US1899501A - Cable for communication circuits - Google Patents
Cable for communication circuits Download PDFInfo
- Publication number
- US1899501A US1899501A US464303A US46430330A US1899501A US 1899501 A US1899501 A US 1899501A US 464303 A US464303 A US 464303A US 46430330 A US46430330 A US 46430330A US 1899501 A US1899501 A US 1899501A
- Authority
- US
- United States
- Prior art keywords
- permeability
- conductor
- layers
- constant
- cable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000035699 permeability Effects 0.000 description 31
- 239000000463 material Substances 0.000 description 21
- 239000004020 conductor Substances 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000000843 powder Substances 0.000 description 8
- 238000004804 winding Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/02—Cables with twisted pairs or quads
- H01B11/12—Arrangements for exhibiting specific transmission characteristics
- H01B11/14—Continuously inductively loaded cables, e.g. Krarup cables
Definitions
- My invention relates to cables for communication circuits, hereafter called communication cables; and particularly to cables of this kind, in which the inductance is uniformly distributed.
- the individual conductors of the cable are, as is known, covered all along withone or more layers of wires, bands, or the like, of magnetic material.
- the kinds of iron hitherto available possess only a relatively small permeability and have hi h iron losses, it was only possible to obtain a imited increase in inductance and, therefore, only a limited reduction in the dampin in cables of that kind. It was, consequenti y, hitherto not possible to employ that kind of cable for bridging distances considerably over 200 kilometres.
- the conductorsare In order to be able to employ communication cables with uniformly distributed inductance for very long distances, the conductorsare, according to the invention, covered with several magnetic layers in such a manner that the permeability of the covering is as high as possible and at the same time as constant as possible at difi'erent current intensities.
- the rmeability of a material being generally a l the more constant the lower the permeability, and being all the less constant the higher the permeability, magnetic layers having a high constancy at a low permeabi ity, are, according to experience, arranged close to the conductor, where the magnetizing forces are the strongest, whilst further away, where the magnetizing forces are weaker, layers are placed, the permeability of which is lessconstant but very high.
- the latter layers may in. known manner be wound with a larger pitch so that air spaces are left between the Individual windings. By doing so, the permeability is, however, somewhat reduced. It is also possible to apply the inner layers of lesser permeability in the form of powder, and to employ wires or bands for the outer layers of high permeability. In many cases,
- FIG. 1 representing a cable portion having an inner winding of material of low, but constant permeability, and an outer winding of less constant but high permeability
- Fig. 2 representing a. cable portion having an inner layer of powder of low, but constant permeability and an outer ribbon winding of less constant but high'permeability
- Fig. 3 representing a cable portion similar to Fig. 2, excepting the provision of a very close outer wire windin
- Fig. 1, 2 is a conductor of a cable. upon which a closely wound winding 3, consisting of a material having a "cry constant but rather low permeability is placed, over which a winding 4. consisting of a band of material, having a high magnetic permeability of less constancy, is wound as an open spiral.
- Fig. 2 the uniformly distributed high inductivity is attained by surrounding the conductor 12 first with a material 13 of low but constant permeability in powder form.
- the manner of applying the coating of pow-' der may be for instance that suggested in the U. S. Patent 1,672,979 of June 12, 1928. Upon this coating is then wound a wide ribbon material 14 of less constant but high permeability.
- the powder coating-23 immediately surrounding conductor 22 may be the same as in Fig. 2, but the outer layer consists in this case of a wire of less constant but high'permeability wound very closely.
- a conductor for communication cables with uniformly distributed inductance having magnetiza le material placed upon it in at least two layers.
- the inner layer consisting of magnetizable material of low but constant permeability
- a conductor for communication cables with uniformly distributed inductance having magnetizable material placed upon it in at least two layers, the inner layerconsisting of magnetizable material of low but constant permeability and being applied in the form of powder, the outer layer consisting of magnet zable material of high but less constant permeabilit wound upon the powder layer.
- a conductor for communication cables with uniformly distributed inductance having magnetizable material placed upon it in at least two layers, the inner layer consisting of magnetizable material of low but constant permeability and being applied in the form of powder, the outer layer consist ng of magnetizable ribbon material of high but less constant permeability wound upon the powder layer.
- a conductor for communication cables with uniformly distributed inductance having magnetizable material placed upon it in at least two layers, the inner layer consisting of magnetizable wire material of low but constant permeability wound upon the conductor, the outer layer consisting of magnetizable ribbon material of high but less concation cables having at least two la ers of magnetizable material placed upon t e conductor, said layers having opposite magnetic characteristics with respect to constancy and degree of permeability, to complement one another in said characteristics, whereby a conductor inductance uniformly distributed over great distances is produced.
- a conductor for communication cables with uniformly distributed inductance having magnetizable material placed upon it in at least two layers, the inner layer consisting of iron wire closely wound upon the conductor. the outer layer consisting of a ribbon of a highly permeable alloy wound upon the wire layer in an open spiral.
- a conductor for long distance communication cables having' a plurality of layers of magnetizable material placed upon the conductor. successive layers having 'opposite magnetic characteristics with respect to constancy and degree of permeability, to complement one another in said characteristics, whereby a conductor in'ductance uniformly diatributed yer great distances is produced.
Landscapes
- Soft Magnetic Materials (AREA)
- Coils Or Transformers For Communication (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE357657T | 1929-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
US1899501A true US1899501A (en) | 1933-02-28 |
Family
ID=31895317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US464303A Expired - Lifetime US1899501A (en) | 1929-07-05 | 1930-06-27 | Cable for communication circuits |
Country Status (4)
Country | Link |
---|---|
US (1) | US1899501A (enrdf_load_stackoverflow) |
BE (1) | BE371462A (enrdf_load_stackoverflow) |
FR (1) | FR698068A (enrdf_load_stackoverflow) |
GB (1) | GB357657A (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2507358A (en) * | 1945-08-31 | 1950-05-09 | Gen Electric | Delay transmission line |
US3219951A (en) * | 1963-05-03 | 1965-11-23 | Don B Clark | Interference attenuating power conductor utilizing intensified skin effect to attenuate high frequencies |
-
0
- BE BE371462D patent/BE371462A/xx unknown
-
1930
- 1930-06-26 FR FR698068D patent/FR698068A/fr not_active Expired
- 1930-06-27 US US464303A patent/US1899501A/en not_active Expired - Lifetime
- 1930-07-01 GB GB20008/30A patent/GB357657A/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2507358A (en) * | 1945-08-31 | 1950-05-09 | Gen Electric | Delay transmission line |
US3219951A (en) * | 1963-05-03 | 1965-11-23 | Don B Clark | Interference attenuating power conductor utilizing intensified skin effect to attenuate high frequencies |
Also Published As
Publication number | Publication date |
---|---|
BE371462A (enrdf_load_stackoverflow) | |
FR698068A (fr) | 1931-01-27 |
GB357657A (enrdf_load_stackoverflow) | 1931-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4383225A (en) | Cables with high immunity to electro-magnetic pulses (EMP) | |
GB1473239A (en) | Electrical conductors | |
US1672979A (en) | Loaded conductor | |
US4227166A (en) | Reactor | |
US2319744A (en) | Shielding for communication circuits | |
US1899501A (en) | Cable for communication circuits | |
Legg et al. | Compressed powdered molybdenum permalloy for high-quality inductance coils | |
US1606777A (en) | Inductance device | |
US1504882A (en) | Method and apparatus for transmitting signals | |
CA1094179A (en) | Low volume sheet-wound transformer coils with uniform temperature distribution | |
US1307995A (en) | Mghtsotg-arresteb | |
US2041147A (en) | Signaling system | |
US1586884A (en) | Magnetic material | |
US2277775A (en) | Inductance device | |
US2130508A (en) | Inductance device | |
US1624560A (en) | Inductance coil and method of manufacturing the same | |
US1647738A (en) | Insulation of magnetic material | |
US1624630A (en) | shackelton | |
US1982784A (en) | Submarine cable | |
GB2020476A (en) | An electrical conductor having a continuous inductive loading and a method of making such a conductor | |
US1715647A (en) | Magnetic material | |
US1251700A (en) | Shield for magnetic coils. | |
US1832455A (en) | Submarine signaling conductor | |
US1880764A (en) | Submarine signaling cable | |
US1792756A (en) | Modulation system |