US20010000841A1 - Heating method and assembly for staircase - Google Patents

Heating method and assembly for staircase Download PDF

Info

Publication number
US20010000841A1
US20010000841A1 US09/735,390 US73539000A US2001000841A1 US 20010000841 A1 US20010000841 A1 US 20010000841A1 US 73539000 A US73539000 A US 73539000A US 2001000841 A1 US2001000841 A1 US 2001000841A1
Authority
US
United States
Prior art keywords
stair tread
strip
thermostat
strip heater
staircase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/735,390
Other versions
US6438909B2 (en
Inventor
Larry Birch
John Eve
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tread Ex Inc
Original Assignee
Tread Ex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/311,526 external-priority patent/US6318033B1/en
Application filed by Tread Ex Inc filed Critical Tread Ex Inc
Priority to US09/735,390 priority Critical patent/US6438909B2/en
Assigned to TREAD EX, INC. reassignment TREAD EX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIRCH, LARRY L., EVE, JOHN S.
Publication of US20010000841A1 publication Critical patent/US20010000841A1/en
Priority to CA 2359289 priority patent/CA2359289A1/en
Priority to US10/229,303 priority patent/US20020189177A1/en
Application granted granted Critical
Publication of US6438909B2 publication Critical patent/US6438909B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F11/00Stairways, ramps, or like structures; Balustrades; Handrails
    • E04F11/02Stairways; Layouts thereof
    • E04F11/104Treads
    • E04F11/112Treads of metal or with an upper layer of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F11/00Stairways, ramps, or like structures; Balustrades; Handrails
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F11/00Stairways, ramps, or like structures; Balustrades; Handrails
    • E04F11/02Stairways; Layouts thereof
    • E04F11/104Treads
    • E04F11/16Surfaces thereof; Protecting means for edges or corners thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Steps, Ramps, And Handrails (AREA)

Abstract

A heating assembly is provided which includes a metal stair tread member having an upper horizontal surface and a bottom surface for mounting on a stair tread of a staircase. A strip heating element is attached to the bottom surface of the stair tread member. A first covering of synthetic material encapsulates the horizontal surface of the metal stair tread member and the strip heating element on bottom surface of the stair tread member. The strip heating element is contiguous with the bottom surface and is attached thereto by a gasket extending around the peripheral edge of the strip heating element. A thermostat is electrically connected to the strip heater and to a power source for selectively supplying electric current to the strip heater in response to changes ambient temperatures. A temperature sensing element is in electrical communication with the thermostat wherein the thermostat selectively supplies the current to the strip heating element. The thermostat has multiple settings which are manually selected for providing different selected current levels to the strip heater in response to temperature changes at preselected ambient temperature levels.

Description

    TECHNICAL FIELD
  • 1. The present invention relates to a staircase and a staircase repair device adapted to be used for both residential and commercial buildings and, more particularly, to a staircase including specially constructed stair tread members for use with standard stringers, and a staircase repair device or kit which can refurbish an existing staircase in need of repair without modification of the original staircase. A heating assembly also is provided for melting ice and snow off of stair treads of a staircase. Methods are also provided for fabrication.
  • BACKGROUND ART
  • 2. A number of prior art devices exist which relate to the construction of a staircase, or the repair or refurbishing of a staircase. Particularly for conventional outside stairs and emergency stairs in both residential and commercial applications, such stairs are often constructed of materials which do not withstand heavy traffic or harsh environmental conditions. Because of safety concerns, stairs should always be kept in a high state of maintenance. However, the cost to repair damaged staircases can be quite prohibitive, even for minor flaws. For example, stairs formed of concrete which have chips or other surface defects are not only dangerous, but are also unsightly. Concrete repair is usually a very temporary measure and, particularly in high traffic areas, the concrete repair is never as wear-resistant as the original concrete. For wooden stairs, the wood has a tendency to warp or deform along heavy traffic areas. Even if constructed of treated lumber, the wood becomes unsightly over time.
  • 3. There are a number of examples of prior art devices which have attempted to overcome one or more of the following problems. These devices can be in the form of either a repair unit, or a complete staircase construction.
  • 4. U.S. Pat. No. 5,357,724 discloses a stair tread in which rubber sheet material is placed around a metal core section, and then heated to melt the sheets together. Once heated, the core section is encapsulated within the rubber. The stair tread has anti-slip serrations formed on its upper surface. A front face or overhanging front lip forms the front edge of the stair tread, and a vertically extending rear flange forms the rear face or edge of the stair tread. The upper edge of the rear face has a groove to accept the lower edge of a riser board, while the upper edge of the riser board is inserted into a corresponding groove formed in the lower edge of the front face of the next higher stair tread.
  • 5. U.S. Pat. No. 5,799,448 discloses an adjustable closed riser metal staircase system. The system includes a plurality of stair treads which may be assembled into staircases having different rise heights. The stair treads include a vertical riser portion and a horizontal walking surface, preferably made of a slip-resistant material such as Mebac™, a coating of thermally sprayed steel encapsulating a dispersion of grit materials, normally aluminum oxide. The nose piece portion of the stair tread is formed at the front of the stair by bending the forward edge of the steel plate downward. When assembled, the upper end of the riser portion is inserted within a channel created by the bent nosepiece of the next higher stair tread assembly.
  • 6. U.S. Pat. No. 4,783,939 discloses a composite covering for improving worn-out treadways of steps. This covering includes a stair tread section which is placed over the existing stair tread, and an integral vertical flange which overhangs the front lip of the stair tread section. The covering is constructed of a scuff-resistant plastic. The underside of the stair tread section includes an insert of pressboard, and a binder which helps raise the elevation of worn out sections or indentations, and also serves to bind the layers of the composite covering.
  • 7. U.S. Pat. No. 5,660,009 discloses a metal stairway construction in which stair steps are supported between a pair of trimmed sheet metal stringer panels on each side of the stairway. Each step of the stairway is formed of metal treads and risers cut to appropriate lengths from conventional joice members provided on site. The metal treads and risers are attached at opposite ends thereof to respective stringer panels by way of standard angle brackets. Threaded self-drilling fasteners attach each angle bracket to a corresponding stringer panel and to an associated metal tread or metal riser. Wooden treads and risers are attached over the corresponding metal treads and risers by standard self-drilling screws.
  • 8. While the foregoing references may be adequate for their intended purposes, there are certain advantages with the present invention which are not found in these references. One advantage is that the staircase repair device of this invention can be used with any type of existing staircase, whether it be concrete, wood, or metal. Another advantage is that this staircase repair device can be used to repair a staircase without preparation or modification of the original staircase wear surfaces. Yet another advantage not overcome by the prior art is the use of a staircase repair device which has high strength and weathering capabilities, yet does not detract from the general aesthetic appearance of the staircase. The same advantages discussed above also apply to the staircase of this invention. Additionally, the staircase of this invention is simple in design, and can be used for stairways in a wide array of residential and commercial buildings.
  • 9. Removal of ice and snow from the stair tread of a staircase is a chronic problem during cold winter weather. Typically, ice and snow are removed by scraping them from the stair tread or applying a chemical thereto which causes the ice and snow to melt. Heating devices are sometimes provided under surfaces such as driveways and sidewalks to melt snow. However, they are quite expensive and not practical for many stairways.
  • DISCLOSURE OF THE INVENTION
  • 10. In accordance with this invention, a staircase and a staircase repair device or kit are provided. The staircase repair device or kit forms a first embodiment and is comprised of two major components, namely, a stair tread repair member and a riser repair member. Both of these members are constructed of metal, preferably raw steel, bent to desired shapes. The stair tread repair member includes a front flange and an inward protruding lip. Holes may be drilled in the wearing surface of the stair tread repair member in order to accept fasteners which help to secure the stair tread repair member to an existing stair tread. The riser repair member includes an outward protruding flange. Holes may also be drilled in the riser repair member to accept fasteners for attachment of the riser repair member to an existing staircase riser. Both the stair tread and riser repair members are coated with a synthetic material which protects the metal from corrosion and other environmental hazards. The coating is preferably in the form of a polyurethane which is sprayed in liquid form to encapsulate the members therein. The upper wearing surface of the stair tread repair member also has a slip-free surface. This slip-free surface is formed by particles which are spread or sprinkled over the first sprayed coating of synthetic material. These particles are spread on the first coating while it is wet which allows the particles to become embedded in the first coating. Then, a second coating of synthetic material is sprayed over the embedded particles to seal the particles between the first and second coatings. The particles may be materials such as coal dust, aluminum oxide, walnut shells, and other known granular-type material which is used to create slip-free surfaces. It shall be understood that the stair tread repair member serves as a subcombination which may be used to repair the stair treads of an existing staircase.
  • 11. In a second embodiment, the invention is a staircase which includes a plurality of stair tread members which span between a pair of spaced stringers. The stair tread member is similar to the stair tread repair member of the first embodiment in that it is also constructed of metal bent to a desired shape encapsulated within a first coating of synthetic material, and having a slip-free surface made of a particulate material sandwiched between the first coating and a second applied coating. The stair tread member further includes a pair of opposed side flanges disposed on opposite ends of the stair tread member, and opposing front and rear flanges. The stair tread member spans between a pair of common stringers used in construction of staircases. The stair tread member may be mounted to the facing inner surfaces of the stringers, or may be mounted over the outer surfaces of the stringers. Optionally, an L bracket or other similar supporting hardware may be used to secure the stair tread member to the inner surfaces of the stringers.
  • 12. The second embodiment may be used in conjunction with either metal or wood stringers. Holes are drilled in the side flanges for receiving fasteners which secure the stair tread member to the stringers. If desired, a riser member could also be used with the invention of the second embodiment. More specifically, a riser similar to the riser repair member of the first embodiment could be used in the second embodiment. The riser in the second embodiment could simply be rectangular in shape and coated in the same way as the other components.
  • 13. Methods of fabricating a stair tread repair member and of fabricating a stair tread member in a new staircase are also provided. Both methods involve the provision of a flat sheet of metal cut to a desired size. The metal sheet is sanded to roughen its surfaces in preparation for coating with a synthetic material. A primer may be applied to further prepare the metal sheet for coating. The metal sheet is bent by a metal brake machine to the desired shape. In fabrication of the stair tread repair member, the sheet is bent to form the front flange and inward protruding lip. For the stair tread member of a new staircase, the sheet is bent to include front and rear flanges, and the opposed side flanges. In order to bend the sheet of metal used in the stair tread member, corner sections are removed. After the sheet has been bent, the joints formed at the corners of the stair tread members may be welded together. Prior to or after bending, screw holes are punched or drilled in the metal sheets enabling fasteners to be received therethrough.
  • 14. Once the stair tread repair member and the stair tread member have been bent to the desired shapes, they may be sprayed with a synthetic coating, preferably polyurethane. This polyurethane is applied to all exposed surfaces. The encapsulation of the members within the coating helps to ensure that all surfaces are protected from corrosion and other environmental hazards. The upper wearing surfaces of the members are then sprinkled with a dispersed layer of particles. This preferably occurs when the first applied coating is still wet which enables the particles to become embedded within the first coating. A second coating of polyurethane is then applied over the dispersed layer of particles to encapsulate the particles between the first and second coatings. A slip-free surface is therefore formed by the second coating covering the particles. In addition to providing weather-resistant surfaces, the coatings of polyurethane also help to dampen noise normally associated with metal stair treads, and help to keep the wearing surfaces scuff-free. Additionally, the applied polyurethane may be mixed with a desired color which enables the components to match or complement existing colors on the building. For the staircase embodiment, the stair tread members may include diagonal stress lines pressed on the upper wearing surfaces. This pre-stressing of the upper wearing surfaces adds strength to resist any buckling or wobbling of the upper wearing surfaces.
  • 15. The apparatuses and methods of this invention provide a staircase repair device and a staircase which are extremely durable, simple in construction, aesthetically pleasing, have integral slip-free surfaces, and resist scuffing. Furthermore, these devices are simple to install and are universal in their ability to be used for all types of buildings.
  • 16. This invention also contemplates a structure and method for removing ice and snow from a stairway. A heating assembly is provided which includes a metal stair tread member having an upper horizontal surface and a bottom surface for mounting on a stair tread of a staircase. A strip heating element is attached to the bottom surface of the stair tread member. Than a first covering of synthetic material encapsulates the horizontal surface of the metal stair tread member and the strip heating element on bottom surface of the stair tread member. The strip heating element is contiguous with the bottom surface and is attached thereto by a gasket extending around the peripheral edge of the strip heating element. A thermostat is electrically connected to the strip heater and to a power source for selectively supplying electric current to the strip heater in response to changes ambient temperatures. A temperature sensing element is in electrical communication with the thermostat wherein the thermostat selectively supplies the current to the strip heating element. The thermostat has multiple settings which can be manually selected for providing different selected current levels to the strip heater at preselected ambient temperature levels.
  • 17. Additional advantages of this invention will become apparent from the description which follows, taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • 18.FIG. 1 is a perspective view of a stair tread repair member of the first embodiment;
  • 19.FIG. 2 is a perspective view of a riser repair member of the first embodiment;
  • 20.FIG. 3 is a fragmentary perspective view of the staircase repair device of the first embodiment mounted to an existing staircase or stairway;
  • 21.FIG. 4 is an enlarged vertical section, taken along line 4-4 of FIG. 3 illustrating one manner in which the first embodiment may be mounted to the existing staircase;
  • 22.FIG. 5 is an enlarged vertical section taken along line 5-5 of FIG. 3 illustrating further details on the mounting of the first embodiment to the existing staircase;
  • 23.FIG. 6 is an enlarged vertical section taken along line 6-6 of FIG. 3 illustrating yet further details on the mounting of the first embodiment to the existing staircase;
  • 24.FIG. 7 is an enlarged fragmentary cross section of the stair tread repair member in FIG. 3 which illustrates a core metal layer, a first applied coating of synthetic material encapsulating the core metal layer, a dispersed layer of particles applied on the upper wearing surface, and a second coating placed on the dispersed layer of particles and trapping them between the first and second coatings;
  • 25.FIG. 8 is a perspective view of a stair tread member of the second embodiment;
  • 26.FIG. 9 is a perspective view of the stair tread member of FIG. 8 prior to being bent into the desired shape;
  • 27.FIG. 10 is a fragmentary perspective view of the staircase construction of the second embodiment illustrating stair tread repair members being mounted to stringers in three different manners;
  • 28.FIG. 11 is an enlarged fragmentary perspective view of FIG. 10 illustrating details of how a stair tread member is mounted over the stringer;
  • 29.FIG. 12 is an enlarged fragmentary vertical section taken along line 12-12 of FIG. 10 illustrating details of how a stair tread member may be mounted to the inner surfaces of the stringers;
  • 30.FIG. 13 is another enlarged fragmentary vertical section taken along line 13-13 of FIG. 10 illustrating another manner in which a stair tread member may be mounted to the inner surfaces of the stringers;
  • 31.FIG. 14 is a fragmentary perspective view of a staircase incorporating the heating assembly of this invention;
  • 32.FIG. 15 A is an exploded view of the heating assembly of this invention;
  • 33.FIG. 15 B is an enlarged fragmentary section of a second covering which encapsulate a layer of particles;
  • 34.FIG. 15 C is an enlarged fragmentary section of a first covering; and
  • 35.FIG. 16 is an enlarged, fragmentary, horizontal section showing details of the heating assembly construction.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • 36. According to a first embodiment, a stair case repair device is shown in FIGS. 1 and 2 which comprises a stair tread repair member 10 and a riser repair member 12. The stair tread repair member 10 has a wearing surface 14, and a front flange 16 extending from the forward or front edge of the wearing surface 14. Contiguous with the front flange 16 is an inward protruding lip 18. A plurality of holes 19 may be drilled through the wearing surface 14 to receive fasteners. The riser repair member in FIG. 2 has a riser surface 20 and an outwardly protruding flange 22. A plurality of holes 23 may be drilled in both riser surface 20 and flange 22 to receive fasteners.
  • 37.FIG. 3 illustrates the staircase repair device installed on an existing stairway or staircase. As shown, the existing stairway has a plurality of stair treads 26 which are mounted between a pair of stringers 24. A plurality of vertical risers 28 are also mounted between the stringers 24. The top of the stairway leads to a landing 30 which communicates with a doorway 32.
  • 38.FIG. 4 illustrates in further detail the manner in which stair tread repair members 10 and riser repair members 12 are secured to the staircase. As shown, fasteners 38 may be placed through holes 19 and 23, respectively. Additionally, an appropriate industrial adhesive or cement (not shown) may be used to secure members 10 and 12 to respective stair treads 26 and risers 28. FIG. 4 illustrates wearing surface 14, front flange 16, and lip 18 closely conforming to the lip 27 of the stair tread 26. However, it will understood that front flange 16 and lip 18 function equally as well even if there is some gap which exists between these members and the exterior surfaces of lip 27. Also, the size and shape of front flange 16 and lip 18 may be modified to fit the particular type of staircase encountered. As further shown in FIG. 4, the upper edge of riser surface 20 extends very nearly to or in contact with the edge of lip 18. It should also be understood that riser repair member 12 functions equally as well even if there is some gap between lip 18 and riser surface 20.
  • 39. As shown in FIG. 5, the edge of flange 22 is placed underneath the rear edge of wearing surface 14. Fasteners 38 may also be used to secure the members to each other and to stair tread 26 at this location.
  • 40. As shown in FIG. 6, the landing 30 may be repaired by the use of landing repair member 39. Landing repair member 39 may also be used to provide continuity with the covered stairway even if the landing is not damaged. The landing repair member 39 may be secured to the landing 30 by means of adhesive/cement, and/or by a plurality of fasteners 38 extending through landing member 30 and the edge of wearing surface 14.
  • 41.FIG. 7 more specifically shows a cross section of materials used to construct the stair tread repair member 10. A steel layer 40 is encapsulated within a first layer or coating of synthetic material 42. Preferably, this coating is polyurethane which is sprayed directly onto the steel layer 40. As shown, this layer covers both the upper surface and the lower surface. A dispersed layer of particles 44 is then sprinkled over the first layer 42. If the first layer 42 is wet when the layer of particles 44 is applied, the particles 44 will be embedded within the first layer 42 as shown. However, it will be understood that the dispersed layer of particles 44 may be applied after the first layer 42 has been allowed to dry. A second layer of polyurethane 46 is applied over the dispersed layer of particles 44 trapping or encapsulating them between the first and second layers Thus, the upper surface of the stair tread repair member 10 has an undulating or rough surface which is slip-free. The polyurethane used is extremely wear-resistant and serves not only to protect the steel core, but also to provide a bonding and sealing agent for the dispersed layer of particles 44. The riser repair member 12 is also coated with a layer of polyurethane; however, no slip-free surface is required so no layer of particles or second layer of polyurethane is applied. Landing repair member 39 may be made of the same composite construction as stair tread repair member 10.
  • 42. Although the first embodiment illustrates the use of both stair tread repair members and riser repair members, it shall be understood that the stair tread repair members alone can be used to repair damaged staircases when such staircases have or do not have risers. Since risers are not walking surfaces, a more cost-effective repair can be completed without the use of the riser repair members. Thus, the stair tread repair members serve as a valuable subcombination of the first embodiment.
  • 43.FIG. 10 illustrates the second embodiment of this invention which is a stairway or staircase. This staircase includes two primary members, namely, a plurality of stair tread members 50, and a pair of opposed stringers 68. Beginning first with a discussion of the stair tread members 50, one of which is shown in FIG. 8, each includes a wearing surface 52, a front flange 54, a rear flange 56, and a pair of opposed side flanges 58. A pair of diagonally opposed stress lines 60 may be formed on the wearing surface 52 to add bending strength. A plurality of holes 62 may be drilled in side flanges 58 in order to receive fasteners, as further discussed below.
  • 44.FIG. 9 illustrates a stair tread member 50 prior to being bent into shape. Corner sections 64 are removed which enable the sheet of material to be bent along bend lines 66. Bending may be achieved by a standard metal break machine. Preferably, holes 62 are drilled prior to bending the member 50 into shape. Stress lines 60 are also formed during the metal break operation. Thus, it is clear that stair tread members 50 may be formed simply from rectangular sheets of metal. After bending, corners 67 may secured as by welding, or other well known means.
  • 45.FIG. 10 illustrates the staircase assembled, and further shows three ways in which stair tread members 50 may be mounted to the pair of stringers 68. Stringers 68 may be of any well-known construction to include cut pieces of lumber, or cut pieces of heavy gauge metal. The stringers 68 each have inner surfaces 70, outer surfaces 72, and upper surfaces defined by a plurality of continuous rises 74 and runs 76. The details of how the most upper stair tread member 50 attaches to the stringers 68 is shown in FIG. 11. In this case, the stair tread member 50 is mounted over the outside surfaces 72 of stringers 68. Side flanges 58 are placed over outer surfaces 72. In order to allow the stair tread member 50 to fit over runs 76, slots are cut out of the rear flange 56 near the rear corners at least a width as wide as the width of run 76. In FIG. 11, the width of the slot removed is shown as width 78. As needed, fasteners 79 are then used to secure the stair tread member 50.
  • 46. An alternate manner in which to mount a stair tread member 50 to the stringers 68 is through an inside mount. This is shown in FIG. 12 wherein side flanges 58 are secured to the inner surfaces 70 of stringers 68. Fasteners 79 may also be used to secure the connection. Thus, the method shown in FIG. 12 requires the stair tread member 50 to be slightly shorter in length to accommodate the smaller gap between the inner surfaces 70 of the opposed stringers 68.
  • 47.FIG. 13 shows yet another manner in which the stair tread members 50 may be secured to the stringers 68. As shown, this is also an inside mount, but further includes the use of L-shaped brackets 80 which help to stabilize the connection. As shown, L brackets 80 are placed between side flanges 58 and inner surfaces 70. Fasteners 79 may also be used to secure the connection.
  • 48. Although FIG. 10 does not illustrate the use of risers, it shall be understood that risers can also be used. Riser repair member 12 of the first embodiment may be modified to simply eliminate flange 22, resulting in a rectangular shaped member. This rectangular shaped member may be sized to fit the particular rise 74, and then secured thereto, either by fastener 79 or adhesive. Stair tread members 50 are made of the same composite construction shown in FIG. 7. If risers are used in this second embodiment, then they can be coated in the same manner as the riser repair members 12 of the first embodiment.
  • 49. Both the first and second embodiments illustrate staircases with risers that include continuous rises and runs. However, it shall be clearly understood that both the first and second embodiments can be used with any type of stringers to include those which do not have continuous rises and runs, but have continuous flat upper surfaces. For these types of stringers, the stair tread members of the second embodiment must utilize an inside mount.
  • 50. In practice, it has been found that stair tread repair members 10 and stair tread members 50 can be made of 18 gauge metal which provide adequate strength to resist undue deformation or bending. It has also been found that riser repair members 12 may be made of a thinner gauge steel, such as 24 gauge. In heavy traffic areas, it has also been found that 16 gauge metal is acceptable for stair tread members 50. Examples of commercially available polyurethane spray coatings which may be used with this invention include Bullhide™ manufactured by Bullhide, Inc.
  • 51. The specific amount of coatings applied to the components may vary as desired. In practice, it has been found that the lower surfaces of the components are adequately covered with a 60 mil covering, and the upper surfaces are adequately covered with an 80 mil coating. For the second coating applied over the dispersed layer of particles, 40 mils has been found to be adequate. The polyurethane spray will adequately dry and cure by air drying. No heat treatment is required.
  • 52. For the first embodiment, there is no requirement that the wearing surfaces of the existing staircase be repaired or otherwise prepared. For example, damage to the stair treads in the form of holes or other imperfections do not have to be filled prior to installing the invention. Because the invention includes continuous sheets of high strength material, they are able to cover imperfections in the underlying surfaces yet provide the desired walking or wear surfaces. Of course, if the existing staircase is structurally unstable, it must be repaired prior to installing the invention.
  • 53. One clear advantage of the invention is the simplicity of its construction. The components making up each of the embodiments are simply bent sheets of metal encapsulated within a synthetic coating. An integral slip-free tread surface is formed directly on the first coating. The invention may also be adapted for use with literally any type of staircase or stairway requirement. Each of the components may be sized and bent to specifications without altering the general principles of the invention. Furthermore, the invention can be constructed with relatively simple machinery and processes. A standard metal break machine may be used to bend the components to desired shapes. Polyurethane as a spray coating is readily available and can be applied with standard industrial sprayers. Since no heat treating is required, the polyurethane coatings may simply air dry. Any number of differing types of particles may be used to create the slip-free wearing surfaces. Depending upon the application, the particles may be applied in a mixture, or by themselves in a homogenous layer. Yet another advantage of this invention is the ease with which it is installed. Standard fasteners such as screws or bolts are used to assemble the components, along with adhesive or glue, as necessary. No special tools are required for assembly, and the components are easily shipped and stored.
  • 54. A heating assembly 90 is shown in FIGS. 14-16 which is intended to melt ice and snow that accumulates on stair tread 26. A riser 12 having a vertical riser surface 28 and an outwardly projecting flange 22 are incorporated in the stairway, as previously described. The heating assembly 90 is in contiguous contact with stair tread 26. As best seen in FIG. 16, it has a metal stair tread member 92. A strip heater 94 is attached to and is held in contact with the bottom surface of stair tread member 92 by means of a gasket 96. As can be seen, the strip heater 94 is tapered at the peripheral edge and gasket 96, which extends around the peripheral edge of strip heater 94, provides a thickness which is substantially the same as the body of strip heater 94 so that the heater assembly 90 is substantially flat along its bottom surface and rests firmly on stair tread 26 without rocking.
  • 55. Advantageously, a first covering 98 of synthetic material encapsulate the upper horizontal surface of stair tread member 92 along with strip heater 94 and gasket 96 on the bottom surface of stair tread member 92. A dispersed layer of particles 100 are placed on the upper surface of first covering 98. A second covering 102 is placed on the dispersed layer of particles 100 encapsulating them between first covering 98 and second covering 102. When strip heater 94 is heated, the heat is transferred by conduction through metal stair tread member 92 and then through first covering 98, the dispersed layer of particles 100 and second covering 102 to melt the ice and snow.
  • 56. A thermostat 104 is mounted in a convenient location, such as on the side of the stairway, as shown in FIG. 14. The thermostat is connected by means of at outlet 106 to a suitable power source (not shown). The thermostat 104 has an electrical conduits 108 which runs to the respective heating assemblies 90 on each step. Conveniently, a wire 110 extends from the end of each strip heater 94 and terminates in a connector 112 which plugs into a receptacle 114 in each conduit 108.
  • 57. Thermostat 104 selectively supplies electric current to the strip heaters 94 in response to changes in ambient temperature. Additionally, thermostat 104 has multiple settings which are manually selected for providing different selected current levels to the strip heaters 94 in response to the changes sensed by temperature sensing element 105 which senses ambient temperature and is in electrical communication with the thermostat 104, as shown in FIG. 14. The thermostat selectively supplies a greater or lesser amount of current depending on its manual setting in contemplation of the expected ambient temperature and the location of the stairway. In other words, a greater amount current is required if the ambient temperature is expected to be below 0 degrees Fahrenheit than if it is expected to be 25 degrees Fahrenheit. Similarly, if the stairway is on the north side of a building or in a shady area more current is required that if it is in a sunny area.
  • 58. This invention has been described in detail with reference to particular embodiments thereof, but it will be understood that various other modifications can be effected within the spirit and scope of this invention.

Claims (11)

What is claimed is:
1. A heating assembly for a staircase having a plurality of stair treads, said heating assembly comprising:
a metal stair tread member, having an upper horizontal surface and a bottom surface, for mounting on a stair tread of the staircase;
a strip heater element, having a peripheral edge, attached to and in contiguous contact with said bottom surface of said stair tread member; and
a first covering of synthetic material placed on at least said horizontal upper surface and over said strip heater element on said bottom surface of said stair tread member.
2. A heating assembly, as claimed in
claim 1
, further including:
a dispersed layer of particles placed on said first covering at said upper surface; and
a second covering of synthetic material placed on said dispersed layer of particles encapsulating said dispersed layer of particles between said first and second coverings to form a wear surface.
3. A heating assembly, as claimed in
claim 1
, further including:
a gasket extending around said peripheral edge of said strip heating element attaching said strip heating element to said bottom surface of said stair tread member.
4. A heating assembly, as claimed in
claim 1
, further including:
a thermostat electrically connected to said strip heater and connectable to a power source for selectively supply electric current to said strip heater in response to changes in ambient temperature.
5. A heating assembly, as claimed in
claim 4
, further including:
a temperature sensing element in electrical communication with said thermostat wherein said thermostat selectively supplies the current to said strip heating element.
6. A heating assembly, as claim in
claim 5
, wherein:
said thermostat has multiple settings which are manually selected for providing different selected current levels to said strip heater in response to temperature changes at preselected ambient temperature levels.
7. A method of melting ice and snow off of a stair tread of a staircase, said method comprising the steps of:
providing a metal stair tread member which is substantially coextensive with the stair tread, the stair tread member having an upper surface and a bottom surface;
attaching a strip heater to the bottom surface of the stair tread member so that the strip heater is in surface contact with the bottom surface;
encapsulating the stair tread member and the strip heater in a first covering of synthetic material to form a heating assembly;
electrically connecting the strip heater to a source of current; and
supplying current to the strip heater in response to a predetermined ambient temperature.
8. A method, as claimed in
claim 7
, wherein after the encapsulating step:
dispersing a layer of particles on the first covering at the upper surface;
placing a second layer of synthetic material on the dispersed layer of particles to encapsulate the dispersed layer of particles between the first and second coverings to form a wear surface.
9. A method, as claimed in
claim 7
, including the further step of:
attaching the strip heater by means of a peripheral gasket extending therearound so that the strip heater is in contact with the bottom surface of the stair tread member.
10. A method, as claimed in
claim 7
, wherein said step of supplying current includes:
electrically connecting a thermostat to the strip heater and to a source of current; and
sensing the ambient temperature with a temperature sensing element in electrical communication with the thermostat wherein the thermostat selectively supplies the current to the strip heater based on sensed ambient temperature.
11. A method, as claimed in
claim 10
, including the further step of:
using the thermostat to manually select different current levels to the provided to the strip heater in response to temperature changes at preselected ambient temperature levels.
US09/735,390 1999-05-13 2000-12-11 Heating method and assembly for staircase Expired - Fee Related US6438909B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/735,390 US6438909B2 (en) 1999-05-13 2000-12-11 Heating method and assembly for staircase
CA 2359289 CA2359289A1 (en) 2000-12-11 2001-10-18 Heating method and assembly for staircase
US10/229,303 US20020189177A1 (en) 1999-05-13 2002-08-26 Staircase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/311,526 US6318033B1 (en) 1999-05-13 1999-05-13 Staircase, staircase repair device and methods of fabricating same
US09/735,390 US6438909B2 (en) 1999-05-13 2000-12-11 Heating method and assembly for staircase

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/311,526 Continuation-In-Part US6318033B1 (en) 1999-05-13 1999-05-13 Staircase, staircase repair device and methods of fabricating same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/229,303 Continuation-In-Part US20020189177A1 (en) 1999-05-13 2002-08-26 Staircase

Publications (2)

Publication Number Publication Date
US20010000841A1 true US20010000841A1 (en) 2001-05-10
US6438909B2 US6438909B2 (en) 2002-08-27

Family

ID=26977933

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/735,390 Expired - Fee Related US6438909B2 (en) 1999-05-13 2000-12-11 Heating method and assembly for staircase

Country Status (1)

Country Link
US (1) US6438909B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614992B2 (en) * 2000-03-03 2003-09-02 Robert D. Schmitt Heating panel having heat conducting beam and heating cable mounted therein
US20120102855A1 (en) * 2010-10-27 2012-05-03 Epple Thomas A Composite step tread
WO2013134818A1 (en) * 2012-03-14 2013-09-19 Pearls Miihome Ip Pty Ltd Stairs
US9327923B1 (en) 2014-11-17 2016-05-03 Quintin S. Marx Portable heated ramp and method
CN111052856A (en) * 2017-07-19 2020-04-21 恩文特服务有限责任公司 Temperature control element for ice protection matched to heat loss characteristics of controlled items

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665987B2 (en) * 1999-05-13 2003-12-23 Tread Ex, Inc. Staircase, staircase repair device and methods of fabricating same
US20020189177A1 (en) * 1999-05-13 2002-12-19 Eve John S. Staircase
US20040020142A1 (en) * 2000-11-13 2004-02-05 Kress Russell L. Prefabricated stairway and method
US7012218B2 (en) * 2003-04-28 2006-03-14 Flinn Gary L Tortilla cart warmer
US20050158501A1 (en) * 2004-01-16 2005-07-21 O'connor Investment Corp. Covering having an integral barrier for use on treated boards
US7044487B2 (en) * 2004-02-25 2006-05-16 American Trim, Llc Heated anti-slip step for a motor vehicle
US6943320B1 (en) * 2004-03-01 2005-09-13 Steven T. M. Bavett Rubberized covering with integral heating system
CA2771060A1 (en) * 2004-08-03 2006-02-03 Alpa Lumber Inc. Stair tread protection system
US8091294B2 (en) * 2004-12-22 2012-01-10 Whalen Robert F Folding pet staircase
US20070261324A1 (en) * 2006-04-18 2007-11-15 Boardman Munson Precast stair tread with bolts
CA2619261C (en) * 2008-02-01 2015-11-10 Philippe Charron Surface heating system and method using heating cables and a single feed cold lead wire
US8640404B2 (en) * 2008-05-06 2014-02-04 James M. McCool Hardwood stair tread overlay
US8307603B1 (en) 2010-05-14 2012-11-13 Ascend Stair Company Methods of constructing stair unit
US20120042594A1 (en) * 2010-07-23 2012-02-23 Zdenek Studnicka Board cover and board covering system
US9366018B1 (en) * 2014-12-04 2016-06-14 Dant Clayton Corporation Long span stadium riser system
US11408132B2 (en) 2017-10-16 2022-08-09 Nvent Services Gmbh Pedestal mounted paver heating system
WO2019077413A2 (en) 2017-10-16 2019-04-25 Nvent Services Gmbh Suspension mounted heating system
CN109436623B (en) * 2018-12-21 2021-06-18 江苏万德福公共设施科技有限公司 Intelligent paper garbage collection box and operating system thereof
CN111155727B (en) * 2020-01-13 2021-05-14 山东建筑大学 Assembled earthquake-resistant stair and construction method thereof
USD990070S1 (en) * 2021-08-12 2023-06-20 GuangDong Peng Pet climbing ladder
USD978461S1 (en) * 2022-11-17 2023-02-14 Jiyun Wang Pet step
USD979162S1 (en) * 2022-11-17 2023-02-21 Jiyun Wang Pet step
USD978460S1 (en) * 2022-11-17 2023-02-14 Jiyun Wang Pet step

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1458708A (en) 1921-09-08 1923-06-12 Norton Co Safety-tread unit
US1536895A (en) 1924-02-15 1925-05-05 Lindyberg Roman Means and method of reconditioning damaged steps
US2193146A (en) 1939-01-13 1940-03-12 Truscon Steel Co Metal staircase
US2844696A (en) * 1957-08-14 1958-07-22 Jr Byron K Custer Snow melting mat
DE3517673C1 (en) 1985-05-15 1986-10-30 Gunther 5908 Neunkirchen Bergmann Covering for repairing well-worn steps
US4967057A (en) * 1988-08-02 1990-10-30 Bayless Ronald E Snow melting heater mats
US4985095A (en) 1988-10-28 1991-01-15 Milliken Research Corporation Preformed stair riser tile product
US5380988A (en) * 1992-04-29 1995-01-10 Dyer; C. William Heated mat structure for melting ice and snow
JPH0734095Y2 (en) * 1992-12-21 1995-08-02 株式会社園田製作所 Stairs stairs
US5475951A (en) * 1994-01-03 1995-12-19 Safeguard Technology, Inc. Skid resistant surface and its preparation
US5550350A (en) * 1994-11-17 1996-08-27 Donald W. Barnes Heated ice-melting blocks for steps
US5660009A (en) 1995-01-31 1997-08-26 Cousin; Matthew E. Metal stairway for a residence
US5799448A (en) * 1996-09-13 1998-09-01 Harsco Corporation Adjustable closed-riser metal staircase system
US6318033B1 (en) * 1999-05-13 2001-11-20 Tread Ex, Inc. Staircase, staircase repair device and methods of fabricating same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614992B2 (en) * 2000-03-03 2003-09-02 Robert D. Schmitt Heating panel having heat conducting beam and heating cable mounted therein
US20120102855A1 (en) * 2010-10-27 2012-05-03 Epple Thomas A Composite step tread
US8857115B2 (en) * 2010-10-27 2014-10-14 Trivector Manufacturing Composite step tread
WO2013134818A1 (en) * 2012-03-14 2013-09-19 Pearls Miihome Ip Pty Ltd Stairs
US9327923B1 (en) 2014-11-17 2016-05-03 Quintin S. Marx Portable heated ramp and method
US10568164B2 (en) 2014-11-17 2020-02-18 Quintin S. Marx Heated surface and method
CN111052856A (en) * 2017-07-19 2020-04-21 恩文特服务有限责任公司 Temperature control element for ice protection matched to heat loss characteristics of controlled items

Also Published As

Publication number Publication date
US6438909B2 (en) 2002-08-27

Similar Documents

Publication Publication Date Title
US6438909B2 (en) Heating method and assembly for staircase
US20020189177A1 (en) Staircase
US6318033B1 (en) Staircase, staircase repair device and methods of fabricating same
US6665987B2 (en) Staircase, staircase repair device and methods of fabricating same
CA1074076A (en) Roofing and surfacing material and method
US7584587B2 (en) Apparatus for aiding in the installation and sealing of siding
US5937612A (en) Reversible decorative tile and method finishing same in situ
US20240026686A1 (en) Exposed structure heating apparatus and methods of making and use
US20140033630A1 (en) Joint for panels
US7712271B2 (en) Tiled transition bracket
US20080209834A1 (en) Apparatus for Aiding in the Installation and Sealing of Siding
CN1791726A (en) Building material, building system and method of installing the same
EP0894225A1 (en) Method for heating a solid surface such as a floor, wall, roof, or countertop surface
DE69719285D1 (en) Installation method of a step edge covered with laminate
CN209891600U (en) Assembly type stair step unit suite
US6141931A (en) Floor transition piece and method of installing same
KR20110021929A (en) Roof tile attachment method
US6960273B2 (en) Process for renovation of a staircase
US10568164B2 (en) Heated surface and method
US5763039A (en) Protective carpet system
CA2359289A1 (en) Heating method and assembly for staircase
US6408584B1 (en) Pre-fabricated wood underlayment and tile system
WO2014143581A1 (en) A marine waterproof deck flooring system without caulking
US20030140581A1 (en) Artificial decking material and method for use
US20090000209A1 (en) Rain gutter protecting device with roof-matching coating

Legal Events

Date Code Title Description
AS Assignment

Owner name: TREAD EX, INC., COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BIRCH, LARRY L.;EVE, JOHN S.;REEL/FRAME:011359/0838

Effective date: 20001205

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20060827