US1932842A - Aluminum alloys - Google Patents

Aluminum alloys Download PDF

Info

Publication number
US1932842A
US1932842A US634160A US63416032A US1932842A US 1932842 A US1932842 A US 1932842A US 634160 A US634160 A US 634160A US 63416032 A US63416032 A US 63416032A US 1932842 A US1932842 A US 1932842A
Authority
US
United States
Prior art keywords
per cent
aluminum
alloys
alloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US634160A
Inventor
Walter A Dean
Louis W Kempf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Aerospace Inc
Original Assignee
Aluminum Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminum Company of America filed Critical Aluminum Company of America
Priority to US634160A priority Critical patent/US1932842A/en
Application granted granted Critical
Publication of US1932842A publication Critical patent/US1932842A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Definitions

  • This invention relates to aluminum base alloys which have excellent properties at elevated temperatures, which are generally adapted to foundry purposes and which are insensitive to the common 5 impurities found in commercial aluminum.
  • a good foundry alloy which will retain a substantial proportion of its physical and tensile properties at elevated temperatures is constantly being searched for in the field of light metals.
  • light metals is not meant the ordinary aluminum base alloys but only such of those alloys ascontain substantial amounts of a metal lighter than aluminum so as to compensate in the alloy for the addition of metals heavier than aluminum. To provide such an alloy of good foundry characteristics and excellent strength at high temperatures is the object of this invention.
  • the aluminum base alloys containing magnesium are lighter than aluminum. They should therefore be excellent material from which. to manufacture reciprocating parts which operate at elevated temperatures were it not for the fact that these alloys at elevated temperatures (such as 400 to 700 Fahrenheit) do not have the strength, the ductility and the hardness which are so often necessary. Moreover, the binary aluminum-magnesium alloys are somewhat lacking in the required foundry characteristics.
  • an aluminum base alloy containing magnesium which fulfills, to a surprising extent, the requirements above mentioned.
  • This alloy is one containing 3.0 to 8.0 per cent by weight of magnesium, 0.5 to 4.0 per cent by weight of manganese, and 0.5 to 4.0 per cent by weight of nickel, the balance being principally aluminum.
  • This alloy has excellent foundry characteristics, being capable of use either in sand or permanent molds.
  • the alloy is light, is strong and hard, and possesses these latter properties to a substantial extent at high temperatures.
  • the alloy maintains its desirable properties over long periods at high temperature and is therefore a very dependable engineering material.
  • the alloy is insensitive to impurities, which is to say that its properties are not materially affected by the varying amount of impurities, such as iron or silicon, which may be found in the commercial aluminum from which it is usually made.
  • the tensile strength of the alloy is high at elevated temperature and its elongation, a measure of ductility, is adequate. It retains this high strength at elevated temperatures over long periods without substantial change and does not become brittle. Examples of the strength andductility of the alloys will be found in Table I where are listed the tensile strength and elongation of three sand castings made of the alloy, annealed for 4 hours at 700 Fahrenheit, then held 20 days at 600 Fahrenheit, and finally tested at the latter temperature.
  • the aluminum-magnesium-manganese-nickel alloys to which this invention refers have certain preferred forms. Within the composition limits above described, the alloys are satisfactory for most purposes, but we have found the best combination of properties in alloys containing 3.5 to 6.5 per cent by weight of magnesium, 0.5 to 2.0 per cent by weight of magnanese, and 0.5 to 3.0 per cent by weight of nickel, balance principally aluminum. Excellent casting characteristics are found in an alloy containing 6 per cent by weight of magnesium, 1 per cent by weight of manganese, and 1.5 per cent by weight of nickel, balance principally aluminum. We have likewise discovered that certain other elements may be added to the. alloy to effect particular purposes without materially harming the leading properties of the alloy. For instance:
  • cobalt or chromium may be resorted to in many cases. We have found that these elements, in certain amounts, will produce the desired result without seriously depreciating the ductility of the alloy. If chromium is added it should be in amounts of 0.1 to 2.0
  • alloys which are herein'described may be made by any of the usual methods of compounding alloys, care being taken, of course, not to overheat or dross themetal during alloying.
  • the aluminum used in the manufacture of the alloys may be of the highest purity or it may contain amounts of usual impurities, and the term aluminum as used herein and in the claims designates the aluminum of commerce. It is an incidental property of our alloys that the presence of iron in amounts as high as 2 per cent'by weight is not harmful to the high temperature properties of the alloys and, therefore, a wide choice between the various grades of commercial aluminum is possible.
  • a metallic alloy characterized by high physicaland tensile properties at elevated temperatures and good fluidity and consisting of 3.0 to 8.0 per cent by weight of magnesium, 0.5 to 4.0 per cent by weight of nickel, 0.5 to 4.0 per cent by weight of manganese, 0.1 to 2.0 per cent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

Patented Oct. 31, 1933 ALUMINUM ALLOYS Walter A. Dean and Louis W. Kempf, Cleveland, Ohio, assignors to Aluminum Company of Pa., a corporation of America, Pittsburgh, Pennsylvania No Drawing. Application September 21, 1932 Serial No. 634,160
2 Claims.
This invention relates to aluminum base alloys which have excellent properties at elevated temperatures, which are generally adapted to foundry purposes and which are insensitive to the common 5 impurities found in commercial aluminum.
A good foundry alloy which will retain a substantial proportion of its physical and tensile properties at elevated temperatures is constantly being searched for in the field of light metals. By light metals is not meant the ordinary aluminum base alloys but only such of those alloys ascontain substantial amounts of a metal lighter than aluminum so as to compensate in the alloy for the addition of metals heavier than aluminum. To provide such an alloy of good foundry characteristics and excellent strength at high temperatures is the object of this invention.
The aluminum base alloys containing magnesium are lighter than aluminum. They should therefore be excellent material from which. to manufacture reciprocating parts which operate at elevated temperatures were it not for the fact that these alloys at elevated temperatures (such as 400 to 700 Fahrenheit) do not have the strength, the ductility and the hardness which are so often necessary. Moreover, the binary aluminum-magnesium alloys are somewhat lacking in the required foundry characteristics.
We have discovered, after extensive experimentation, an aluminum base alloy containing magnesium which fulfills, to a surprising extent, the requirements above mentioned. This alloy is one containing 3.0 to 8.0 per cent by weight of magnesium, 0.5 to 4.0 per cent by weight of manganese, and 0.5 to 4.0 per cent by weight of nickel, the balance being principally aluminum. This alloy, we have discovered, has excellent foundry characteristics, being capable of use either in sand or permanent molds. The alloy is light, is strong and hard, and possesses these latter properties to a substantial extent at high temperatures. The alloy, however, maintains its desirable properties over long periods at high temperature and is therefore a very dependable engineering material. Also the alloy is insensitive to impurities, which is to say that its properties are not materially affected by the varying amount of impurities, such as iron or silicon, which may be found in the commercial aluminum from which it is usually made.
The tensile strength of the alloy is high at elevated temperature and its elongation, a measure of ductility, is adequate. It retains this high strength at elevated temperatures over long periods without substantial change and does not become brittle. Examples of the strength andductility of the alloys will be found in Table I where are listed the tensile strength and elongation of three sand castings made of the alloy, annealed for 4 hours at 700 Fahrenheit, then held 20 days at 600 Fahrenheit, and finally tested at the latter temperature.
. Table I Alloy composition strength Tensile pounds per square inch Percent elongation in 2 inches [ONO and an elongation of 5 per cent in 2 inches.
The constancy of the properties of our new alloys is well illustrated by a comparison of one of the alloys in sand cast form with a sand casting made of a well known aluminum alloy con- Sand castings made of an alloy containing 6 per cent magnesium, 1.0 per cent manganese, and 1.5 per cent nickel, balance aluminum, were annealed for 2 hours at 550 Fahrenheit, the temperature was then increased to 600 Fahrenheit and the alloys tested at that temperature and then tested again at the expiration of 20 days at 600 Fahrenheit. Similar treatment was afforded sand castings made of an alloy containing 10 per cent copper, 0.2 per cent magnesium, 1.2 per cent iron, balance aluminum, and these castings were similarly tested.
taining copper.
The results are shown in Table II.
A comparison of the values given in Table II will demonstrate that the aluminum-copper alloy lost about 42 per cent of its tensile strength in 20 days at 600 Fahrenheit while the tensile strength of the aluminum-magnesium-manganese -nickel alloy remained practically constant,
losing only about 7 per cent.
The aluminum-magnesium-manganese-nickel alloys to which this invention refers have certain preferred forms. Within the composition limits above described, the alloys are satisfactory for most purposes, but we have found the best combination of properties in alloys containing 3.5 to 6.5 per cent by weight of magnesium, 0.5 to 2.0 per cent by weight of magnanese, and 0.5 to 3.0 per cent by weight of nickel, balance principally aluminum. Excellent casting characteristics are found in an alloy containing 6 per cent by weight of magnesium, 1 per cent by weight of manganese, and 1.5 per cent by weight of nickel, balance principally aluminum. We have likewise discovered that certain other elements may be added to the. alloy to effect particular purposes without materially harming the leading properties of the alloy. For instance:
If a higher tensile strength or hardness is required in the aluminum-magnesium-manganesenickel alloys which-form the subject of this invention, the addition of cobalt or chromium may be resorted to in many cases. We have found that these elements, in certain amounts, will produce the desired result without seriously depreciating the ductility of the alloy. If chromium is added it should be in amounts of 0.1 to 2.0
per cent by weight, amounts of 0.1 to 0.5 per cent being preferred. If cobalt is added it should be in amounts of 0.1 to 2.0 per cent by weight, amounts of 0.1 to 0.5 per cent being preferred.
The alloyswhich are herein'described may be made by any of the usual methods of compounding alloys, care being taken, of course, not to overheat or dross themetal during alloying.
Another property of these alloys is their improved fiuidity as compared with the alloys which have, heretofore, been widely used as a material for parts operating at elevated temperatures. Comparative tests, based upon the distance that the molten alloy, originally heated to a given temperature, will flow through a spiral formed in a sand mold, have shown that our novel alloys are very superior with respect to fluidity.
The aluminum used in the manufacture of the alloys may be of the highest purity or it may contain amounts of usual impurities, and the term aluminum as used herein and in the claims designates the aluminum of commerce. It is an incidental property of our alloys that the presence of iron in amounts as high as 2 per cent'by weight is not harmful to the high temperature properties of the alloys and, therefore, a wide choice between the various grades of commercial aluminum is possible.
We claim:
1. A metallic alloy characterized by high physicaland tensile properties at elevated temperatures and good fluidity and consisting of 3.0 to 8.0 per cent by weight of magnesium, 0.5 to 4.0 per cent by weight of nickel, 0.5 to 4.0 per cent by weight of manganese, 0.1 to 2.0 per cent
US634160A 1932-09-21 1932-09-21 Aluminum alloys Expired - Lifetime US1932842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US634160A US1932842A (en) 1932-09-21 1932-09-21 Aluminum alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US634160A US1932842A (en) 1932-09-21 1932-09-21 Aluminum alloys

Publications (1)

Publication Number Publication Date
US1932842A true US1932842A (en) 1933-10-31

Family

ID=24542662

Family Applications (1)

Application Number Title Priority Date Filing Date
US634160A Expired - Lifetime US1932842A (en) 1932-09-21 1932-09-21 Aluminum alloys

Country Status (1)

Country Link
US (1) US1932842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078685C (en) * 1994-02-16 2002-01-30 诺日士钢机株式会社 Apparatus for vacuum absorption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078685C (en) * 1994-02-16 2002-01-30 诺日士钢机株式会社 Apparatus for vacuum absorption

Similar Documents

Publication Publication Date Title
US3392015A (en) Aluminum-base alloy for use at elevated temperatures
US2715577A (en) Copper-base alloys
US1932843A (en) Aluminum alloys
US2075090A (en) Aluminum alloy
US1932842A (en) Aluminum alloys
US1932840A (en) Aluminum alloys
US1932841A (en) Aluminum alloys
US1932846A (en) Aluminum alloys
US1932844A (en) Aluminum alloys
US2280170A (en) Aluminum alloy
US1932838A (en) Aluminum alloys
US2795501A (en) Copper base alloys
US1932848A (en) Aluminum alloys
US1932847A (en) Aluminum alloys
US1932845A (en) Aluminum alloys
US1932853A (en) Aluminum alloys
US2098081A (en) Aluminum alloy
US1932851A (en) Aluminum alloys
US2280174A (en) Aluminum alloy
US2226594A (en) Aluminum alloy
US1932839A (en) Aluminum alloys
JPH0649572A (en) High strength zinc alloy for die casting and zinc alloy die-cast parts
KR20210010235A (en) Aluminium casting alloy with high toughness and method of there
US2270193A (en) Magnesium base alloy
US1932849A (en) Aluminum alloys