US1975239A - Method of chromium plating - Google Patents
Method of chromium plating Download PDFInfo
- Publication number
- US1975239A US1975239A US678258A US67825833A US1975239A US 1975239 A US1975239 A US 1975239A US 678258 A US678258 A US 678258A US 67825833 A US67825833 A US 67825833A US 1975239 A US1975239 A US 1975239A
- Authority
- US
- United States
- Prior art keywords
- chromium
- black
- bath
- acid
- chromium plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title description 33
- 229910052804 chromium Inorganic materials 0.000 title description 33
- 239000011651 chromium Substances 0.000 title description 33
- 238000000034 method Methods 0.000 title description 10
- 238000007747 plating Methods 0.000 title description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 11
- 239000001117 sulphuric acid Substances 0.000 description 11
- 235000011149 sulphuric acid Nutrition 0.000 description 11
- 238000000576 coating method Methods 0.000 description 10
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 9
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001553 barium compounds Chemical class 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004653 carbonic acids Chemical class 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/04—Electroplating: Baths therefor from solutions of chromium
- C25D3/08—Deposition of black chromium, e.g. hexavalent chromium, CrVI
Definitions
- the invention relates to methods of chromium plating.
- nickel may be plated with nickel oxide, which has a much greater tendency of emitting rays.
- nickel oxide re use of nickel oxide, however, is not suitable in many cases because its melting as well as its decomposition takes place at relatively low temperatures. Besides the nickel oxide has a remarkable inconstancy to the bombardment by ions or by electrons.
- Chromium for instance, can be electrolytically deposited in such a form by diminishing the anodic current density and thereby varying the distribution of the current lines within the bath.
- Grey coloured chromium layers can be obtained by increasing the cathodic current density very much with respect to the values usual in practical chromium plating, that means about 50 amperes per square meter of cathode surface. But the grey colour of the chromium coatings only happens when passing the current through the bath for a short time and disappears afterwards when depositing long enough so as to make/an homogeneous layer.
- a layer of quite black colour and of excellent qualities for the said purpose is deposited by the use of a cathodic current density from ten to twenty times higher than the usual one, that is lying between about 10,000
- Chromic acid containing baths may be employed if desired.
- this black deposit is not exactly known even now. It is supposed that it consists of chromium oxide or of metallic chromium in a very fine distribution or perhaps of both these components.
- the qualities of this electrolytically produced coating are a very great constancy and capacity of resistance to temperatures up to 2000 C. It is of importance that in the said layer no vapours or gases are present or can be developed during the normal use of a so treated article. Such gases could give disturbing effects and eventually destroy other parts of the apparatus.
- the metal the surface of which is to be darkened can be treated as a cathode in a chromium bath, for instance, consisting of a solution of chromic acid (H2CrO4) 0 and very small percentage of sulphuric acid (S04), using a current density of about 15,000 amperes per square meter.
- a chromium bath for instance, consisting of a solution of chromic acid (H2CrO4) 0 and very small percentage of sulphuric acid (S04), using a current density of about 15,000 amperes per square meter.
- H2CrO4 chromic acid
- S04 very small percentage of sulphuric acid
- the article at first in a normal chromic acid bath until a white or bright chromium coating appears.
- a second layer of black colour is separated out of a chromium bath free of sulphuric acid (S04) by the use of a current density of 10,000 up to 20,000 amperes per square meter.
- S04 sulphuric acid
- the first layer on the article to be treated may also consist of electrolytically deposited nickel upon which the dark coloured chromium containing layer is formed.
- several intermediate layers can be used, for instance, a first nickel layer and a second white chromium layer which serves as a base for the dark deposit.
- Bright chromium deposits of black colour are obtained out of normal chromic acid baths suitable for chromium plating by removing the sulphuric acid (S04) therefrom as completely as possible. This can be executed in any well known manner, for instance, by the chemical precipitation with barium compounds which are added to the chromium plating bath.
- sulphuric acid grey-black deposits can be produced by electrolysis, such deposits being very proper to serve as a source for the emission of rays or of electrons. It was found that carbonic acids such as acetic acid, formic acid, propionic acid and oxalic acid can be used as additions to standard chromium plating baths from which sulphuric acid is removed.
- the new method is applicable for blackening metallic articles in order to change their power of emission as for instance at thermic apparatus, screens, electrodes or other metallic parts of vacuum tubes, especially anodes of discharging tubes of high effect. no
- Tungsten electrodes of electronic tubes are plated with white chromium layers in the usual manner. After rinsing the so prepared tungsten electrodes for a short time, they are treated in a solution containing 35 per cent of chromic acid and 0,05 per cent of sulphuric acid (S04) by means of an electric current. The current density amounts to about 10,000 amperes per square meter and the voltage 10 volts. The temperature of the bath is maintained at below 20 C., if necessary by cooling. After about ten minutes the tungsten article connected as cathode carries a black chromium coating.
- the sulphuric acid (S04) is at first separated in any well known manner. Thereafter from 0,5 to 0,8 cubic centimeters of concentrated acetic acid per liter are added to the bath. The electrolysis was performed with a cathodic current density of 10,000 to 20,000 amperes per square meter, a voltage of about 9 volts and a temperature of bath below 28 C. The anode was made of lead and the cathode was formed by a tungsten article. The result was a pale-black cathodic layer of chromium showing excellent qualities of heat or electron emission.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1975239X | 1929-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
US1975239A true US1975239A (en) | 1934-10-02 |
Family
ID=7849873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US678258A Expired - Lifetime US1975239A (en) | 1929-10-16 | 1933-06-29 | Method of chromium plating |
Country Status (2)
Country | Link |
---|---|
US (1) | US1975239A (is") |
FR (1) | FR754360A (is") |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2482308A (en) * | 1947-02-21 | 1949-09-20 | Du Pont | Catalyst preparation |
US2542994A (en) * | 1945-07-09 | 1951-02-27 | Armco Steel Corp | Electrolytic surface treatment of steel |
US2623847A (en) * | 1947-09-10 | 1952-12-30 | Lloyd O Gilbert | Black chromium plating |
US2739108A (en) * | 1952-06-14 | 1956-03-20 | Westinghouse Electric Corp | Electroplating chromium-nickel alloy coatings |
US2739109A (en) * | 1952-06-14 | 1956-03-20 | Westinghouse Electric Corp | Black chromium-nickel-vanadium electrodeposits |
US2772227A (en) * | 1953-06-29 | 1956-11-27 | Westinghouse Electric Corp | Protection of molybdenum and tungsten at high temperatures |
US2801214A (en) * | 1956-03-23 | 1957-07-30 | Melvin R Zell | Chromium plating bath |
US2824829A (en) * | 1953-02-27 | 1958-02-25 | Westinghouse Electric Corp | Electrodepositing black chromiumvanadium coatings and members therewith |
US2826538A (en) * | 1955-05-03 | 1958-03-11 | Columbia Broadcasting Syst Inc | Metal blackening process |
US2917817A (en) * | 1955-03-25 | 1959-12-22 | Res Council Of Israel | Receiver for solar energy collectors |
US2985567A (en) * | 1959-03-16 | 1961-05-23 | Allied Chem | Electrodeposition of black chromium coatings |
US3069333A (en) * | 1961-07-25 | 1962-12-18 | Du Pont | Chromium plating |
US3419481A (en) * | 1966-04-08 | 1968-12-31 | Diamond Shamrock Corp | Electrolyte and process for electroplating black chromium and article thereby produced |
US3454474A (en) * | 1966-11-23 | 1969-07-08 | Corillium Corp | Chromium plating process |
US3620935A (en) * | 1967-01-18 | 1971-11-16 | Kewanee Oil Co | Process of black chromium plating |
US4857436A (en) * | 1987-12-28 | 1989-08-15 | Nouel Jean Marie | Offset plates with two chromium layers |
US4996131A (en) * | 1987-12-28 | 1991-02-26 | Nouel Jean Marie | Offset plate with thin chromium layer and method of making |
CN110252135A (zh) * | 2019-07-01 | 2019-09-20 | 天津商业大学 | 一种甲醛净化处理装置 |
-
0
- FR FR754360D patent/FR754360A/fr not_active Expired
-
1933
- 1933-06-29 US US678258A patent/US1975239A/en not_active Expired - Lifetime
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2542994A (en) * | 1945-07-09 | 1951-02-27 | Armco Steel Corp | Electrolytic surface treatment of steel |
US2482308A (en) * | 1947-02-21 | 1949-09-20 | Du Pont | Catalyst preparation |
US2623847A (en) * | 1947-09-10 | 1952-12-30 | Lloyd O Gilbert | Black chromium plating |
US2739108A (en) * | 1952-06-14 | 1956-03-20 | Westinghouse Electric Corp | Electroplating chromium-nickel alloy coatings |
US2739109A (en) * | 1952-06-14 | 1956-03-20 | Westinghouse Electric Corp | Black chromium-nickel-vanadium electrodeposits |
US2824829A (en) * | 1953-02-27 | 1958-02-25 | Westinghouse Electric Corp | Electrodepositing black chromiumvanadium coatings and members therewith |
US2772227A (en) * | 1953-06-29 | 1956-11-27 | Westinghouse Electric Corp | Protection of molybdenum and tungsten at high temperatures |
US2917817A (en) * | 1955-03-25 | 1959-12-22 | Res Council Of Israel | Receiver for solar energy collectors |
US2826538A (en) * | 1955-05-03 | 1958-03-11 | Columbia Broadcasting Syst Inc | Metal blackening process |
US2801214A (en) * | 1956-03-23 | 1957-07-30 | Melvin R Zell | Chromium plating bath |
US2985567A (en) * | 1959-03-16 | 1961-05-23 | Allied Chem | Electrodeposition of black chromium coatings |
US3069333A (en) * | 1961-07-25 | 1962-12-18 | Du Pont | Chromium plating |
US3419481A (en) * | 1966-04-08 | 1968-12-31 | Diamond Shamrock Corp | Electrolyte and process for electroplating black chromium and article thereby produced |
US3454474A (en) * | 1966-11-23 | 1969-07-08 | Corillium Corp | Chromium plating process |
US3620935A (en) * | 1967-01-18 | 1971-11-16 | Kewanee Oil Co | Process of black chromium plating |
US4857436A (en) * | 1987-12-28 | 1989-08-15 | Nouel Jean Marie | Offset plates with two chromium layers |
US4996131A (en) * | 1987-12-28 | 1991-02-26 | Nouel Jean Marie | Offset plate with thin chromium layer and method of making |
CN110252135A (zh) * | 2019-07-01 | 2019-09-20 | 天津商业大学 | 一种甲醛净化处理装置 |
Also Published As
Publication number | Publication date |
---|---|
FR754360A (is") | 1933-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1975239A (en) | Method of chromium plating | |
US3620934A (en) | Method of electrolytic tinning sheet steel | |
US2446331A (en) | Electrodeposition of aluminum | |
US2436316A (en) | Bright alloy plating | |
US1947981A (en) | Plating aluminum | |
GB1580994A (en) | Material for selective absorption of solar energy and production thereof | |
US2250556A (en) | Electrodeposition of copper and bath therefor | |
US4075065A (en) | Gold plating bath and process | |
CN107354482B (zh) | 精炼铜的制造方法和精炼铜以及电线的制造方法和电线 | |
US2075623A (en) | Zinc plating | |
US2414438A (en) | Electrodeposition of selenium | |
US1933319A (en) | Electroplating tantalum | |
US2667453A (en) | Method of electroplating copper on metal articles | |
US2095519A (en) | Method for producing galvanic coatings on aluminum or aluminum alloys | |
US3634205A (en) | Method of plating a uniform copper layer on an apertured printed circuit board | |
US2233103A (en) | Production of nickel powder | |
US1837355A (en) | Electrodeposition of alloys | |
US2824829A (en) | Electrodepositing black chromiumvanadium coatings and members therewith | |
US3458407A (en) | Method of producing nickel powder | |
US2739108A (en) | Electroplating chromium-nickel alloy coatings | |
US1885700A (en) | Electroplating and process of producing same | |
US1581188A (en) | Process of electrodepositing chromium and of preparing baths therefor | |
US1864013A (en) | Process for electrolytic deposition of metallic chromium | |
US2812298A (en) | Protective coating and process of producing same | |
US2057475A (en) | Electrodeposition of rhodium |