US1892789A - Hot extrusion method - Google Patents

Hot extrusion method Download PDF

Info

Publication number
US1892789A
US1892789A US565709A US56570931A US1892789A US 1892789 A US1892789 A US 1892789A US 565709 A US565709 A US 565709A US 56570931 A US56570931 A US 56570931A US 1892789 A US1892789 A US 1892789A
Authority
US
United States
Prior art keywords
billet
speed
extruding
crank
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US565709A
Inventor
Singer Fritz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US1892789A publication Critical patent/US1892789A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • B21C23/211Press driving devices

Definitions

  • the hot extrusion process sometimes known as the Dick process, has been known for many years,-and was carried on, untll recently, by the use of hydraulic presses.
  • Tubes of very small Wall thickness, and solid shapes of very small cross section could be produced direct by the cold extrusion process, sometimes known as the Lee and Hooker process, but such process was only available for metals of high ductility and was capable of producing articles of only very short lengths.
  • the Lee and Hooker process sometimes known as the Lee and Hooker process
  • Fig. 1 is a sectional elevation of an extrusion press
  • Fig. 2 is a dia gram showing successive positions of the extruding lunger at successive equal intervals of time quarter seconds), and the pressures exerted by the plunger at such positions.
  • crank press of the character disclosed by my prior Patent 1,773,464, in which the actual extruding operation is conducted during the second quadrant of the crank cycle, but the method may be practiced with crank presses of other characters, for instance, such as that disclosed by another of my patents, No. 1,839,421, in which practically the whole stroke of the crank press is employed in the extruding operation. Also presses other than crank presses can be employed,for instance,
  • hydraulic resses providing that they are constructed to permit of the required pressing speed and pressure force.
  • the particular form of press shown in the drawings comprises a frame 1 carrying, at the lower part thereof, a fixed table 2 formed with a central bore 3 to accommodate the extruded article.
  • a billet container 4 carrying, at its lower end, the matrix die 5.
  • a suitably driven crank shaft 6 In the upper part of the press frame is mounted a suitably driven crank shaft 6, upon which is a crank 7.
  • a pitman 9 is connected at one end to the crank and at the other end to a mandrel-carrier 11 to which is secured a downwardly extending mandrel 12.
  • the mandrel-carrier takes the form of a piston slidably mounted in a plunger-carrier 13 from which a hollow plunger 14, adapted to contain the mandrel 12, extends downwardly.
  • Relative movement between the mandrel-carrier and the plunger-carrier is limited, at the lower end, by the bottom wall 13 of the plunger-carrier, and at the upper end, by a ring 16 secured to the plunger-carrier adjacent the top thereof.
  • a billet, designated a, is placed in the container 4 and the press set in operation.
  • the plunger-carrier and mandrel-carrier will descend together until the plunger contacts with the top of the billet, whereafter the mandrel-carrier will doscend alone, the mandrel passing through the plunger and piercing the billet so as to drive out therefrom a small plug, which plug is designated 1) on the drawings.
  • plug which plug is designated 1) on the drawings.
  • the billet prior to being inserted into the container 4, is heated to 1270 C.
  • the press which has a crank stroke of 43.3", is rotated at 6.2 revolutions per minute.
  • the diameter of the billet, before piercing by the mandrel, is 3.94 and its height 8.65". After piercing, the billet diameter is 4.05" and its height 9.05.
  • Extrusion begins in the second quadrant of the crank cycle, at about 56 before the lower deadcenter of the crank, which, at the given crank s eed, means that the extrusion will be con noted in 1.5 seconds, or, with the billet height of 8.65", at an average speed of about 6" per second.
  • the pressure exercised by the plunger at the various stages of theextrusion will be understood from the pressure and speed diagram constitutin Fig. 2.
  • the billet, a is divi ed into six planes, the distances (l -a between which represent the movements of the plunger during successive periods of second each.
  • Placed opposite the diagram of the billet is a curve, 0, showing the pressure exercised b at each of the six stages of its escent.
  • the method of producing by hot extrusion solid and hollow articles from metals and alloys requiring to be extruded at high temperatures comprising the steps of placing in a container a billet of such metal the length of which is from 'two to two and one-half times its diameter and applying pressure thereto by means of an extruding tool moving at an average speed in excess of five inches per second, thereby to extrude the metal of the billetfrom the container at an average speed in excess of five inches of billet length per second.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)

Description

of the extruding tools.
Patented Jan.3,1933
' UNITED STATES FRITZ SINGER, OF NUBEMBEBG, GERMANY HOT EX'IRUSION METHOD REISSUED Application filed September 28, 1981, Serial No. 565,709, and in Germany'ltay 81, 1928.
cially practicable way.
The hot extrusion process, sometimes known as the Dick process, has been known for many years,-and was carried on, untll recently, by the use of hydraulic presses.
These hydraulic presses operate at a low extruding speed, one-half inch of billet length per second having heretofore been considered a high speed for such a press. As thus practiced, the process was capable of producing tubes and solid shapes, but only under str1ct limitations with regard to the hardness of the metal and the cross sectional area of the extruded product. It was discovered that by increasing the extruding speed up to that speed which was given by the use of mechanical, as distinguished from hydraulic, presses,-being a speed of between 3 and 5 inches of billet length per second,-the scope of the process was greatly enlarged so as to 0 mak it possible, for instance, to extrude not only iron but even alloy steels especially resistant in the hot state, such as the stainless nickel-chromiumdron alloys, etc.
By the carrying on of the hot extrusion process at a billet-extruding speed of between 3 and 5 inches per second, such as is obtained from the use of known mechanical presses, it is possible to produce practicably, from brass containing 63% of copper, tubes of a wall thickness as low as about .03 inch,
and, from steel, tubes of a wall thickness of as low as about .08 inches. Tubes of even smaller wall thicknesses could be produced, but only at the sacrifice of great wear and tear Thus economical considerations imposed a limit, depending upon the metal being employed, as to the smallness of the cross sectional area of the extruded artictle which could be practicably obtained. As a result, when it was desired to produce tubes of exceptionally small wall thickness, or solid shapes of exceptionally small cross sectional area, it"became necessary first to produce the articles in a larger cross sectional area and then reduce them, as by the well known drawing process, or the like. Tubes of very small Wall thickness, and solid shapes of very small cross section, could be produced direct by the cold extrusion process, sometimes known as the Lee and Hooker process, but such process was only available for metals of high ductility and was capable of producing articles of only very short lengths. Thus, so far as I am aware, it has not been possible to produce, by a single extruding step, articles of substantial length and having an exceedingly small wall thickness or cross sectional area from such metals as copper, brass, iron, steel, etc.
The obstacle to producing articles of small cross sectional area in the carrying on of the hot extrusion process at the speeds obtained by the use of mechanical press, i. e., from about 3 to 5 inches per second,- was the wear and tear to which the tools were subjected, which wear and tear exceeded the limits possible in economical production. The expectation of those skilled in the art was that any increase of this extruding speed would still further increase this wear and tear of the tools. From the pressure and speed diagram of a crank actuated press it is seen that an increase of the pressing speed causes an increase of the pressure force. With a crank press operating at its normal speed of from 3 to 5 inches per second the tools are subjected to extremely high pressures, up to 100,000 pounds per square inch and more. Considering this, and that the extrusion of iron is executed at tempertures up to 1450 C. and that the tools consequently must be considerably heated, it seemed entirely hopeless to increase the extruding speed and thereby to increase materially the already high pressure upon the surface of the billet. All
reasonable considerations indicated that if p this were tried, in the attempt to extrude articles of exceptionally small cross sectional area, a still further increased wear and tear' of the tools would be the only result.
I have discovered, however, and therein my invention consists, that, contrary to all expectation, an increase of the billet extruding speed beyond that of the known mechanical presses adapted for this work permits articles of exceedingly small wall thicknesses or cross-sectional area to be extruded smoothly, and without the tools bein subjected to the excessive wear and tear w ich occurs in extruding such articles at the normal speed of mechanical presses,i. e., from 3 to 5 inches of billet length per second. I have found that this increased extruding speed is available for billets the height of which is from 2 to 2% times their diameter.
. A possible explanation of this phenomenon may e that, though any considerable increase of the extruding speed would necessarily be followed by an increase of the pressure upon the surface of the billet, which would be expected to result in an increase of the resistance of the billet against being extruded, nevertheless the greatly increased speed of the passage of the metal through the restricted die aperture leaves no time for appreciable cooling of the metal at that point. The cooling of the metal at the point of passage through die aperture is a main cause for resistance of the billet against extrusion. Therefore it may be that the reduction of the billet resistance, due to the lessening of 'the opportunity for the metal to cool in the die aperture, more than offsets the increased pressure applied to the surface of the billet because of the increased speed of the extruding tool. In that case there would be less resistance by the billet to extrusion with the high speed of the extruding tool than with the normal speed of from 3 to 5 inches of billet length per second. This would explain the fact that exceptionally small cross-sections can be extruded at the high speed without prohibitory wear and tear of the tools, but not at the normal speed.
As an example, a specific instance of the practice of my improved method is given below, with reference to the accompanying drawings, in which Fig. 1 is a sectional elevation of an extrusion press, and Fig. 2 is a dia gram showing successive positions of the extruding lunger at successive equal intervals of time quarter seconds), and the pressures exerted by the plunger at such positions.
The press shown in the drawing is a crank press of the character disclosed by my prior Patent 1,773,464, in which the actual extruding operation is conducted during the second quadrant of the crank cycle, but the method may be practiced with crank presses of other characters, for instance, such as that disclosed by another of my patents, No. 1,839,421, in which practically the whole stroke of the crank press is employed in the extruding operation. Also presses other than crank presses can be employed,for instance,
hydraulic resses, providing that they are constructed to permit of the required pressing speed and pressure force.
The particular form of press shown in the drawings comprises a frame 1 carrying, at the lower part thereof, a fixed table 2 formed with a central bore 3 to accommodate the extruded article. Upon the table is mounted a billet container 4, carrying, at its lower end, the matrix die 5. In the upper part of the press frame is mounted a suitably driven crank shaft 6, upon which is a crank 7. A pitman 9 is connected at one end to the crank and at the other end to a mandrel-carrier 11 to which is secured a downwardly extending mandrel 12. The mandrel-carrier takes the form of a piston slidably mounted in a plunger-carrier 13 from which a hollow plunger 14, adapted to contain the mandrel 12, extends downwardly. Relative movement between the mandrel-carrier and the plunger-carrier is limited, at the lower end, by the bottom wall 13 of the plunger-carrier, and at the upper end, by a ring 16 secured to the plunger-carrier adjacent the top thereof.
A billet, designated a, is placed in the container 4 and the press set in operation. As the crank 7 revolves, the plunger-carrier and mandrel-carrier will descend together until the plunger contacts with the top of the billet, whereafter the mandrel-carrier will doscend alone, the mandrel passing through the plunger and piercing the billet so as to drive out therefrom a small plug, which plug is designated 1) on the drawings. Durin the piercing of the billet, the latter will swe upwardly somewhat, this being accommodated by the loose connection between the plungercarrier' and mandrel-carrier. When the billet has been pierced, the lower face of the mandrel-carrier will come into engagement with the bottom wall 13' of the plunger-carrier, whereupon the plunger-carrier will be forced downwardly by the crank and the billet extruded.
The following is one example of temperature, speed and pressure, according to which tubes of exceptionally small wall thickness can be extruded. The billet, prior to being inserted into the container 4, is heated to 1270 C. The press, which has a crank stroke of 43.3", is rotated at 6.2 revolutions per minute. The diameter of the billet, before piercing by the mandrel, is 3.94 and its height 8.65". After piercing, the billet diameter is 4.05" and its height 9.05. Extrusion begins in the second quadrant of the crank cycle, at about 56 before the lower deadcenter of the crank, which, at the given crank s eed, means that the extrusion will be con noted in 1.5 seconds, or, with the billet height of 8.65", at an average speed of about 6" per second.
The pressure exercised by the plunger at the various stages of theextrusion will be understood from the pressure and speed diagram constitutin Fig. 2. In this figure, the billet, a, is divi ed into six planes, the distances (l -a between which represent the movements of the plunger during successive periods of second each. Placed opposite the diagram of the billet is a curve, 0, showing the pressure exercised b at each of the six stages of its escent. From the diagram it is to be seen that, upon initiating the flow of the metal the pressure instantaneously rises to about 1,200,000 lbs., that it thereafter decreases to about 900,000 lbs., that it does not vary essentially during thesecond and third stages, a and a of the extrusion, and that it increases gradually in the fourth and fifth stages, and a", and
rapidly during the sixth stage, a, due to the extreme cooling of the extrusion residue towards the end of the extruding operation.
I claim:
The method of producing by hot extrusion solid and hollow articles from metals and alloys requiring to be extruded at high temperatures comprising the steps of placing in a container a billet of such metal the length of which is from 'two to two and one-half times its diameter and applying pressure thereto by means of an extruding tool moving at an average speed in excess of five inches per second, thereby to extrude the metal of the billetfrom the container at an average speed in excess of five inches of billet length per second.
In testimony whereof, I hereunto sign my name.
FRITZ SINGER.
the plunger
US565709A 1929-05-31 1931-09-28 Hot extrusion method Expired - Lifetime US1892789A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1892789X 1929-05-31

Publications (1)

Publication Number Publication Date
US1892789A true US1892789A (en) 1933-01-03

Family

ID=7747959

Family Applications (1)

Application Number Title Priority Date Filing Date
US565709A Expired - Lifetime US1892789A (en) 1929-05-31 1931-09-28 Hot extrusion method

Country Status (1)

Country Link
US (1) US1892789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3144132A (en) * 1950-03-03 1964-08-11 Anglo American Extrusion Compa Production of extruded metal products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3144132A (en) * 1950-03-03 1964-08-11 Anglo American Extrusion Compa Production of extruded metal products

Similar Documents

Publication Publication Date Title
CN104399771A (en) Inner transverse bar extrusion die for cylindrical component
US2810478A (en) Extrusion of hollow bodies
US3835686A (en) Method of manufacturing a steel component having a head part and a hollow shank part
US3406555A (en) Cold forming of articles
Tuncer et al. Precision forging hollow parts in novel dies
US1892789A (en) Hot extrusion method
US3286498A (en) Compressive forming
USRE19474E (en) Hot extrusion method
US1955243A (en) Method of producing seamless tubes by extrusion
PL79953B1 (en)
US3750442A (en) Compressive forming
CN109365560A (en) A kind of rotation backward extrusion apparatus and method preparing Ultra-fine Grained cup shell
RU2168382C1 (en) Method for manufacture of light-alloy pipes
US1480843A (en) Method for the cold spurting of tubes and thin-walled metal pipes of lead, tin, and especially aluminium
US682360A (en) Method of manufacturing tubular bodies.
US1467264A (en) of cincinnati
US3279230A (en) Extrusion apparatus and method
GB1274194A (en) Method of cold forming tubular members with axial passages or channels
US2962164A (en) Metal extrusion
US2334927A (en) Hot extrusion of metal articles
US2812059A (en) Die shaping device
RU2729520C1 (en) Hollow articles stamping method with external flange
US1618446A (en) Method of making cold screw blanks, rivets, and similar headed articles
US2167845A (en) Extrusion process and apparatus
Mohapatra et al. Squared Multi-hole Extrusion Process: Experimentation & Optimization