US1932751A - Preparation of cellulose xanthate from sheeted cellulose fiber - Google Patents

Preparation of cellulose xanthate from sheeted cellulose fiber Download PDF

Info

Publication number
US1932751A
US1932751A US562432A US56243231A US1932751A US 1932751 A US1932751 A US 1932751A US 562432 A US562432 A US 562432A US 56243231 A US56243231 A US 56243231A US 1932751 A US1932751 A US 1932751A
Authority
US
United States
Prior art keywords
cellulose
sheets
solution
soda
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US562432A
Inventor
George A Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brown Co
Original Assignee
Brown Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brown Co filed Critical Brown Co
Priority to US562432A priority Critical patent/US1932751A/en
Application granted granted Critical
Publication of US1932751A publication Critical patent/US1932751A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath

Definitions

  • This invention relates to the preparation of cellulose xanthate from sheeted cellulose fiber.
  • the current practice involves dipping comparatively thick sheets of substantially unbeaten wood pulp, e. g., drier sheets so-called, in a mercerizing caustic soda solution, i. e., one of about 18% strength, at room or even lower temperatures.
  • a mercerizing caustic soda solution i. e., one of about 18% strength
  • sheets of kra'ft or soda pulp or refined pulp prepared from Matt or soda pulp tend to fall apart when subjected to :this first step of the xanthating process.
  • This disintegration is attributable to an undue swelling of the fiber accompanying mercerization and to a dissolving of ingredients like pentosans and 001- loidal celluloses, which ordinarily serve to bond the fibers together and thus to hold the sheets intact.
  • the hot solution promotes a removal from the fiber of resins, gums, and other contaminations which impair the clarity of the viscose solution into which the soda cellulose is converted.
  • the hot solution also promotes a lowering of the solution viscosity of the pulp, wherefore, the soda cellulose needs little, if any, ageing prior to being xanthated and dissolved to form a viscose solution.
  • suitable oxidants such as hypochlorites and peroxides, which to greatly assist in lowering the solution viscosity of the pulp, since they are quickly consumed at elevated temperature.
  • oxidants are not practical at room or lower temperatures, because one must put up either with a long period of reaction or with the presence of unconsumed a hot solution is of advantage even when applied to pulps generally, that is, to pulps of varione derivations, including sulphite pulp sheets, refined Wood pulp sheets, and cotton linter sheets, all of which have little disintegrating tendency when subjected to the usual step of making soda cellulose.
  • the sheets may be squeezed free from excess solution, whereupon thedesired mercerization of the fiber.
  • the squeezing of the-excess solution at temperatures above 20. C. is easier because caustic soda solutions of 18% strength are much more viscous at 20 C. thanthey are at appreciably higher temperatures.
  • the mercerization, being accomplish'ed Without a large excess of caustic soda solution surrounding the sheets such as prevails in the soaking bath, is not accompaniedby any disintegrating effect on the sheets.
  • the cooling so of the sheets may be accomplished as a separate step in an artificially refrigerated atmosphere, or by mere exposure to room temperature.
  • the sheets may be taken directly from the press and shredded or broken up into soda cellulose 35 crumbs, as ordinarily, in a grinder or disintegrator, during which operation, or afterwards, the massof fiufiy soda cellulose may be cooled.
  • the grinderor disintegrator employed may be of the usual type, which is jacketed to permit a refrigerating medium to be circulated through the jacket, so as to chill the soda cellulose crumbs.
  • the crumbs of soda cellulose after having been cooled to a temperature of about 26 C. or lower, are ready, with or without ageing,
  • cellulose xanthate to be converted into cellulose xanthate by treatment with carbon bisulphide.
  • the cellulose xanthate may then be dissolved as customarily in dilute alkali solution to form a viscose solution.
  • the principles of the present invention apply most-advantageously to sheets of unbeaten pulp which are susceptible to disintegration in caustic soda solutions of at least about 18% strength at room temperature (18 to 21 C.) or lower. Included in this category of pulps are not only alkali-liberated pulps like kraft and soda, but also those pulps liberated from short-fibered woods exemplified by soft Woods of the type of poplar and by hardwoods in general. The shortfibered pulps are troublesome in sheet form, because there is evidently insufficient interfelting between the fibers to resist separation and individualism of the fibers upon their swelling and curling, such as ensues from submergence in a bath of caustic soda solution'under mercerizing conditions.
  • cellulose Xanthate those steps which comprise dipping sheets of short-fibered wood pulp derived from woods of the nature of poplar and hardwoods in a caustic soda solution of about 18% strength at temperatures above about 40 C., removing the sheets from the solution, cooling the soda cellulose so prepared to a temperature at which mercerization is effected, and xanthating the cooled, mercerized product.
  • a process which comprises dipping sheets of cellulose pulp in a bath of caustic soda solution at a temperature sufficiently high to be nonmercerizing, removing the substantially unmercerized sheets from the solution, and cooling the soda cellulose so prepared to a temperature at which mercerization is effected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Paper (AREA)

Description

Patented Oct. 31, 1933 PREPARATION OF CELLULOSE XANTHATE FROM SHEETED CELLULOSE FIBER- George A. Richter, Berlin, N. ,l-l assignor to Brown Company, Berlin, N. H., a corporation of Maine No Drawing. Application September 11, 1931 Serial No. 562,432
Claims;
This invention relates to the preparation of cellulose xanthate from sheeted cellulose fiber. In making cellulose xanthate, the current practice involves dipping comparatively thick sheets of substantially unbeaten wood pulp, e. g., drier sheets so-called, in a mercerizing caustic soda solution, i. e., one of about 18% strength, at room or even lower temperatures. There are many pulps which tend to disintegrate from sheet form and to become pulpy masses difiioult to handle when submersed in a caustic soda solution under these conditions to form soda cellulose. For example, sheets of kra'ft or soda pulp or refined pulp prepared from Matt or soda pulp tend to fall apart when subjected to :this first step of the xanthating process. This disintegration is attributable to an undue swelling of the fiber accompanying mercerization and to a dissolving of ingredients like pentosans and 001- loidal celluloses, which ordinarily serve to bond the fibers together and thus to hold the sheets intact. v
I have found that, despite the fact that little mercerization of the fiber ensues at temperatures above about 40 0., it is nevertheless of distinct advantage to carry out the clipping of sheets of fiber in caustic soda solutions of at least about 18% strength at temperatures above about 40 C. Thus, at such elevated temperatures, there is no diiiiculty in maintaining the sheets intact even when they are formed from kraft pulp. Whereas the sheets expand greatly in thickness in solutions of about 18% strength at'room temterature and in so doing tend to fall apart, there is less such action when the solution is maintained at temperatures above about 40 0., say between 40' to 80 C. In addition to the advantage of maintaining the integrity of the sheets, the hot solution promotes a removal from the fiber of resins, gums, and other contaminations which impair the clarity of the viscose solution into which the soda cellulose is converted. The hot solution also promotes a lowering of the solution viscosity of the pulp, wherefore, the soda cellulose needs little, if any, ageing prior to being xanthated and dissolved to form a viscose solution. Again, it becomes feasible to add to the solution small quantities of suitable oxidants, such as hypochlorites and peroxides, which to greatly assist in lowering the solution viscosity of the pulp, since they are quickly consumed at elevated temperature. The use of oxidants is not practical at room or lower temperatures, because one must put up either with a long period of reaction or with the presence of unconsumed a hot solution is of advantage even when applied to pulps generally, that is, to pulps of varione derivations, including sulphite pulp sheets, refined Wood pulp sheets, and cotton linter sheets, all of which have little disintegrating tendency when subjected to the usual step of making soda cellulose.
After the initial high temperature immersion in caustic soda solution, the sheets may be squeezed free from excess solution, whereupon thedesired mercerization of the fiber. may be realized by the simple expedient of cooling the sheets .to room or lower temperatures. The squeezing of the-excess solution at temperatures above 20. C. is easier because caustic soda solutions of 18% strength are much more viscous at 20 C. thanthey are at appreciably higher temperatures. The mercerization, being accomplish'ed Without a large excess of caustic soda solution surrounding the sheets such as prevails in the soaking bath, is not accompaniedby any disintegrating effect on the sheets. The cooling so of the sheets may be accomplished as a separate step in an artificially refrigerated atmosphere, or by mere exposure to room temperature. Or the sheets may be taken directly from the press and shredded or broken up into soda cellulose 35 crumbs, as ordinarily, in a grinder or disintegrator, during which operation, or afterwards, the massof fiufiy soda cellulose may be cooled. The grinderor disintegrator employed may be of the usual type, which is jacketed to permit a refrigerating medium to be circulated through the jacket, so as to chill the soda cellulose crumbs. The crumbs of soda cellulose, after having been cooled to a temperature of about 26 C. or lower, are ready, with or without ageing,
to be converted into cellulose xanthate by treatment with carbon bisulphide. The cellulose xanthate may then be dissolved as customarily in dilute alkali solution to form a viscose solution.
. The principles of the present invention apply most-advantageously to sheets of unbeaten pulp which are susceptible to disintegration in caustic soda solutions of at least about 18% strength at room temperature (18 to 21 C.) or lower. Included in this category of pulps are not only alkali-liberated pulps like kraft and soda, but also those pulps liberated from short-fibered woods exemplified by soft Woods of the type of poplar and by hardwoods in general. The shortfibered pulps are troublesome in sheet form, because there is evidently insufficient interfelting between the fibers to resist separation and individualism of the fibers upon their swelling and curling, such as ensues from submergence in a bath of caustic soda solution'under mercerizing conditions.
There is advantage in carrying out the initial treatment with caustic soda solution of at least about 18% strength at temperatures above about 40 C. even when the cellulose pulp serving as the raw material is other than in sheet form, for instance, in the form of loose bulk pulp. While the treatment is devised primarily to prevent sheet cellulose from disintegrating into pulpy masses, of importance too, is the fact that the treatment is conducive to an improved, low-viscosity soda cellulose which can be xanthated with little ageing.
I claim:
1. In the manufacture of cellulose xanthate, those steps which comprise treating cellulose pulp with excess caustic soda solution of about 18% strength and containing an oxidant at temperatures above about 40 C., removing the excess solution, cooling the soda cellulose so prepared to a temperature at which mercerization is effected, and xanthating the cooled mercerized product.
2. In the manufacture of cellulose xanthate, those steps which comprise maintaining sheets of cellulose pulp immersed at temperatures above about 40 C. in a caustic soda solution of about 18% strength and containing an oxidant until the oxidant is substantially consumed, removing the sheets from the solution, cooling the soda cellulose so prepared to a temperature at which mercerization is eifected, and xanthating the cooled, mercerized product.
3. In the manufacture of cellulose xanthate, those steps which comprise dipping sheets of cellulose pulp, characterized by their tendency to disintegrate in a mercerizing bath at normal temperature, in a bath of caustic soda solution of about 18% strength at temperatures above about 40 C., removing the substantially unmercerized sheets from the solution, cooling the soda cellulose so prepared to a temperature at which mercerization is effected, and xanthating the cooled, mercerized product.
4. In the manufacture of cellulose xanthate, those steps which comprise dipping sheets of alkali-liberated wood pulp in a caustic soda solution of about 18% strength at temperatures above about 40 0., removing the sheets from the solution, cooling the soda cellulose so prepared to a temperature at which mercerization is effected, and xanthating the cooled, mercerized product.
5. In the manufacture of cellulose Xanthate, those steps which comprise dipping sheets of short-fibered wood pulp derived from woods of the nature of poplar and hardwoods in a caustic soda solution of about 18% strength at temperatures above about 40 C., removing the sheets from the solution, cooling the soda cellulose so prepared to a temperature at which mercerization is effected, and xanthating the cooled, mercerized product.
6. In the manufacture of cellulose xanthate, those steps which comprise dipping sheets of wood pulp in a caustic soda solution of about 18% strength at temperatures of about 40 to C., removing the sheets from the solution, cooling the soda cellulose so prepared to a temperature downwards of about 20 C. to efiect mercerization, and xanthating the cooled, mercerized product. 7
7. In the manufacture of cellulose xanthate, those steps which comprise dipping sheets of cellulose pulp in a bath of caustic soda solution of about 18% strength at temperatures above 40 C., removing the substantially unmercerized sheets from the solution, cooling the soda cellulose so prepared to a temperature at which mercerization is effected, and xanthating the cooled, mercerized product.
8. In the manufacture of cellulose xanthate, those steps which comprise dipping sheets of wood pulp in a bath of caustic soda solution of about 18% strength at temperatures above 40 0., removing the substantiallyunmercerized sheets from the solution, cooling the soda cellulose so prepared to a temperature at which mercerization is effected, and xanthating the cooled, mercerized product.
9. A process which comprises dipping sheets of cellulose pulp in a bath of caustic soda solution at a temperature sufficiently high to be nonmercerizing, removing the substantially unmercerized sheets from the solution, and cooling the soda cellulose so prepared to a temperature at which mercerization is effected.
10. In the manufacture of cellulose xanthate, those steps which comprise dipping sheets of wood pulp in a bath of caustic soda solution of about 18% strength at a temperature sufficiently high to be non-mercerizing, removing the substantially unmercerized sheets from the solution, cooling the soda cellulose so prepared to a temperature at which mercerization is effected, and xanthating the cooled, mercerized product.
GEORGE A. RICHTER.
US562432A 1931-09-11 1931-09-11 Preparation of cellulose xanthate from sheeted cellulose fiber Expired - Lifetime US1932751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US562432A US1932751A (en) 1931-09-11 1931-09-11 Preparation of cellulose xanthate from sheeted cellulose fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US562432A US1932751A (en) 1931-09-11 1931-09-11 Preparation of cellulose xanthate from sheeted cellulose fiber

Publications (1)

Publication Number Publication Date
US1932751A true US1932751A (en) 1933-10-31

Family

ID=24246260

Family Applications (1)

Application Number Title Priority Date Filing Date
US562432A Expired - Lifetime US1932751A (en) 1931-09-11 1931-09-11 Preparation of cellulose xanthate from sheeted cellulose fiber

Country Status (1)

Country Link
US (1) US1932751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2521450A (en) * 1947-07-08 1950-09-05 Oscar Kohorn & Co Ltd Process for the production of regenerated cellulose products
US3511751A (en) * 1967-05-29 1970-05-12 Toyo Tire & Rubber Co Method of modifying cellulose xanthate paper prior to in situ regeneration by embossing and product thereby
CN104919097A (en) * 2012-12-06 2015-09-16 连津格股份公司 Method for producing a cellulosic molded body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2521450A (en) * 1947-07-08 1950-09-05 Oscar Kohorn & Co Ltd Process for the production of regenerated cellulose products
US3511751A (en) * 1967-05-29 1970-05-12 Toyo Tire & Rubber Co Method of modifying cellulose xanthate paper prior to in situ regeneration by embossing and product thereby
CN104919097A (en) * 2012-12-06 2015-09-16 连津格股份公司 Method for producing a cellulosic molded body
CN104919097B (en) * 2012-12-06 2017-11-03 连津格股份公司 The method for manufacturing cellulosic molded body

Similar Documents

Publication Publication Date Title
US1860432A (en) Process of lowering the solution viscosity of cellulose fiber
US2231953A (en) Process for the treatment of organic fibrous materials
US2999045A (en) Deresination of wood pulp
US1932751A (en) Preparation of cellulose xanthate from sheeted cellulose fiber
US1955092A (en) Production of cellulose for viscosemaking
US3532597A (en) Preparation of dissolving pulps from wood by hydrolysis and alkaline sulfite digestion
US2110546A (en) Production of cellulose and cellulosic products
US2068631A (en) Preparation of cellulose xanthate solutions
US2274463A (en) Preparation of alkali cellulose
US1880043A (en) Production of high grade chemical pulps
US2041958A (en) Refining cellulose fiber for conversion into cellulose derivatives
US2222050A (en) Viscose low in hemicellulose
US2074339A (en) Preparation of cellulosic material
US2859210A (en) Method of producing alkali cellulose
US1953191A (en) Process of refining cellulose
US2117038A (en) Process of making cellulose xanthate solutions
US2057163A (en) Preparation of solutions of hydroxy-cellulose ethers
US2028846A (en) Cellulose pulp for esterification purposes and processing of same
US2159676A (en) Process of producing viscose
US2638415A (en) Production of cellulose
US3210237A (en) Bisulphite pulping of pine wood
US1839773A (en) Rayon manufacture
US2118074A (en) Manufacture of cellulose
US1923641A (en) Low viscosity cellulose fiber and process of producing the same
US1899637A (en) Chemical pulping and refining process