US1944520A - Steam turbine - Google Patents

Steam turbine Download PDF

Info

Publication number
US1944520A
US1944520A US624822A US62482232A US1944520A US 1944520 A US1944520 A US 1944520A US 624822 A US624822 A US 624822A US 62482232 A US62482232 A US 62482232A US 1944520 A US1944520 A US 1944520A
Authority
US
United States
Prior art keywords
steam
turbine
stages
exhaust outlet
throttling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US624822A
Inventor
Meyer Adolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Germany
BBC Brown Boveri France SA
Original Assignee
BBC Brown Boveri France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri France SA filed Critical BBC Brown Boveri France SA
Application granted granted Critical
Publication of US1944520A publication Critical patent/US1944520A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles

Definitions

  • the object of this invention is to reduce the leaving losses of a steam turbine.
  • Another object of this invention is to provide a steam turbine having a by-pass through which steam is bled from in front of one or more of the later stages directly to the exhaust outlet.
  • a further object of this invention is to bleed from ten to thirty per cent of the steam from before one or more of the later stages to the exhaust outlet.
  • FIG. 1 is a fragmentary sectional View of the outlet end of a turbine having one bleeding passage
  • Fig. 2 is a fragmentary sectional view of the outlet end of a turbine having two bleeding passages.
  • Figs. 3 and 4 are fragmentary detail views deal automatically with the greater drop.
  • the low pressure turbine casing '1 is connected co 7 at 2 to the exhaustoutlet casing 3.
  • the reversing blades 1 are attached to the turbine casing 1 and the rotor blades 5 are attached to the rotor 6.
  • the last stage comprises the reversing blade '7 and the rotor blade 8 and is. separated (15- from the earlier stages by a space 9.
  • Leading from the space 9 is a bleeding passage 10 which by-passes a portion of the steam from the earlier stages directly to the exhaust outlet.-
  • the amount of steam which is icy-passed is controlled to; by the throttling passage 11, the size of which is regulated by the exchangeable ring 12.
  • Figs. 3 and 4 show two different forms of ring 12, whereby different sizes of throttling passages 11 are obtained.
  • the rings 12 in Figs. 1, 3 and 4 are interchangeable.
  • ring 12 is adjustable longitudinally by means of inserts 13 of various thickness placed in oversize slot 13. In this manner also the size of throttling passage 11 may be varied.
  • Fig. 2 discloses a similar construction, but one which is adapted to bleed steam from before each of the last two stages instead of only the last stage, as shown in Fig. 1.
  • a single by-pass to the exhaust outlet is fed by two throttling passages, withdrawing steam from before the last two stages.
  • a condensing steam turbine adapted to handle large volumes of exhaust steam having in combination, a casing, a plurality of stages in said casing, an exhaust outlet, means including a by-pass leading from at least one of the intermediate stages direct to the exhaust outlet, for withdrawing steam from said intermediate stage, and means including an exchangeable throttling element in said by-pass for throttling the steam from the pressure of the stage from which it is withdrawn down to the exhaust pressure of the turbine.
  • a condensing steam turbine adapted to handle large volumes of exhaust steam having in combination, a casing, a plurality of stages in said casing, an exhaust outlet, means including a stationary, substantially unimpeded bypass leading from at least one intermediate stage direct to said exhaust outlet, and throttling means in said by-pass and including an adjustable throttling ring located adjacent the blades of the said intermediate stage.
  • a condensing steam turbine adapted to handle large volumes of exhaust steam having in combination, a casing, a plurality of stages in said casing, an exhaust outlet, means including a by-pass leading from at least one of the intermediate stages direct to the exhaust outlet, for withdrawing steam from said intermediate stage, and means including a throttling ring in said by-pass for throttling the steam from the pressure of the stage from which it. is withdrawn I of the turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Description

Jan. 23, 1934. A. MEYER 1,944,520
STEAM TURBINE Filed July 26, 1932 Patented Jan. 23, 1934 UNITED STATES STEAlW TURBINE Adolf Meyer, Kusnacht, near Zurich, Switzerland, assignor to Alrtiengesellschaft Brown, Bcveri and Cie., Baden, Switzerland, a conseration of Switzerland Application July 26, 1932, Serial No. 624,822, and in Germany December 30, 1930 3 Claims. (0].. 253-69) This invention relates to steam turbines and more particularly to a steam turbine having one or more by-passes through which steam is bled. to the exhaust outlet.
In high power steam turbines utilizing high vacuum condensers, the great increase in volume of the steam by the time it has reached the end of its expansion causes difllculties to arise in the construction of such turbines. Inasmuch as the size of the rotors and blades is limited by admissable stresses, the steam in the later stages of expansion flows through them at a greater velocity than should be permitted for eflicient operation, resulting in considerable leaving losses.
Various expedients have been tried to diminish these losses and consequently increase the maximum power of a turbine having a given speed of revolution. Cfonstruc-tions have been used in which the steam passage is divided in its last stages by special annular partitions into separate passages having different rates of expansion. Such an arrangement is undesirable in that the guide and rotor blades usually must have different profiles on each side of the separating rings. Other constructions have been provided in which the steam has been divided into completely separate streams, each of which expands, performing work, to the condenser pressure. Such turbines form a separate class of high powered but correspondingly costly turbines. It has been found that the leaving losses can be reduced and the efficiency of a turbine correspondingly increased by by-passing a portion of the steam from in front of one or more of the later stages to the exhaust outlet.
The object of this invention is to reduce the leaving losses of a steam turbine.
Another object of this invention is to provide a steam turbine having a by-pass through which steam is bled from in front of one or more of the later stages directly to the exhaust outlet.
A further object of this invention is to bleed from ten to thirty per cent of the steam from before one or more of the later stages to the exhaust outlet.
These and other objects will be apparent from the following specification when taken with the accompanying drawing, in which Fig. 1 is a fragmentary sectional View of the outlet end of a turbine having one bleeding passage, and
Fig. 2 is a fragmentary sectional view of the outlet end of a turbine having two bleeding passages.
Figs. 3 and 4 are fragmentary detail views deal automatically with the greater drop.
showing alternative interchangeable forms of the invention; and
Fig. 5 is a fragmentary detail view showing an adjustable form of the invention.-
The low pressure turbine casing '1 is connected co 7 at 2 to the exhaustoutlet casing 3. The reversing blades 1 are attached to the turbine casing 1 and the rotor blades 5 are attached to the rotor 6. The last stage comprises the reversing blade '7 and the rotor blade 8 and is. separated (15- from the earlier stages by a space 9. Leading from the space 9 is a bleeding passage 10 which by-passes a portion of the steam from the earlier stages directly to the exhaust outlet.- The amount of steam which is icy-passed is controlled to; by the throttling passage 11, the size of which is regulated by the exchangeable ring 12.
Figs. 3 and 4 show two different forms of ring 12, whereby different sizes of throttling passages 11 are obtained. The rings 12 in Figs. 1, 3 and 4 are interchangeable.
In Fig. 5 ring 12 is adjustable longitudinally by means of inserts 13 of various thickness placed in oversize slot 13. In this manner also the size of throttling passage 11 may be varied.
Fig. 2 discloses a similar construction, but one which is adapted to bleed steam from before each of the last two stages instead of only the last stage, as shown in Fig. 1. In the modification shown, a single by-pass to the exhaust outlet is fed by two throttling passages, withdrawing steam from before the last two stages.
In ordinary constructional forms of steam turbines, the long blades of the last expansion stages normally operate with a non-uniform peripheral and steam velocity taken over their length. Consequently at the last expansion stage different pressures occur at diiferent diameters. In known constructions, these unequal pressures are counteracted by twisting the blades. In the turbine according to the present invention, a decrease in pressure occurs from the inside to the outside, namely, at a point Where a portion of the steam is removed for being throttled, which decrease is useful, since it diminishes the loss 100 due to throttling. However, the blades of the turbine adjacent to the bleeding passage are twisted in such a manner that a decrease in pressure from the inside to the outside is in sured. In general, it is not necessary that the 1G blades be twisted as much as in the standard turbine and at times it may not be necessary to have any twist at all. The greater peripheral speed of the outer portions of the blades will then The withdrawal of the steam by bleeding it to the exhaust outlet is not limited to the place of transition to the last stage. In many cases, it will be advantageous to withdraw the steam at several stages, for instance, as shown in Fig. 2. It has been found that best results are obtained by bleeding from ten to thirty per cent of the total steam, depending upon the degree of vacuum maintained in the condenser.
The drawing is'not intended to descriptively illustrate the details but is intended merely to diagrammatically illustrate the invention.
While on the surface, the above method may appear to be uneconomical, mathematical analysis has shown that the gain in output more than offsets the loss due to the reduced volume of steam.
I claim:
1. A condensing steam turbine adapted to handle large volumes of exhaust steam having in combination, a casing, a plurality of stages in said casing, an exhaust outlet, means including a by-pass leading from at least one of the intermediate stages direct to the exhaust outlet, for withdrawing steam from said intermediate stage, and means including an exchangeable throttling element in said by-pass for throttling the steam from the pressure of the stage from which it is withdrawn down to the exhaust pressure of the turbine.
2. A condensing steam turbine adapted to handle large volumes of exhaust steam having in combination, a casing, a plurality of stages in said casing, an exhaust outlet, means including a stationary, substantially unimpeded bypass leading from at least one intermediate stage direct to said exhaust outlet, and throttling means in said by-pass and including an adjustable throttling ring located adjacent the blades of the said intermediate stage.
3. A condensing steam turbine adapted to handle large volumes of exhaust steam having in combination, a casing, a plurality of stages in said casing, an exhaust outlet, means including a by-pass leading from at least one of the intermediate stages direct to the exhaust outlet, for withdrawing steam from said intermediate stage, and means including a throttling ring in said by-pass for throttling the steam from the pressure of the stage from which it. is withdrawn I of the turbine.
ill?-
US624822A 1930-12-30 1932-07-26 Steam turbine Expired - Lifetime US1944520A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1944520X 1930-12-30

Publications (1)

Publication Number Publication Date
US1944520A true US1944520A (en) 1934-01-23

Family

ID=7750658

Family Applications (1)

Application Number Title Priority Date Filing Date
US624822A Expired - Lifetime US1944520A (en) 1930-12-30 1932-07-26 Steam turbine

Country Status (1)

Country Link
US (1) US1944520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2637984A (en) * 1950-07-26 1953-05-12 Gen Electric Turbine
US3066912A (en) * 1961-03-28 1962-12-04 Gen Electric Turbine erosion protective device
US4512715A (en) * 1980-07-22 1985-04-23 Electric Power Research Institute, Inc. Method and means for recapturing coolant in a gas turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2637984A (en) * 1950-07-26 1953-05-12 Gen Electric Turbine
US3066912A (en) * 1961-03-28 1962-12-04 Gen Electric Turbine erosion protective device
US4512715A (en) * 1980-07-22 1985-04-23 Electric Power Research Institute, Inc. Method and means for recapturing coolant in a gas turbine

Similar Documents

Publication Publication Date Title
US2520697A (en) Internal-combustion turbine plant
US3058720A (en) Moisture removing apparatus for steam turbine or the like
US1944520A (en) Steam turbine
GB1301002A (en) Improvements relating to fluid-flow machines
US3795458A (en) Multistage compressor
US1488582A (en) Elastic-fluid turbine
US2165994A (en) Turbine for low temperature gas separation
US2377611A (en) Turbine
DE102011055379A1 (en) Abdampfhaubendiffusor
US4573864A (en) Regenerative turbomachine
US2121645A (en) Elastic fluid turbine
US1896809A (en) Multistage turbine
GB478498A (en) Improvements in or relating to multistage axial compressors
US2421890A (en) Turbine blade
US1927944A (en) Blade ring for radial flow elastic fluid turbines
US1597467A (en) Turbine blading
GB740944A (en) Improvements in and relating to thermal turbines
US1834452A (en) Means for draining the low pressure blading of steam turbines
US2218957A (en) Radial flow elastic fluid turbine
US1302282A (en) Steam-turbine.
US3129876A (en) High speed axial flow compressors
DE2301758C2 (en) Condensing steam turbine
US1012813A (en) Turbine.
US2831629A (en) Compressor apparatus
GB1338259A (en) Turbines