US1931441A - Production of hydrocyanic acid - Google Patents

Production of hydrocyanic acid Download PDF

Info

Publication number
US1931441A
US1931441A US459611A US45961130A US1931441A US 1931441 A US1931441 A US 1931441A US 459611 A US459611 A US 459611A US 45961130 A US45961130 A US 45961130A US 1931441 A US1931441 A US 1931441A
Authority
US
United States
Prior art keywords
solution
nitric acid
acid
ammonium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US459611A
Inventor
Keller Konrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gesellschaft fuer Kohlentechnik mbH
Original Assignee
Gesellschaft fuer Kohlentechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DEG76618D external-priority patent/DE528968C/en
Priority claimed from DEG76624D external-priority patent/DE509935C/en
Application filed by Gesellschaft fuer Kohlentechnik mbH filed Critical Gesellschaft fuer Kohlentechnik mbH
Application granted granted Critical
Publication of US1931441A publication Critical patent/US1931441A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0254Preparation, separation or purification of hydrogen cyanide from cyanates or from thiocyanates

Definitions

  • the object of the present invention is a process for the production of hydrocyanic acid from ammonium thiocyanate.
  • reactionliquid wasquite clear anddid not contain any unaltered ammonium thiocyanate afterthe reaction had come to an end.
  • Second test -A solution of 12.5 grmsNHiCNS in 100 c.-c. water was caused tov react with the theoretical amount of :nitricacid (of 1.125 sp. gr.) required for oxidation in exactly the same manner and l at the same temperature as in the first test, with the exception that the said solutions were dropped concentration of at least 1 per cent of. free nitric acid inthe reaction mixture (the so-called bath liquid) where the reaction of the ammonium thiocyanate solution and the nitric acid takes place.
  • bath liquid the reaction mixture
  • Bath liquid mol. (19.16 gr.) NH4HSO4 to 100 c. c.
  • Example A solution containing by weight 11 parts of ammonium sulphate and 8.2 of sulphuric acid dissolved in 168 parts of water is admixed with such a quantity of nitric acid that the solution contains at least 1 part by weight HNO3 in 100 parts by volume of the solution (1. e. by weight 0.2 or by Volume 0.22 part of 1.40 sp. gr. nitric acid to 20 parts by volume of solution).
  • this solution -heated to 95-97 C.
  • 9.8 parts by volume of nitric acid of I 23.7 per cent by volume are allowed to run. Then, whileaconstantly stirring the liquid and maintaining the reaction temperature of 95 to 97 C.
  • a method of producing hydrocyanic acid consisting in adding to a solution containing ammonium bi-sulphate, such quantity of free nitric acid that the concentration thereof always exceeds 1 per cent and then adding to said bath in alternate quantities, a solution of ammonium thiocyanate and nitric acid in equivalent proportions .for the oxidation reaction between ammonium thiocyanate and nitric acid.
  • a method of producing hydrocyanic acid consisting in dissolving 11 parts of ammonium sulphate and 8.2 parts of sulphuric acid in 168 parts of water, adding nitric acid to the solution of ammonium'sulphate and sulphuric acid in a quantity suchthat the said solution contains at least 1 part of .nitric acid in 100 parts of solution, heating 20 parts by volume of said solution to 9597 0., adding to said heated solution 9.8 parts by volume of nitric acid of 23.7 per cent strength, stirring said solution at a temperature 'tained substantially constant by removal of the surplus.
  • the method of producing hydrocyanic acid consisting in adding to a solution of ammoniumbisulphate such an amount of nitric acid of desired concentration thatin the thus obtained mixture 1 per cent of free nitricacid. is present, and adding tosaid amounts of a' solution of nitric acid and of ammonium-thiocyanate that in the total amount of these additions such an amount of thenitric acid is used in excess that the concentration of the free nitric acid as regards its excess amounts to 1' per cent ofthe said acid present in the total amount of the reaction mixture.

Description

patented Oct. 1 7, 1933;
UNITED STATES 1 f 1,931,441 1 PRODUCTION OF HYDItocYA'mo non) Konrad Keller, Dortmund-living, Germany, as signor 'to Gesellsc'haft Fur Kohlentechnik m. b. H., Dortmund-Eving, Germany No Drawing. Application June 6, 1930, Serial N6. 459,611, and in Germany June 6, 1929 5 Claims. (cur-151);
The object of the present invention is a process for the production of hydrocyanic acid from ammonium thiocyanate.
It is known that thiocyanic salts are converted 5 into hydrocyanic acid by oxidation or reduction.
The yields obtained by the known processes especially of oxidation with the aid of various .oxidizers are, however, poor. Raschen developed a method of oxidizing potassium, sodium and calcium salts of thiocyanic acid into hydrocyanic acid by means of nitric acid, and obtained generally yields of from 50 to 60 per cent of the theoretical and of over 90 per cent if potassium or calcium thiocyanate was used andcertain special conditions observed. Therefore, the prerequisite for the known process is the manufacture of the corresponding potassium, sodium and calcium salts from NH4CNS. Investigations made of the possibility of converting NH4CNS (ammonium thiocyanate) directly into hydrocyanic acid showed that, unless special measures are taken, reaction with NH4CNS gives but poor results, yields being not more thanfrom 50 to 60 per cent of the theoretical. It was found that only after modifying the known methods, are good results obtainable with the ammonium salt, yields of 90 per cent andupwards being now obtainable according to the present invention.
It was found that, in order to attain this end, it was necessary to maintain certain acid concentrations in the reaction liquid with the utmost accuracy, comparative tests: 0
First test A solution of 16.0 grms. KCNS in 100 c. 0. water and the. theoretical amount of nitric acid (of 1.125 specific gravity) required for oxidation, both of them kept in separate burettes, were dropped into a generating flask in small, adjustable, prorata quantities and in such a way as always to feed the nitric acid somewhat in advance of the KSNS solution. The flask initially contained a solution of 200 c. c. KHSO4 of a strength such as is obtained by interaction of solutions of the above concentration. While introducing the potassium thiocyanate solution and the nitric acid, the flask contents were vigorously stirred and at the same time heated to 'a temperature of as will be seen from the following x 9,0. 0,. and, towards the endof the reactiomto Two such tests made under the same conditions gave yields-of 93.3 and 93.5 per cent respectively.
The reactionliquid wasquite clear anddid not contain any unaltered ammonium thiocyanate afterthe reaction had come to an end.
Second test -A solution of 12.5 grmsNHiCNS in 100 c.-c. waterwas caused tov react with the theoretical amount of :nitricacid (of 1.125 sp. gr.) required for oxidation in exactly the same manner and l at the same temperature as in the first test, with the exception that the said solutions were dropped concentration of at least 1 per cent of. free nitric acid inthe reaction mixture (the so-called bath liquid) where the reaction of the ammonium thiocyanate solution and the nitric acid takes place. This iswell illustrated, for i'nstance, from the following tests for the determination ofthe minimumhnitric acid concentration required for the oxidation of ammonium thiocyanate. An accurately measured quantityvof ,bath'liquid (strength= mol. of. ammonium bisulphate to 100 c. 0. water) was poured in a distilling flask of 100 c. 0. capacity, which, up to thedistilling tube (side tube), was immersed in a beaker -filled with boiling Water. To this flask were added, drop by drop, from two burettes, accurately measured quantities of nitric acid and of ammonium thiocyanate solution (strength: mol. to c. c.) The neck of the flask was stoppered, and a test tube moistened with caustic soda solution was passed over the distilling tube. The gasevolution in the bath liquid of the flask, as well as the appearance of brown nitric oxide gases and finally the detection of cyanogen in the caustic 100 soda solution of the 'receiverindicated in each case the nitric acid concentration at which oxidation of the ammonium thiocyanate occurred.
The following table shows representative results obtained.
Bath liquid= mol. (19.16 gr.) NH4HSO4 to 100 c. c.
NH4CNS solutio=n=% mol. (12.66 gr.) NHiCNS to 100 c. c.
I Nitric acid=23.75 gr. HNOs in 100 c. 0.
Bath liquid HNO; NH4CNS gffif Reaction 0.0. 0.0. 0.0. solution 10 0. 4 0. 4 0. 88 None 5 0. 4 0. 4 1. 64 Distinct 10 0. 8 0. 8 1. 63 Very distinct 10 0.8 0.8 l. 63 Very distinct 5 0. 2 0.3 0. 86 None 10 0. 4 0. 3 0. 88 None 15 0. 6 0. 3 0. 89 None 5 0. 4 0. 3 1.66 Moderate 10 0. 8 0. 3 1. 71 Very distinct l5 l. 2 0. 3 l. 72 Particularly distinct A yield of 9 4; percent was arrived at, for instance, as follows:
Example A solution containing by weight 11 parts of ammonium sulphate and 8.2 of sulphuric acid dissolved in 168 parts of water is admixed with such a quantity of nitric acid that the solution contains at least 1 part by weight HNO3 in 100 parts by volume of the solution (1. e. by weight 0.2 or by Volume 0.22 part of 1.40 sp. gr. nitric acid to 20 parts by volume of solution). In 20 parts by volume of this solution-heated to 95-97 C. 9.8 parts by volume of nitric acid of I 23.7 per cent by volume are allowed to run. Then, whileaconstantly stirring the liquid and maintaining the reaction temperature of 95 to 97 C. 10 parts by volume of an aqueous solution of 12.65parts by weight of ammonium thiocyanatev in 100 parts by volume are slowly introduced. This process is alternately repeated, carebeing taken to keep the volume of the reaction liquid as far as possible constant by means of an overflow arrangement; Acolumn connected to the reaction vessel serves to free-the gases, nitric oxides and hydrocyanic acid, generated by the reaction from the nitric acid which may be carried along with them. The hydrocyanic acid dissolved in the reaction liquid in accordance with its temperature is driven off by heating the reaction liquid to a higher temperature, which maybe done either after each partial operation directly in the reaction vessel'itself or in the overflow vessel connected thereto. The hydrocyanic acid is absorbed by an alkaline solu- .tion, and the remaining nitric oxides are converted into nitric acid in the well known manner.
What I claim is:
1. A method of producing hydrocyanic acid consisting in adding to a solution containing ammonium bi-sulphate, such quantity of free nitric acid that the concentration thereof always exceeds 1 per cent and then adding to said bath in alternate quantities, a solution of ammonium thiocyanate and nitric acid in equivalent proportions .for the oxidation reaction between ammonium thiocyanate and nitric acid.
2. A method of producing hydrocyanic acid consisting in dissolving 11 parts of ammonium sulphate and 8.2 parts of sulphuric acid in 168 parts of water, adding nitric acid to the solution of ammonium'sulphate and sulphuric acid in a quantity suchthat the said solution contains at least 1 part of .nitric acid in 100 parts of solution, heating 20 parts by volume of said solution to 9597 0., adding to said heated solution 9.8 parts by volume of nitric acid of 23.7 per cent strength, stirring said solution at a temperature 'tained substantially constant by removal of the surplus. I
.3. The method of producing hydrocyanic acid, consisting in adding to a solution of ammoniumbisulphate such an amount of nitric acid of desired concentration thatin the thus obtained mixture 1 per cent of free nitricacid. is present, and adding tosaid amounts of a' solution of nitric acid and of ammonium-thiocyanate that in the total amount of these additions such an amount of thenitric acid is used in excess that the concentration of the free nitric acid as regards its excess amounts to 1' per cent ofthe said acid present in the total amount of the reaction mixture.
' 4. The method of producing hydrocyanic acid, consisting in acting on a solution of ammonium thiocyanate with an excess of nitric acid in such manner that the concentration of nitric acid in the reaction mass is always in excess of lpercent. 5. The method ofproducing hydrocyanic acid consisting in alternately adding nitric acid and a solution of ammonium. thiocyanate in such a manner to a reaction mass. obtained by acting on a solution of ammonium thiccyanate with nitric acid that the concentration oinitric acid in the "total amountofthe reaction mixture is always in excess of 1 per cent.
KONRAD KELLER.
mixture such alternate
US459611A 1929-06-06 1930-06-06 Production of hydrocyanic acid Expired - Lifetime US1931441A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEG76618D DE528968C (en) 1929-06-06 1929-06-06 Process for the production of hydrogen cyanide by oxidation of rhodanammonium with nitric acid
DEG76624D DE509935C (en) 1929-06-07 1929-06-07 Process for the production of hydrogen cyanide or cyan products by oxidation of rhodanammon lye with nitric acid

Publications (1)

Publication Number Publication Date
US1931441A true US1931441A (en) 1933-10-17

Family

ID=25979092

Family Applications (1)

Application Number Title Priority Date Filing Date
US459611A Expired - Lifetime US1931441A (en) 1929-06-06 1930-06-06 Production of hydrocyanic acid

Country Status (2)

Country Link
US (1) US1931441A (en)
GB (2) GB356190A (en)

Also Published As

Publication number Publication date
GB356190A (en) 1931-08-24
GB356724A (en) 1931-08-24

Similar Documents

Publication Publication Date Title
US1379731A (en) Manufacture of hydrobromic acid
Naito et al. The chemical behavior of low valence sulfur compounds. V. Decomposition and oxidation of tetrathionate in aqueous ammonia solution
US2419019A (en) Continuous process for oxidizing carbohydrates to tartaric acid
US1931441A (en) Production of hydrocyanic acid
US2312468A (en) Production of succinic acid
Takizawa et al. The chemical behavior of low valence sulfur compounds. VIII. the oxidation of sodium thiosulfate with ozone
US1063007A (en) Production of ammonium sulfate.
DE3221795A1 (en) Process for the continuous elimination of formaldehyde from a gas stream
US3227513A (en) Process for separation of cobalt from nickel
US1812542A (en) Catalytic process for the preparation of vinyl chloride
US1914425A (en) Process of dehydrating fluorine compounds
US1618504A (en) Process of making dicyandiamid
US1183316A (en) Method of making metallic arsenates.
Harrison et al. The reduction potential of cysteine
US2355702A (en) Removal of nitrogen oxides from sulphuric acid
US2883376A (en) Process of manufacturing nitrostarch
DE528968C (en) Process for the production of hydrogen cyanide by oxidation of rhodanammonium with nitric acid
US1798533A (en) Process for the manufacture of nitrates
SU106874A1 (en) The method of obtaining highly concentrated anhydrous calcium chlorate
US1975682A (en) Process for manufacturing an explosive substance containing ammonium nitrate
US3360336A (en) Manufacture of nitrous oxide
Jones CXLVIII.—The interaction between hydrogen cyanide and aldehydes and ketones in dilute solution
US1957268A (en) Manufacture of sulphate of ammonia
US1760137A (en) Process for the production of sodium thiosulphate
US2589684A (en) Recovery of so2