US1925116A - Differential graphitization of cast articles - Google Patents

Differential graphitization of cast articles Download PDF

Info

Publication number
US1925116A
US1925116A US363160A US36316029A US1925116A US 1925116 A US1925116 A US 1925116A US 363160 A US363160 A US 363160A US 36316029 A US36316029 A US 36316029A US 1925116 A US1925116 A US 1925116A
Authority
US
United States
Prior art keywords
temperature
tappets
stems
graphitization
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US363160A
Inventor
Hubert L Spence
Harry A Schwartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Malleable and Steel Castings Co
Original Assignee
National Malleable and Steel Castings Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Malleable and Steel Castings Co filed Critical National Malleable and Steel Castings Co
Priority to US363160A priority Critical patent/US1925116A/en
Application granted granted Critical
Publication of US1925116A publication Critical patent/US1925116A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/902Metal treatment having portions of differing metallurgical properties or characteristics

Definitions

  • An object of our invention is to prepare a cast article, one portion of which is of hard or substantially ungraphitized iron and another portion of which is of graphitized iron, and readily machinable. We accomplish this by subjecting the cast article to our novel procedure of controlling the degree of graphitization in each such portion. Another object is to produce an article having diiTerent degrees of machinability or hardness, which hardness may vary gradually throughout the length of the article. A further object is to decrease the time required to produce such articles. Other objects will become apparent.
  • valve tappets having heads which are of hard or substantially white iron and having stems of iron which is readily machinable. It is not intended, however, to restrict the use of our invention to the production of these articles, it being applicable wherever a differential hardness or machinability is desired.
  • Figure 1 represents a sectional view of a partition supporting a number of valve tappets.
  • Figure 2 represents a cross-sectional view of 40 the electric furnace
  • Figure 3 represents a cross-sectional view of a quenching tank.
  • valve tappets (A) of iron containing carbon, silicon, phosphorous and sulphur in the proportions normally found in white iron used for making malleable iron castings, are removed from their molds and allowed to cool to a temperature below the critical temperature of the cast iron. They are then supported upon a plate (B) of asbestos or other poor heat conducting material, with their stems extending through the plate. The stems of the valve tappets are then subjected to heat by placing the plate (B) in a suitable heating furnace such as the electric furnace (C) The the. coils (H) plate (B) may be supported by brackets (D) and (E) and the lower portion of the furnace may be heated by the heating element (F).
  • a suitable heating furnace such as the electric furnace (C)
  • the the. coils (H) plate (B) may be supported by brackets (D) and (E) and the lower portion of the furnace may be heated by the heating element (F).
  • the temperature in the furnace (C) is so controlled that the stems of the tappets may be uniformly heat- 0 ed to a temperature well above the critical (A1) temperature (for example to 900-1000" 0.).
  • the asbestos plate (B) will protect the heads of the tappets which should not be heated to a temperature substantially above 750 C.
  • the plate (B) is removed from the furnace (C) and the stems only are subjected to a quenching or cooling action such as that described in Patent 7 No. 1,688,438 granted to Harry A. Schwartz October 23, 1928. This may be accomplished by placing the plate (B) in a quenching tank (G),
  • a suitable quenching liquid such as oil or water.
  • the temperature of the quenching liquid may be controlled by circulating a cooling liquid through The temperature of this bath should be maintained at such a value that the tappet stems will cool rapidly.
  • the rate of cool- 30 ing of the stems may be approximately 5 C. per second or faster, while the heads of the tappets, being insulated from the cooling liquid, will cool much more slowly.
  • the plate (B) may be inserted in an an nealing furnace in which the stems are subjected to a suitable graphitizing temperature, preferably above the critical temperature. This elevated temperature should be maintained from two to four hours, or a suificient time to decompose cementite and graphitize the iron to produce the desired degree of machinability.
  • the plate is then removed and the tappets may be emptied into quicklime, sil-o-cell (powdered infusorial diatom'aceous earth), sand, or other material wherein cooling at a moderate rate may be effected.
  • the rate of cooling may be appropriately varied to produce the degree of hardness which is desired.
  • the stems of the tappets may be subjected to further heat, as in an electric furnace or a lead bath, the temperature being maintained as high as possible but below A1 critical temperature, or substantially at 700 C.
  • the tappets may be allowed to re main at this elevated temperature for a sufficient time to produce the degree of softening which is required. This may vary from a few hours to 0 obtain a slight increase in softening, to about fifteen hours for the maximum softening.
  • the tappets are then removed and allowed to cool.
  • the time required to graphitize the portion subjected to prequenching will be substantially shortened, with the result that the stems of the tappets will be suitably graphitized during the shortened period in the annealing furnace.
  • the heads of the tappets having been insulated during the heating and cooling periods, will remain hard or substantially ungraphitized, while the stems will be readily machinable. Even though there may be some conduction of heat from the stems to the heads of the valve tappets, this should not be sumcient to heat the heads above the critical temperature before quenching or to cool them through the critical temperature at a rate sufficiently high to substantially shorten the period required for graphitizing.
  • the rate of cooling in the pre-quenching bath the time required to graphitize the stems may be varied, i. e., by increasing the rate of cooling, the period required for graphitizing will be shortened.
  • the stems only of the hot cast tappets may be subjected, while both stems and heads are still above the critical temperature, to the pre-quenching bath, and the entire tappet may be subsequently subjected to the graphitizing and subsequent steps.
  • the acceleration of the graphitizing step will not be applied to the head of the tappet since the latter is not subjected to pre-quenching.
  • the elevated temperature will not be maintained a suflicient length of time to accomplish the graphitize.- tion of that portion of the casting which was not subjected to the rapid precooling.
  • the cast tappets may be allowed to cool to below the critical temperature and the stems only may then be heated to a temperature above the critical temperature. The entire tappets may then be subjected to the rapid precooling and the subsequent graphitizing steps.
  • the heads of the tappets were not rapidly cooled through the critical temperature, there will be no substantial acceleration of the decomposition of the cementite in the heads of the tappets and no resultant shortening of the period required for graphitization.
  • the time required to graphitize the stem portions of the tappets, which have been rapidly cooled through the critical temperature
  • the castings may, if desired, be rapidly cooled by quenching at the end of the high temperature graphitization.
  • a quenching has the'beneficial result of increasing the rate of decomposition of the remaining combined carbon when the castings so quenched are again heated to a temperature distinctly below the critical point and are h 'e1d-for a time at that tem-.
  • the graphitizing step may also be carried on entirely at an elevated temperature below the critical point, and the pre-quenching to which the article has been subjected will shorten the time required for such graphitizing.
  • the product of such an operation is superior in ductility to the usual malleable iron castings.
  • An integrally cast valve tappet having a head of white iron and a stem of malleable cast iron.
  • valve tappets comprising cooling the, stem of a valve tappet containing the elements normally present in malleable iron castings, from a temperature above its critical temperature to a temperature below said critical temperature and subsequently graphitizing the stem of the valve tappet.

Description

Sept. 5, 1933. H. L. SPENCE ET AL 1,925,116
DIFFERENTIAL GRAPHITIZATION OF CAST ARTICLES Filed May 15, 1929 mmmmzmmm A 0 fl' 7mm I I p i? g .D E g T4 g 44 p n y INVENTORS Hl/Bf/FT L. SPE/W'E BY HARRY A. SCHWARTZ ATToRNEa Patented Sept. 5, 1933 DIFFERENTIAL GRAPHITIZATION OF CAST ARTICLES Hubcrt *L; ,Sp ence, East Cleveland, and Harry A. Schwarti, Cleveland Heights, Ohio, assignors to National Malleable and Steel Castings Company, Cleveland, Ohio, a corporation of Ohio Application May 15, 1929. Serial No. 363,160 2 Claims. (Cl. 148-4) another portion, the head, must be extremely 1 hard and wear-resistant. An object of our invention is to prepare a cast article, one portion of which is of hard or substantially ungraphitized iron and another portion of which is of graphitized iron, and readily machinable. We accomplish this by subjecting the cast article to our novel procedure of controlling the degree of graphitization in each such portion. Another object is to produce an article having diiTerent degrees of machinability or hardness, which hardness may vary gradually throughout the length of the article. A further object is to decrease the time required to produce such articles. Other objects will become apparent.
In describing our invention reference will be made particularly to its application to the production of valve tappets having heads which are of hard or substantially white iron and having stems of iron which is readily machinable. It is not intended, however, to restrict the use of our invention to the production of these articles, it being applicable wherever a differential hardness or machinability is desired.
In describing our invention, reference will be made to the diagrammatical drawing, in which:
Figure 1 represents a sectional view of a partition supporting a number of valve tappets.
Figure 2 represents a cross-sectional view of 40 the electric furnace, and
Figure 3 represents a cross-sectional view of a quenching tank.
To illustrate an application of our process, the valve tappets (A), of iron containing carbon, silicon, phosphorous and sulphur in the proportions normally found in white iron used for making malleable iron castings, are removed from their molds and allowed to cool to a temperature below the critical temperature of the cast iron. They are then supported upon a plate (B) of asbestos or other poor heat conducting material, with their stems extending through the plate. The stems of the valve tappets are then subjected to heat by placing the plate (B) in a suitable heating furnace such as the electric furnace (C) The the. coils (H) plate (B) may be supported by brackets (D) and (E) and the lower portion of the furnace may be heated by the heating element (F). The temperature in the furnace (C) is so controlled that the stems of the tappets may be uniformly heat- 0 ed to a temperature well above the critical (A1) temperature (for example to 900-1000" 0.). The asbestos plate (B) will protect the heads of the tappets which should not be heated to a temperature substantially above 750 C.
When thestems of the tappets have been uniformly heated to the desired temperature, the plate (B) is removed from the furnace (C) and the stems only are subjected to a quenching or cooling action such as that described in Patent 7 No. 1,688,438 granted to Harry A. Schwartz October 23, 1928. This may be accomplished by placing the plate (B) in a quenching tank (G),
'filled to the bottom surface of the plate (B) with a suitable quenching liquid, suchas oil or water. The temperature of the quenching liquid may be controlled by circulating a cooling liquid through The temperature of this bath should be maintained at such a value that the tappet stems will cool rapidly. The rate of cool- 30 ing of the stems may be approximately 5 C. per second or faster, while the heads of the tappets, being insulated from the cooling liquid, will cool much more slowly.
After the tappet stems have been rapidly cooled to substantially below the critical (A1) temperature, the plate (B) may be inserted in an an nealing furnace in which the stems are subjected to a suitable graphitizing temperature, preferably above the critical temperature. This elevated temperature should be maintained from two to four hours, or a suificient time to decompose cementite and graphitize the iron to produce the desired degree of machinability.
The plate is then removed and the tappets may be emptied into quicklime, sil-o-cell (powdered infusorial diatom'aceous earth), sand, or other material wherein cooling at a moderate rate may be effected. The rate of cooling may be appropriately varied to produce the degree of hardness which is desired.
If still greater softness is desired, the stems of the tappets may be subjected to further heat, as in an electric furnace or a lead bath, the temperature being maintained as high as possible but below A1 critical temperature, or substantially at 700 C. The tappets may be allowed to re main at this elevated temperature for a sufficient time to produce the degree of softening which is required. This may vary from a few hours to 0 obtain a slight increase in softening, to about fifteen hours for the maximum softening. The tappets are then removed and allowed to cool.
In following the process described, the time required to graphitize the portion subjected to prequenching will be substantially shortened, with the result that the stems of the tappets will be suitably graphitized during the shortened period in the annealing furnace. The heads of the tappets, having been insulated during the heating and cooling periods, will remain hard or substantially ungraphitized, while the stems will be readily machinable. Even though there may be some conduction of heat from the stems to the heads of the valve tappets, this should not be sumcient to heat the heads above the critical temperature before quenching or to cool them through the critical temperature at a rate sufficiently high to substantially shorten the period required for graphitizing. By varying the rate of cooling in the pre-quenching bath the time required to graphitize the stems may be varied, i. e., by increasing the rate of cooling, the period required for graphitizing will be shortened.
Although we have described the process as applied to an apparatus in which the heads are insulated throughout the entire process from the heat and rapid cooling to which the stems are subjected, it is apparent that many modifications of this procedure may be used. For instance, the stems only of the hot cast tappets may be subjected, while both stems and heads are still above the critical temperature, to the pre-quenching bath, and the entire tappet may be subsequently subjected to the graphitizing and subsequent steps. By following this modiflcation the acceleration of the graphitizing step will not be applied to the head of the tappet since the latter is not subjected to pre-quenching. In the subsequent graphitizing step the elevated temperature will not be maintained a suflicient length of time to accomplish the graphitize.- tion of that portion of the casting which was not subjected to the rapid precooling.
By another modification the cast tappets may be allowed to cool to below the critical temperature and the stems only may then be heated to a temperature above the critical temperature. The entire tappets may then be subjected to the rapid precooling and the subsequent graphitizing steps. In this modification, since the heads of the tappets were not rapidly cooled through the critical temperature, there will be no substantial acceleration of the decomposition of the cementite in the heads of the tappets and no resultant shortening of the period required for graphitization. The time required to graphitize the stem portions of the tappets, which have been rapidly cooled through the critical temperature,
will not be suflicient to accomplish a like result in the head portions.
It is apparent that, due to the conduction of heat through the stems of the tappets, there will be some graduation of the differential graphitization. By varying conditions, governing this conduction of heat, such as the rate of temperature change or the insulating medium used, this graduation may be varied to meet the desired conditions.
In addition to quenching before the graphitizing cycle, the castings may, if desired, be rapidly cooled by quenching at the end of the high temperature graphitization. Such a quenching has the'beneficial result of increasing the rate of decomposition of the remaining combined carbon when the castings so quenched are again heated to a temperature distinctly below the critical point and are h 'e1d-for a time at that tem-.
perature.
The graphitizing step may also be carried on entirely at an elevated temperature below the critical point, and the pre-quenching to which the article has been subjected will shorten the time required for such graphitizing. The product of such an operation is superior in ductility to the usual malleable iron castings.
By the reference to graphitization in the description and claims, we refer to the decomposition of the cementite in the iron and the result ant deposition of carbon. This is a process often called annealing in the art of making malleable iron and which, as is well known, is entirely different in chemical principle from the annealing of articles made of other ferrous materials.
An example of another application of our invention is in the manufacture of pug mill blades, where it is necessary to keep the blade itself hard and resistant to abrasive action andwhere the bolt (which must be machined) must necessarily be relatively soft and shock-resistant. Many other applications will be apparent to one skilled in the art and it is not intended to hereby limit the invention to the particular applications described.
Now having described our invention, we claim:
1. An integrally cast valve tappet having a head of white iron and a stem of malleable cast iron.
2. An improvement in the art of making valve tappets, comprising cooling the, stem of a valve tappet containing the elements normally present in malleable iron castings, from a temperature above its critical temperature to a temperature below said critical temperature and subsequently graphitizing the stem of the valve tappet.
HUBERT L. SPENCE. HARRY A. SCHWARTZ.
US363160A 1929-05-15 1929-05-15 Differential graphitization of cast articles Expired - Lifetime US1925116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US363160A US1925116A (en) 1929-05-15 1929-05-15 Differential graphitization of cast articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US363160A US1925116A (en) 1929-05-15 1929-05-15 Differential graphitization of cast articles

Publications (1)

Publication Number Publication Date
US1925116A true US1925116A (en) 1933-09-05

Family

ID=23429064

Family Applications (1)

Application Number Title Priority Date Filing Date
US363160A Expired - Lifetime US1925116A (en) 1929-05-15 1929-05-15 Differential graphitization of cast articles

Country Status (1)

Country Link
US (1) US1925116A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547229A (en) * 1984-05-07 1985-10-15 Eaton Corporation Solution heat treating of engine poppet valves
WO1986000214A1 (en) * 1984-06-27 1986-01-16 Berger Robert P Prosthesis handling system
US4682011A (en) * 1983-04-15 1987-07-21 Degussa Aktiengesellschaft Furnace for the partial heat treatment of work tools
US4728374A (en) * 1984-05-07 1988-03-01 Eaton Corporation Solution heat treated engine poppet valves
EP0269245A1 (en) * 1986-10-27 1988-06-01 Eaton Corporation Solution heat treatment of engine poppet valves
US4911415A (en) * 1987-08-06 1990-03-27 Degussa Aktiengesellschaft Holder for the partial heat treatment of tools in furnaces
US4921549A (en) * 1984-03-19 1990-05-01 Inco Alloys International, Inc. Promoting directional grain growth in objects

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682011A (en) * 1983-04-15 1987-07-21 Degussa Aktiengesellschaft Furnace for the partial heat treatment of work tools
US4921549A (en) * 1984-03-19 1990-05-01 Inco Alloys International, Inc. Promoting directional grain growth in objects
US4547229A (en) * 1984-05-07 1985-10-15 Eaton Corporation Solution heat treating of engine poppet valves
US4728374A (en) * 1984-05-07 1988-03-01 Eaton Corporation Solution heat treated engine poppet valves
WO1986000214A1 (en) * 1984-06-27 1986-01-16 Berger Robert P Prosthesis handling system
EP0269245A1 (en) * 1986-10-27 1988-06-01 Eaton Corporation Solution heat treatment of engine poppet valves
US4911415A (en) * 1987-08-06 1990-03-27 Degussa Aktiengesellschaft Holder for the partial heat treatment of tools in furnaces

Similar Documents

Publication Publication Date Title
US1925116A (en) Differential graphitization of cast articles
US2311846A (en) Tempering glass
US2032694A (en) Method for hardening metals
US1801742A (en) Process for graphitizing castings of white cast iron
US1688438A (en) Making malleable-iron castings
US1871544A (en) Cast iron article and method of manufacturing thereof
US2289138A (en) Method of hardening steel
US2087346A (en) Method of producing steel rails
US2279716A (en) Rail treatment
US2646375A (en) Process for hardening alloy gray cast iron
US1830630A (en) Method of making malleable iron
US2493339A (en) Heat-treatment of cast iron
US2154947A (en) Hardening of metal surfaces
US1871545A (en) Method of manufacturing cast iron, and cast iron articles
US1466649A (en) Method of treating manganese-steel castings
US2764515A (en) Method of spheroidizing steel stock
US2563672A (en) Machinability of quench-hardened alloy steels containing retained austenite
US2219320A (en) Heat treating process for white cast iron
US2290546A (en) Apparatus for heat treating steel stamp blanks
US1724031A (en) Method of heat-treating bars
US2321806A (en) Process of heat treating
US1520911A (en) Preheating recuperative furnace
US1905721A (en) Stainless iron and method of producing the same
US2376454A (en) Spheroidizing s. a. e. 2300 series steels
JPH0568523B2 (en)