US1978475A - Intermediate frequency amplifier - Google Patents

Intermediate frequency amplifier Download PDF

Info

Publication number
US1978475A
US1978475A US586308A US58630832A US1978475A US 1978475 A US1978475 A US 1978475A US 586308 A US586308 A US 586308A US 58630832 A US58630832 A US 58630832A US 1978475 A US1978475 A US 1978475A
Authority
US
United States
Prior art keywords
circuits
intermediate frequency
coil
condenser
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US586308A
Inventor
Posthumus Klaas
Weyers Theodorus Josephus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Application granted granted Critical
Publication of US1978475A publication Critical patent/US1978475A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • H03H7/0161Bandpass filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path

Definitions

  • mediate frequency amplifier tubes is usually connected a transformer whose primary and secondary windings are tuned by means of condensers. In this case both tuned circuits are coupled inductively so that the coupling for the higher frequencies is closer than that for the lower frequencies, due to which the resonance curve becomes unsymmetrical.
  • a symmetric amplification characteristic is obtained by connecting a series of four tuned circuits between two successive tubes of the amplifier, both middle circuits being capacitively coupled together and inductively coupled with both other circuits.
  • Both triodes V1 and V2 form part of the medium or intermediate frequency amplifier, and are coupled by a filter constituted by the four tuned circuits I, II, III and IV. These four tuned circuits are, of course, resonant to the operating intermediate frequency.
  • the circuit I constituted by the primary winding of a transformer 2 and a condenser l, is inductively coupled with the circuit II constituted by the secondary winding of the transformer 2 and both series connected condensers 3 and 4.
  • the condenser 4 forms at the same time part of the tuning circuit III constituted by the condensers 4 and 5 and the primary winding of a second transformer 6, so that the circuits II and III are capacitively coupled together by the condenser 4.
  • circuit III is inductively coupled with the circuit IV.
  • This circuit is constituted by the secondary winding of the transformer 6 and a condenser 7.
  • an amplification characteristic which is bilaterally symmetrical with respect to the middle of an intermediate frequency band to be transmitted from the input of tube V1 to the output of tube V2.
  • a proper choice of the damping decrements of the different circuits results in the amplification factor within the frequency band to be transmitted being substantially independent of the frequency. Under these circumstances the amplification characteristic resembles the most suitable form, viz, that of a rectangle.
  • a bilaterally symmetrical amplification characteristic is obtained when the four tuned circuits are coupled in the way as shown in the drawing; thus, when the two middle circuits are capacitively coupled, and these are coupled inductively to the other circuits.
  • the magnitudes of the capacities and inductances were as follows:
  • each of the resonance curves is too narrow, this resulting in the filter showing sags in the crest of the characteristic curve.
  • the amplification factor within the frequency band to be transmitted is diiferent for diiferent frequencies. This fault may be removed by increasing the damping of the circuits until the amplification factor within the frequency band to be transmitted, is independent of the frequency. A further increase of the damping decrement results in an undue decrease in amplification.
  • the parallel resistance should be altered accordingly. Neither is it necessary to make the transformer coils equal to each other; so that it is possible to give both transformers a transformation ratio greater or smaller than one, or make that of transformer 2 greater, that of 6 smaller etc. It is, however, to be noticed that if the circuits I and IV are not equal, the parallel resistances used in these circuits should also be made unequal, such that the dampingdecrements in these circuits are again equal to each other.
  • An intermediate frequency amplifier circuit comprising an amplifier tube having a pair of input el ctrodes adapted to be connected to a source of high frequency energy of an intermediate frequency modulated by a band of modulation frequencies, a first resonant network including a coil and a condenser in the anode circuit of said tube, a second amplifier tube, a second resonant network including a coil and a condenser connected between the input electrodes of said last tube, a third resonant network in- "cluding a coil, coupled to said first network coil,
  • a fourth resonant network including a coil and condenser connected across one of said pair of condensers, said last coil being coupled to said second network coil, each of said resonant networks being tuned to said intermediate frequency, and the magnitude of said one condenser and the coupling factors between said first and third network coils, and between said second and fourth network coils being so relatively proportioned that the resonance curve of said amplifier circuit is symmetrical with respect to the mid-band frequency of said modulation band.
  • An intermediate frequency amplifier circuit comprising an amplifier tube having a pair of input electrodes adapted to be connected to a source of high frequency energy of an intermediate frequency modulated by a band of modulation frequencies, a first resonant network including a coil and a condenser in the anode circuit of said tube, a second amplifier tube, a second resonant network including a coil and a condenser connected between the input electrodes of said last tube, a third resonant network including a coil, coupled to said first network coil, and a pair of condensers connected thereacross, a fourth resonant network including a coil and condenser connected across one of said pair of condensers, said last coil being coupled to said second network coil, each of said resonant networks being tuned to said intermediate frequency, and the magnitude of said one condenser and the coupling factors between said first and third network coils, and between said second and fourth network coils being so relatively proportioned that the resonance curve of said amplifier circuit is symmetrical with respect to

Landscapes

  • Amplifiers (AREA)

Description

Oct. 30, 1934.
K. POSTHUMUS ET AL INTERMEDIATE FREQUENCY AMPL Filed Jan. 13, 1952 IFIER INVENTORS KLAAS POST HUMUS .WEYERS ATTORNEY Patented Oct. 30, 1934 PATENT OFFICE",
INTERMEDIATE FREQUENCY AMPLIFIER.
Klaas Posthumus and Theodorus Josephus Weyers, Eindhoven, Netherlands, assignors to Radio Corporation of America, a corporation of Delaware Application January 13, 1932, Serial No. 586,308 In Germany June 15, 1931 2 Claims.
" mediate frequency amplifier tubes is usually connected a transformer whose primary and secondary windings are tuned by means of condensers. In this case both tuned circuits are coupled inductively so that the coupling for the higher frequencies is closer than that for the lower frequencies, due to which the resonance curve becomes unsymmetrical.
According to the invention a symmetric amplification characteristic is obtained by connecting a series of four tuned circuits between two successive tubes of the amplifier, both middle circuits being capacitively coupled together and inductively coupled with both other circuits.
The invention will be more clearly understood 4 by reference to the accompanying drawing, representing, by way of example, the intermediate frequency amplifier circuit arrangement of a superheterodyne receiver according to the invention in which only those parts of the receiver arrangement are shown which are required for a good understanding of the invention.
Both triodes V1 and V2 form part of the medium or intermediate frequency amplifier, and are coupled by a filter constituted by the four tuned circuits I, II, III and IV. These four tuned circuits are, of course, resonant to the operating intermediate frequency. The circuit I constituted by the primary winding of a transformer 2 and a condenser l, is inductively coupled with the circuit II constituted by the secondary winding of the transformer 2 and both series connected condensers 3 and 4. The condenser 4 forms at the same time part of the tuning circuit III constituted by the condensers 4 and 5 and the primary winding of a second transformer 6, so that the circuits II and III are capacitively coupled together by the condenser 4.
Finally the circuit III is inductively coupled with the circuit IV. This circuit is constituted by the secondary winding of the transformer 6 and a condenser 7. By a proper choice of the coupling factors of the transformers 2 and 6 on one hand and of the coupling condenser 4 on the other hand there may be obtained an amplification characteristic which is bilaterally symmetrical with respect to the middle of an intermediate frequency band to be transmitted from the input of tube V1 to the output of tube V2. Moreover, a proper choice of the damping decrements of the different circuits results in the amplification factor within the frequency band to be transmitted being substantially independent of the frequency. Under these circumstances the amplification characteristic resembles the most suitable form, viz, that of a rectangle.
A bilaterally symmetrical amplification characteristic is obtained when the four tuned circuits are coupled in the way as shown in the drawing; thus, when the two middle circuits are capacitively coupled, and these are coupled inductively to the other circuits. In a specific case, tried out by the applicants, the magnitudes of the capacities and inductances were as follows:
Capacity 1 and 7:160 mmF Capacity 3 and 5:170 mmF Capacity 4 28 mm]? Self-inductance of each of the coils of transformers 2 and 6:0.033 h.
Mutual inductance between the coils of each transformer=0.0019 h.
If the damping decrements in each of the circuits are too small, each of the resonance curves is too narrow, this resulting in the filter showing sags in the crest of the characteristic curve. In other words, the amplification factor within the frequency band to be transmitted is diiferent for diiferent frequencies. This fault may be removed by increasing the damping of the circuits until the amplification factor within the frequency band to be transmitted, is independent of the frequency. A further increase of the damping decrement results in an undue decrease in amplification.
In the above case best results were obtained if the resistances used in parallel with the circuits 1 and '7 were 126,600 ohms. If the internal resistances of the valves V1 and V2 are too high, a parallel resistance may be used, such that the total resistance=126,600 ohms. These values are only given by way of example. Many other dimensions of the circuits are possible.
If, for example, circuits tuned to the same frequency as the above are used, but with smaller capacity and greater inductance, the parallel resistance should be altered accordingly. Neither is it necessary to make the transformer coils equal to each other; so that it is possible to give both transformers a transformation ratio greater or smaller than one, or make that of transformer 2 greater, that of 6 smaller etc. It is, however, to be noticed that if the circuits I and IV are not equal, the parallel resistances used in these circuits should also be made unequal, such that the dampingdecrements in these circuits are again equal to each other.
While we have indicated and described one arrangement for carrying our invention into effect, it will be apparent to one skilled in the art that our invention is by no means limited to the particular organization shown and described, but that many modifications may be made without departing from the scope of our invention as set forth in the appended claims.
What is claimed is:
1. An intermediate frequency amplifier circuit comprising an amplifier tube having a pair of input el ctrodes adapted to be connected to a source of high frequency energy of an intermediate frequency modulated by a band of modulation frequencies, a first resonant network including a coil and a condenser in the anode circuit of said tube, a second amplifier tube, a second resonant network including a coil and a condenser connected between the input electrodes of said last tube, a third resonant network in- "cluding a coil, coupled to said first network coil,
and a pair of condensers connected thereacross, a fourth resonant network including a coil and condenser connected across one of said pair of condensers, said last coil being coupled to said second network coil, each of said resonant networks being tuned to said intermediate frequency, and the magnitude of said one condenser and the coupling factors between said first and third network coils, and between said second and fourth network coils being so relatively proportioned that the resonance curve of said amplifier circuit is symmetrical with respect to the mid-band frequency of said modulation band.
2. An intermediate frequency amplifier circuit comprising an amplifier tube having a pair of input electrodes adapted to be connected to a source of high frequency energy of an intermediate frequency modulated by a band of modulation frequencies, a first resonant network including a coil and a condenser in the anode circuit of said tube, a second amplifier tube, a second resonant network including a coil and a condenser connected between the input electrodes of said last tube, a third resonant network including a coil, coupled to said first network coil, and a pair of condensers connected thereacross, a fourth resonant network including a coil and condenser connected across one of said pair of condensers, said last coil being coupled to said second network coil, each of said resonant networks being tuned to said intermediate frequency, and the magnitude of said one condenser and the coupling factors between said first and third network coils, and between said second and fourth network coils being so relatively proportioned that the resonance curve of said amplifier circuit is symmetrical with respect to the midband frequency of said modulation band, the damping decrements of said networks being additionally chosen to have said curve approximate a rectangle.
KLAAS POSTHUMUS. THEODORUS JOSEPHUS WEYERS.
US586308A 1931-06-15 1932-01-13 Intermediate frequency amplifier Expired - Lifetime US1978475A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1978475X 1931-06-15

Publications (1)

Publication Number Publication Date
US1978475A true US1978475A (en) 1934-10-30

Family

ID=7853847

Family Applications (1)

Application Number Title Priority Date Filing Date
US586308A Expired - Lifetime US1978475A (en) 1931-06-15 1932-01-13 Intermediate frequency amplifier

Country Status (1)

Country Link
US (1) US1978475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988714A (en) * 1957-09-12 1961-06-13 Gen Electric Piezoelectric filter network
US3103554A (en) * 1963-09-10 Interstage network using cancellation trap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3103554A (en) * 1963-09-10 Interstage network using cancellation trap
US2988714A (en) * 1957-09-12 1961-06-13 Gen Electric Piezoelectric filter network

Similar Documents

Publication Publication Date Title
US1978475A (en) Intermediate frequency amplifier
US1938620A (en) Band-pass amplifier
US2196266A (en) Filter system for multiple channel amplifiers
US2289821A (en) Degenerative audio amplifier
US2270017A (en) Tuned circuits
US1938640A (en) Intermediate frequency amplifier
US2120998A (en) Coupled circuits
US2217839A (en) Wide band amplifier
US2229812A (en) Radio receiver
US2151814A (en) Superheterodyne receiving circuits
US2195095A (en) High frequency amplifying arrangement for a very broad frequency band
US2055996A (en) Band-pass amplifier
US2159944A (en) Coupling arrangement for amplifiers and repeaters
US2125119A (en) Coupling transformer
US1954943A (en) Wave transmission network
US2429652A (en) Coupling system for power amplifiers
US2154327A (en) Signal amplifier
US2187805A (en) High impedance band pass filter
US2216998A (en) Band-pass selector system
US2161646A (en) Band-pass filter with variable band width
US2155025A (en) High frequency tuned amplifier circuits
US1881284A (en) Wave signaling system
US2152823A (en) Coupling transformer
US1876645A (en) Circuit arrangement for thermionic amplifying tubes coupled by transformers
US2151795A (en) Thermionic amplifier circuits