range.
  • Referring now to FIG. 3, a method of producing ultrapure hot water or steam is shown according to one embodiment of the present invention. The water is purified to [0024] ultrapure standards 310 as described above. The water that is purified in step 310 is provided 312 to an inert chamber, such as piping made from quartz, PVDF or Teflon PFA. Microwaves are generated 314 and applied 316 to the chamber, which transmits the microwaves to the water in the chamber as described above. Step 316 may include disbursing the microwaves. The microwaves alternately polarize the water molecules and then reverse polarize them over and over again at high speed, which generates heat in the water. The water is thus heated or turned to steam, and the heated water or steam is provided 318 to a process. Step 318 may include sensing the temperature of the water at one or more locations as described above and using the temperature of the water to control one or more valves or to control the generation of microwaves in step 314 in order to provide water at a desired temperature. A product is manufactured 320 using the ultrapure hot water or steam, or the ultrapure water is used in a process as described above.

Claims (22)

What is claimed is:
1. An apparatus for heating ultrapure water, comprising:
a microwave generator for emitting microwaves; and
at least one chamber for transporting the ultrapure water through the microwaves emitted from the microwave generator.
2. The apparatus of
claim 1
, wherein the at least one chamber is capable of transmitting microwaves and withstanding heat emitted from the water transported through the microwaves without significantly contaminating the water.
3. The apparatus of
claim 2
wherein the at least one chamber comprises PVDF.
4. The apparatus of
claim 2
wherein the at least one chamber comprises quartz.
5. The apparatus of
claim 2
wherein the at least one chamber comprises Teflon PFA.
6. The apparatus of
claim 1
wherein the ultrapure water has a resistivity of at least 17 megaohm-cm total organic carbon not more than 25 ppb C.
7. The apparatus of
claim 1
additionally comprising:
a control valve coupled to the chamber to restrict a flow of ultrapure water past the control valve;
a sensor for sensing a temperature of the ultrapure water; and
a controller coupled to the control valve and the sensor, the controller for operating the valve responsive to the sensor.
8. The apparatus of
claim 1
additionally comprising:
a sensor for sensing a temperature of the ultrapure water; and
a controller coupled to the microwave generator and the sensor, the controller for operating the microwave generator responsive to the sensor.
9. A method of heating ultrapure water, the method comprising:
receiving ultrapure water; and
exposing the ultrapure water received to microwave energy.
10. The method of
claim 9
comprising the additional step of transporting the ultrapure water through the microwave energy.
11. The method of
claim 10
, wherein the transporting step comprises transporting the ultrapure water in a chamber that is capable of transmitting the microwave energy.
12. A product produced using the method of
claim 9
.
13. The product of
claim 12
, wherein the method additionally comprises transporting the ultrapure water through the microwave energy.
14. The product of
claim 13
, wherein the transporting step comprises transporting the ultrapure water in a chamber that is capable of admitting the microwave energy.
15. The product of
claim 12
, wherein the product comprises a microelectronic device.
16. The product of
claim 12
, wherein the product comprises a disk drive.
17. The product of
claim 12
, wherein the product comprises a pharmaceutical product.
18. The product of
claim 12
, wherein the product comprises a biotechnology product.
19. The method of
claim 9
comprising the additional step of sensing a temperature of the ultrapure water.
20. The method of
claim 19
, wherein the exposing step is responsive to the sensing step.
21. The method of
claim 19
additionally comprising a step of regulating at least one flow of ultrapure water responsive to the sensing step.
22. A method of heating ultrapure water, comprising:
receiving the ultrapure water; and
rapidly polarizing and reverse polarizing molecules in the water.
US09/376,270 1999-08-18 1999-08-18 Method and apparatus for heating ultrapure water using microwave energy Expired - Lifetime US6369371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/376,270 US6369371B2 (en) 1999-08-18 1999-08-18 Method and apparatus for heating ultrapure water using microwave energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/376,270 US6369371B2 (en) 1999-08-18 1999-08-18 Method and apparatus for heating ultrapure water using microwave energy

Publications (2)

Publication Number Publication Date
US20010003339A1 true US20010003339A1 (en) 2001-06-14
US6369371B2 US6369371B2 (en) 2002-04-09

Family

ID=23484328

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/376,270 Expired - Lifetime US6369371B2 (en) 1999-08-18 1999-08-18 Method and apparatus for heating ultrapure water using microwave energy

Country Status (1)

Country Link
US (1) US6369371B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134152A1 (en) * 2005-10-27 2009-05-28 Sedlmayr Steven R Microwave nucleon-electron-bonding spin alignment and alteration of materials

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2413005B (en) * 2004-04-07 2007-04-04 Jenact Ltd UV light source
US7119312B2 (en) * 2004-07-09 2006-10-10 Sedlmayr Steven R Microwave fluid heating and distillation method
US7432482B2 (en) * 2004-07-09 2008-10-07 Sedlmayr Steven R Distillation and distillate method by microwaves
GB2418335B (en) * 2004-09-17 2008-08-27 Jenact Ltd Sterilising an air flow using an electrodeless UV lamp within microwave resonator
US11248822B2 (en) 2019-07-25 2022-02-15 Globalfoundries U.S. Inc. Energy recovery system for a semiconductor fabrication facility

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152567A (en) * 1977-03-07 1979-05-01 Mayfield Esther O Microwave water heater
US4310738A (en) * 1980-02-08 1982-01-12 Michael Moretti Microwave fluid heating system
US4288674A (en) * 1980-04-21 1981-09-08 Councell Graham D Microwave actuated steam generator
US4313798A (en) * 1980-06-17 1982-02-02 Lakehurst Galleries, Ltd. Micro-wave powered distillation unit
US4417116A (en) * 1981-09-02 1983-11-22 Black Jerimiah B Microwave water heating method and apparatus
US4826575A (en) * 1985-11-18 1989-05-02 Karamian Narbik A Apparatus for production of high-purity water by microwave technology
US5521361A (en) * 1992-06-22 1996-05-28 Strait, Jr.; Clifford C. Microwave ovenware apparatus, hydrating microwave ovens and microwave water purifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134152A1 (en) * 2005-10-27 2009-05-28 Sedlmayr Steven R Microwave nucleon-electron-bonding spin alignment and alteration of materials

Also Published As

Publication number Publication date
US6369371B2 (en) 2002-04-09

Similar Documents

Publication Publication Date Title
US9850152B2 (en) System and a process for water descaling
US20080011336A1 (en) Induction heating type pure water heating apparatus and pure water heating method
JP2009515366A (en) Batch photoresist dry stripping and ashing system and method
US20050263458A1 (en) Process for removing organics from ultrapure water
US6369371B2 (en) Method and apparatus for heating ultrapure water using microwave energy
JP2019055404A (en) Method and system for providing ultrapure water
CN1237012C (en) Ozonation process
CN1173889C (en) Method and device for production of pure water
US20140190902A1 (en) Method for reprocessing wastewater and water treatment machine
JP3954647B2 (en) Method and apparatus for purifying gas and liquid
WO2000017108A1 (en) High temperature ultra-pure water production apparatus and liquid medicine preparation apparatus equipped with the production apparatus
WO1995001307A1 (en) Treatment of fluids
US20110233142A1 (en) Water Purification System and Method
JP2006502845A (en) Method for simultaneously performing decalcification and removal of toxic substances, and reactor
JP2009189905A (en) Heat recovery type cleaning equipment
RU2704193C1 (en) Oxidation by moist air at low temperatures
JP3474991B2 (en) Oxidation treatment apparatus and oxidation treatment method
JP4447126B2 (en) Ultrapure water production equipment
US20220194792A1 (en) Ozone generation method and ozone generation device
JPS6342787A (en) Automatic hot sterilizing device for ultrapure water feed line
TW202330086A (en) Water treatment system and water treatment method
KR200403854Y1 (en) The Apparatus for Generation of Ultra Pure Water Using Far Infrared
JP2000167535A (en) Apparatus for producing pure water by distillation
JP2003257956A (en) Heat treatment apparatus
JP2001113268A (en) Intermittent-operation-type ozone water supplier

Legal Events

Date Code Title Description
AS Assignment

Owner name: CH2MHILL INDUSTRIAL DESIGN CORPORATION, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAVENS, DANIEL A.;WILLIAMS, RALPH N.;REEL/FRAME:010187/0836;SIGNING DATES FROM 19990813 TO 19990817

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11