US1832669A - Self-sealing cap for containers - Google Patents

Self-sealing cap for containers Download PDF

Info

Publication number
US1832669A
US1832669A US481200A US48120030A US1832669A US 1832669 A US1832669 A US 1832669A US 481200 A US481200 A US 481200A US 48120030 A US48120030 A US 48120030A US 1832669 A US1832669 A US 1832669A
Authority
US
United States
Prior art keywords
diaphragm
cap
container
shell
top member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US481200A
Inventor
Adolph A Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US481200A priority Critical patent/US1832669A/en
Application granted granted Critical
Publication of US1832669A publication Critical patent/US1832669A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D41/00Caps, e.g. crown caps or crown seals, i.e. members having parts arranged for engagement with the external periphery of a neck or wall defining a pouring opening or discharge aperture; Protective cap-like covers for closure members, e.g. decorative covers of metal foil or paper
    • B65D41/02Caps or cap-like covers without lines of weakness, tearing strips, tags, or like opening or removal devices
    • B65D41/20Caps or cap-like covers with membranes, e.g. arranged to be pierced

Definitions

  • My new cap is characterized by simplicity of structure and consequent cheapness of manufacture. There are no loose or removable parts, and no rubber gasket is required,
  • Fig. 1 shows a preferred form of my selfsealing cap, this view being in diametric section;
  • Fig. 2 is a sectional View of a container provided with the cap Of g- 5
  • Fig. 8 is a fragmentary view showing the locking ribs on the container of Fig. 2;
  • Fig. 4 illustrates a onepiece cap embodying my invention, this view being partly sectioned for clearness
  • Fig. 5 shows the cap of Fig. 4 in sealing position on a container.
  • the cap structure comprises a top member 10, a cylindrical shell or body portion 12, and an elastic flexible diaphragm or membrane 13.
  • the top member 10 is formed with a cylindrical flange 14 and a peripheral recess 15.
  • the shell 12 has a flange 16 adapted to fit over the flange 14 of top member 10, and the-diaphragm 13 is rigidly clamped between flanges 14 and 16.
  • the diaphragm 13 is placed over the flange 14 of member 10, and the part 12 is then driven home over the flange in a tight frictional fit.
  • the peripheral portion 17 of the diaphragm is bent into the cylindrical space between flanges 14 and 16, which socurely hold the diaphragm in tensioned con dition.
  • the projecting portion 18 of the outer flange 16 is bent over into the peripheral recess 15 of top member 10.
  • the dotted outline 18 in Fig. 1 indicates the normal position of the projecting portion 18 of flange 16.
  • the assembling of parts 10, 12 and 13 of the cap structure may be accomplished by machinery in a single operation.
  • the shell 12 is preferably formed with a shoulder 19,
  • the top member 10 and shell 12 are preferably made of spun sheet metal (35 like aluminum or an aluminum alloy, brass, steel, and others that may be found suitable.
  • cap members 10 and 12 of molded material of the type represented by foremaldehyde condensation 7 products, of which bakelite is probablythe 1 most familiar.
  • the parts 10 and 12 would be molded as a single member and the diaphragm '13 would be embedded at its periphery in the plastic material during the molding operation. This will be understood without additional illustration.
  • the top member 10 protects the thin flexible diaphragm 13 against injury, and the intervening space 10 is sealed, so that no liquid can get into it.
  • the diaphragm 13 is an elastic membrane sufliciently thin to be flexible and placed un-' der tension when the cap is mounted on a container, as T shall presently explain.
  • the diaphragm 13 is preferably made of spring metal, like steel, brass, nickel, phosphor bronze, duralumin, or other aluminum alloy,
  • diaphragm 13 should be I plated or otherwise covered with a suitable substance not aflected by the contents of the receptacle.
  • the diaphragm 13 is a disk of thin steel, it may be plated with chromium. which is impervious to atmospheric conditions and does not contamilou nate foods and liquids.
  • the diaphragm 13 consists of a thin elastic sheet of bakelite or similar material, no special coating will usually be necessary. It will be understood that the foregoing enumeration of materials for diaphra m 13 is not intended as a restriction or limltation of my invention, but is merely for the purpose of illustration.
  • the container 20 in Fig. 2 terminates in an extension 21 of considerably smaller diameter than the body of the container.
  • the top rim 22 thereof engages the diaphragm 13 along a circular line 13 and the outer annular section 13a of the diaphragm is flek'd or pulled down into slightly frusto-conical shape, whereby the central section of the diaphragm is stretched and forced into pressure engagement with the.
  • the rim 22 is sufiiciently smooth to make a fluid-tight the co-operating parts 23 and 24 constitute uii screw-threads or bayonet joints for locking the cap on the container by a rotary movement.
  • the projecting flange 16 of the cap may be roughenedor knurled to afford a firm finger grip in turning the cap on and oii.
  • cap is made of a single piece of sheet material comprising a body portion or shell 25 and a diaphragm or membrane 26, which closes one end of the shell.
  • the most practical way of making this one-piece cap is by spinning or otherwise shaping a sheet of elastic metal into the required form, but I may also mold the cap as a single piece of bakelite. celluloid and similar material.
  • the shell 25 is formed with screwthreads 27 adapted to engage the screwthreaded neck 28 of a suitable container 29, which s shown for illustration as a glass neaaeee jar, such as would be used for preserving fruit and the like.
  • the jar 29 terminates in an extension 30 of reduced diameter.
  • the elastic sealing diaphragm is normally flat (or substantially so) like a stretched membrane, and when the cap is loosened, the flexed diaphragm automatically springs back to normal position.
  • the separate diaphragm 13 is automatically tensioned during the assembling of the parts, while in Figs. 4 and 5 the integral diaphragm 26 receives its normal tension in the spinning or shaping operation. If an' underpressure develops in the container after the cap is in sealing position, the tendency of the stretched diaphragm will be to curve inwardly, as indicated roughly at 26?; in Fig. 5, and the effect of this inward buckling of the diaphragm is to increase the pressure along the contact edge 26'.
  • diaphragm 13 in Fig. 2 It is not necessary that the diaphragm shall actually buckle inwardly, for in some instances there may only be a tendency of the diaphragm to do so, but even such tendency would improve the sealing of the container.
  • the one-piece cap of Figs. 4 and 5 can be made so cheap that it is particularly adapted for household fruit jars and for containers intended to be thrown away after the contents have been re moved.
  • the diaphragms 13 and 26 can be left unplated and a lining of oiled or waxed paper (and the like) interposed between the diaphragm and the rim of the container.
  • I therefore speak of the diaphragm being in pressure contact with the rim ofthe receptacle, I do not necessarily mean a direct contact between the two, but I also include the possibility of an interposed lining.
  • the sealing diaphragm 13 or 26 may vary in size from an inch or so to several inches, and even more than one foot. In fact,the larger the diaphragm, the greater will be its flexibility to establish a fluid-tight oint. The thickness and degree of flexibility of the diaphragm will naturally vary with different materials and in diflerent sizes of cap, and
  • the contact line of the diaphragm, and this groove acts like a seat for the contacting surface of the container rim.
  • a self-sealing cap for containers comprising a cylindrical body member for engagement over the neck of a container, a top member, and an elastic diaphragm held within said body member in spaced relation to said. top member for sealing contact with the edge of the mouth portion of a container when the cap is engaged thereon.
  • a closure for containers comprising a cylindrical shellfor engagement over the neck of the container, a top member attached to said shell and closing one end thereof, and an elastic diaphragm marginally secured within said shell by said top member with the central portions of the top member and the diaphragm disposed in spaced relation, said diaphragm being disposed for engagement with the mouth edge of the container neck when the shell is engaged over the container neck.
  • a closure for containers comprising a hollow body member for engagement over the neck of the container and a top member. an elastic diaphragm Y disposed within said body member with its central portion in spaced relation to said top member and marginally secured between portions of said body member and said top member for engagementwith the mouth edge oi the container neck when the bod member is engaged over the container neck.
  • a closure for containers comprising a cylindrical shell for engagement over the neck of the container, a top member attached to said shell by a circular overlapping joint,-
  • a self-sealing cap comprising a top member provided with a peripheral flange, a cylindrical shell attached to said cap, and an elastic flexible diaphragm rigidly clamped in tensioned condition between said flange and shell, said flange holding the tensioned diaphragm spaced from said top member to permit flexing of the diaphragm when the cap is mounted in sealing position on a container.
  • a self-sealing cap comprising a top member provided with a peripheral flange
  • a self-sealing cap comprising a top member provided with an integral cylindrical flange at the periphery. the top of said flange being sunk relatively to the main portion of said top member to provide an annular recess, a cylindrical shell driven over said flange in a tight frictional fit, the outer peripheral edge of said shell being bent over into said annular recess, and an elastic flexible diaphragm rigidly clamped between said shell and flange, whereby said three parts are permanently connected to form a unitary cap structure in which said diaphragm is adapted to be tcnsioned and flexed into sealing contact with a container.
  • a container inclusive of a neck or body portion and a mouth portion of less diameter than said neck or body portion forming an upward continuation of the latter
  • a closure inclusive or" a cylindrical portion to fit over the neck or body portion of said container, a flexible and elastic diaphragm carried by said cylindrical portion for sealing contact with the edge of the mouth portion of the container, and means for drawing the closure downward over the body portion of the container thereby to draw the diaphragm into sealing contact with the mouth edge of the container and to radially tension the diaphragm.
  • a self-sealing closure for containers comprising an elastic membrane adapted to he engaged against the edge of the mouth of the container, said membrane being of greater diameter than the mouth edge of the contairer and being formed of material sulficiently thin and elastic to be marginally flexed downward outwardly of its circular line of contact with the mouth edge of the container and to thereby have its central portion tensioned thus to form a tight seal of the membrane against the mouth edge of the container, and means for marginally drawing the membrane downward and for radially tensioning the same when the membrane is engaged against the mouth edge of the container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Closures For Containers (AREA)

Description

Nov..17, 1931. A. A. THOMAS 1,832,669
SELF SEALING CAP FOR CONTAINERS Filed Sept. 11, 1930 2 Sheets-Sheet 1 I8 /0' 5 18: r r r 16 7 '1 I I /9 /2 1 I /3 /4 Nov. 17, 1931. A. A. THOMAS 1,832,669
SELF SEALING CAP FOR CONTAINERS Filed Sept. 11. 1930 2 Sheets-Sheet 2 gnvanfoz Patented Nov. 1% 19% ADOLJPH A. THOMAS, OF NEW YORK, N. Y.
SELF-SEALING GAP FOR GOZNTAKNERE: I
Application filed September 11, 1930. Serial No. 481,200.
flexible diaphragm or membrane which is automatically tensioned and forced lnto pres-' sure contact with the top rim of the receptacle when the cap is tightened. This pressure contact between the receptacle and the tensioned flexible diaphragm of the cap produces a sealed joint.
My new cap is characterized by simplicity of structure and consequent cheapness of manufacture. There are no loose or removable parts, and no rubber gasket is required,
as in prior caps. The practical advantages and novel features of my invention will be apparent from a description of the accom- 29 panying drawings, in which Fig. 1 shows a preferred form of my selfsealing cap, this view being in diametric section;
Fig. 2 is a sectional View of a container provided with the cap Of g- 5 Fig. 8 is a fragmentary view showing the locking ribs on the container of Fig. 2;
Fig. 4 illustrates a onepiece cap embodying my invention, this view being partly sectioned for clearness; and
Fig. 5 shows the cap of Fig. 4 in sealing position on a container.
Referring to Figs. 1 and 2, the cap structure comprises a top member 10, a cylindrical shell or body portion 12, and an elastic flexible diaphragm or membrane 13. The top member 10 is formed with a cylindrical flange 14 and a peripheral recess 15. The shell 12 has a flange 16 adapted to fit over the flange 14 of top member 10, and the-diaphragm 13 is rigidly clamped between flanges 14 and 16. In assembling the parts, the diaphragm 13 is placed over the flange 14 of member 10, and the part 12 is then driven home over the flange in a tight frictional fit. During this operation the peripheral portion 17 of the diaphragm is bent into the cylindrical space between flanges 14 and 16, which socurely hold the diaphragm in tensioned con dition. After the parts are thus assembled,
the projecting portion 18 of the outer flange 16 is bent over into the peripheral recess 15 of top member 10. The dotted outline 18 in Fig. 1 indicates the normal position of the projecting portion 18 of flange 16. The assembling of parts 10, 12 and 13 of the cap structure may be accomplished by machinery in a single operation. The shell 12 is preferably formed with a shoulder 19,
which not only limits the relative inward movement'of the shell and top member 10 during the assembling of the parts, but also cooperates with ring 15 to lock the parts against axial slipping. The top member 10 and shell 12 are preferably made of spun sheet metal (35 like aluminum or an aluminum alloy, brass, steel, and others that may be found suitable.
It is also possible to make the cap members 10 and 12 of molded material of the type represented by foremaldehyde condensation 7 products, of which bakelite is probablythe 1 most familiar. In that case, the parts 10 and 12 would be molded as a single member and the diaphragm '13 would be embedded at its periphery in the plastic material during the molding operation. This will be understood without additional illustration. The top member 10 protects the thin flexible diaphragm 13 against injury, and the intervening space 10 is sealed, so that no liquid can get into it.
The diaphragm 13 is an elastic membrane sufliciently thin to be flexible and placed un-' der tension when the cap is mounted on a container, as T shall presently explain. The diaphragm 13 is preferably made of spring metal, like steel, brass, nickel, phosphor bronze, duralumin, or other aluminum alloy,
but it may also consist of non-metallic elastic material like bakelite, celluloid, waterproof or metallized fabric, india rubber, and perhaps others. If the cap is used on receptacles containing liquid or food products. the outer surface of diaphragm 13. should be I plated or otherwise covered with a suitable substance not aflected by the contents of the receptacle. For example, if the diaphragm 13 is a disk of thin steel, it may be plated with chromium. which is impervious to atmospheric conditions and does not contamilou nate foods and liquids. If the diaphragm 13 consists of a thin elastic sheet of bakelite or similar material, no special coating will usually be necessary. It will be understood that the foregoing enumeration of materials for diaphra m 13 is not intended as a restriction or limltation of my invention, but is merely for the purpose of illustration.
The container 20 in Fig. 2 terminates in an extension 21 of considerably smaller diameter than the body of the container. When the cap is placed in sealing position on the receptacle, the top rim 22 thereof engages the diaphragm 13 along a circular line 13 and the outer annular section 13a of the diaphragm is flek'd or pulled down into slightly frusto-conical shape, whereby the central section of the diaphragm is stretched and forced into pressure engagement with the.
rim. This pressure engagement produces a sealed joint along the circular contact line 13'. It is understood, of course, that the rim 22 is sufiiciently smooth to make a fluid-tight the co-operating parts 23 and 24 constitute uii screw-threads or bayonet joints for locking the cap on the container by a rotary movement. The projecting flange 16 of the cap may be roughenedor knurled to afford a firm finger grip in turning the cap on and oii.
"Instead of a screw connection between cap and container, I may use a hinged connection of any suitable type. It is immaterial how the cover is locked in sealing position on the receptacle, provided that the diaphragm 13 is automatically tensioned and flexed to produce a sealed joint. In some instances an absolutely fluid-tight joint may not be required, and I therefore use the expression sealed joint in a practical rather than strictly technical sense.
In the modification of Figs. at and 5,,the'
cap is made of a single piece of sheet material comprising a body portion or shell 25 and a diaphragm or membrane 26, which closes one end of the shell. The most practical way of making this one-piece cap is by spinning or otherwise shaping a sheet of elastic metal into the required form, but I may also mold the cap as a single piece of bakelite. celluloid and similar material. The shell 25 is formed with screwthreads 27 adapted to engage the screwthreaded neck 28 of a suitable container 29, which s shown for illustration as a glass neaaeee jar, such as would be used for preserving fruit and the like. The jar 29 terminates in an extension 30 of reduced diameter. \Vhen the cap is screwed home on the ar, the rim of extension 30 engages the diaphragm 26 along a circular line 26 and causes the diaphragm to be flexed downwardly at the annular section 2664. This flexing of the elastic diaphragm forces the same into firm pressure engagement with the top of the ar, so that a sealed joint is formed along the circular line 26. lVhat has been said about the materials suitable for diaphragm 13 applies to diaphragm 26.
It will be observed that the elastic sealing diaphragm is normally flat (or substantially so) like a stretched membrane, and when the cap is loosened, the flexed diaphragm automatically springs back to normal position. In Figs. 1 and 2 the separate diaphragm 13 is automatically tensioned during the assembling of the parts, while in Figs. 4 and 5 the integral diaphragm 26 receives its normal tension in the spinning or shaping operation. If an' underpressure develops in the container after the cap is in sealing position, the tendency of the stretched diaphragm will be to curve inwardly, as indicated roughly at 26?; in Fig. 5, and the effect of this inward buckling of the diaphragm is to increase the pressure along the contact edge 26'. The same applies to diaphragm 13 in Fig. 2. It is not necessary that the diaphragm shall actually buckle inwardly, for in some instances there may only be a tendency of the diaphragm to do so, but even such tendency would improve the sealing of the container. The one-piece cap of Figs. 4 and 5 can be made so cheap that it is particularly adapted for household fruit jars and for containers intended to be thrown away after the contents have been re moved. Instead of making the diaphragms 13 and 26 of metal covered with a permanent plating that is not affected by the c0ntents of the receptacles, the diaphragms can be left unplated and a lining of oiled or waxed paper (and the like) interposed between the diaphragm and the rim of the container. When I therefore speak of the diaphragm being in pressure contact with the rim ofthe receptacle, I do not necessarily mean a direct contact between the two, but I also include the possibility of an interposed lining.
It will be seen from the foregoing description that I have produced a self-sealing cap of unusually simple construction, which has no loose or replaceable parts and which can be made for any size, style or shape of container. For example, my new cap may be attached to cans or jars intended to hold tobacco, coflee, tea, sugar, Hour, and other com modities used in the home. The cap is easy to keep clean, since there are no crevices where particles of food or liquid can lodge.
The sealing diaphragm 13 or 26 may vary in size from an inch or so to several inches, and even more than one foot. In fact,the larger the diaphragm, the greater will be its flexibility to establish a fluid-tight oint. The thickness and degree of flexibility of the diaphragm will naturally vary with different materials and in diflerent sizes of cap, and
, the contact line of the diaphragm, and this groove acts like a seat for the contacting surface of the container rim. I do not mean to suggest by the last statement that the diaphragm soon wears out, for it goes Without saying that it-is made of wear-resisting material that will last as long as the container itself.
Although I have shown and described oer tain specific constructions, my invention is not limited to the details set forth. Changes and modifications may be made without departing from the scope of the appended claims.
I claim as my invention:
1. A self-sealing cap for containers, comprising a cylindrical body member for engagement over the neck of a container, a top member, and an elastic diaphragm held within said body member in spaced relation to said. top member for sealing contact with the edge of the mouth portion of a container when the cap is engaged thereon. 2. A closure for containers comprising a cylindrical shellfor engagement over the neck of the container, a top member attached to said shell and closing one end thereof, and an elastic diaphragm marginally secured within said shell by said top member with the central portions of the top member and the diaphragm disposed in spaced relation, said diaphragm being disposed for engagement with the mouth edge of the container neck when the shell is engaged over the container neck.
3. A closure for containers comprising a hollow body member for engagement over the neck of the container and a top member. an elastic diaphragm Y disposed within said body member with its central portion in spaced relation to said top member and marginally secured between portions of said body member and said top member for engagementwith the mouth edge oi the container neck when the bod member is engaged over the container neck.
4. A closure for containers comprising a cylindrical shell for engagement over the neck of the container, a top member attached to said shell by a circular overlapping joint,-
and an elastic diaphragnr disposed within said shell with itscentral portion in spaced relation to said top member and marginally secured to the closure by said joint, said diaphragm being disposed for engagement with the mouth edge of the container neck when the shell is engaged over the container neck.
5. A self-sealing cap comprising a top member provided with a peripheral flange, a cylindrical shell attached to said cap, and an elastic flexible diaphragm rigidly clamped in tensioned condition between said flange and shell, said flange holding the tensioned diaphragm spaced from said top member to permit flexing of the diaphragm when the cap is mounted in sealing position on a container.
6. A self-sealing cap comprising a top member provided with a peripheral flange,
a cylindrical shell attached to said cap, an.
elastic flexible diaphragm rigidly clamped in tcnsioned condition between said flange and shell, said flange holding the tensioned diaphragm spaced from said top member to permit flexing of the diaphragm when the cap is mounted in sealing position on a container, and a shoulder formed on said shell to limit the relative inward movement of the shell and top member.
7. The combination of a container having a cylindrical exteriorly screwthrezuled portion near the top, an extension of reduced diameter above said screwthrcaded portion, a cap having a cylindrical shell engaging said screwthreaded portion to secure the cap removably on the container, and an'elastic flexible diaphragm carried by said shell to be drawn into pressure contact with the rim of said extension inwardly of the margin of the diaphragm by threading of the shell onto the screwthreaded portion of the container, whereby the diaphragm is caused to be tensioned and flexed over said rim into sealingcontact therewith.
8. The combination of a container having a cylindrical exteriorly screw'threiulcd portion near the top, an extension of reduced diameter above said screwthreaded portion, a one-piece cap having a cylindrical shell engaging said screwthreadcd portion to lock the cap removably on the container, and an elastic flexible diaphragm formed integral with said shell to be drawn into pressure con tact with the rim of said extension inwardly of the margin of the diaphragm by threading of the shell onto the screw threaded portion of the container, whereby the diaphragm is caused to be radially tensioncd and flexed over said rim into sealing contact therewith.
9. A self-sealing cap comprising a top member provided with an integral cylindrical flange at the periphery. the top of said flange being sunk relatively to the main portion of said top member to provide an annular recess, a cylindrical shell driven over said flange in a tight frictional fit, the outer peripheral edge of said shell being bent over into said annular recess, and an elastic flexible diaphragm rigidly clamped between said shell and flange, whereby said three parts are permanently connected to form a unitary cap structure in which said diaphragm is adapted to be tcnsioned and flexed into sealing contact with a container. I
10. In combination, a container inclusive of a neck or body portion and a mouth portion of less diameter than said neck or body portion forming an upward continuation of the latter, a closure inclusive or" a cylindrical portion to fit over the neck or body portion of said container, a flexible and elastic diaphragm carried by said cylindrical portion for sealing contact with the edge of the mouth portion of the container, and means for drawing the closure downward over the body portion of the container thereby to draw the diaphragm into sealing contact with the mouth edge of the container and to radially tension the diaphragm.
11. A self-sealing closure for containers comprising an elastic membrane adapted to he engaged against the edge of the mouth of the container, said membrane being of greater diameter than the mouth edge of the contairer and being formed of material sulficiently thin and elastic to be marginally flexed downward outwardly of its circular line of contact with the mouth edge of the container and to thereby have its central portion tensioned thus to form a tight seal of the membrane against the mouth edge of the container, and means for marginally drawing the membrane downward and for radially tensioning the same when the membrane is engaged against the mouth edge of the container.
ADOLPH A. THOMAS.
aeaaeee
US481200A 1930-09-11 1930-09-11 Self-sealing cap for containers Expired - Lifetime US1832669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US481200A US1832669A (en) 1930-09-11 1930-09-11 Self-sealing cap for containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US481200A US1832669A (en) 1930-09-11 1930-09-11 Self-sealing cap for containers

Publications (1)

Publication Number Publication Date
US1832669A true US1832669A (en) 1931-11-17

Family

ID=23911029

Family Applications (1)

Application Number Title Priority Date Filing Date
US481200A Expired - Lifetime US1832669A (en) 1930-09-11 1930-09-11 Self-sealing cap for containers

Country Status (1)

Country Link
US (1) US1832669A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2446226A (en) * 1944-09-22 1948-08-03 Super Seal Container Corp Container and closure cap to be used therewith
US2576917A (en) * 1948-09-30 1951-12-04 Armstrong Cork Co Linerless venting closure
US2582489A (en) * 1949-05-09 1952-01-15 Rudolph E Krueger Pressure sealing bottle cap
US2586775A (en) * 1947-06-10 1952-02-26 Armstrong Cork Co Plastic container closure
US2617553A (en) * 1948-09-01 1952-11-11 A H Wirz Inc Screw threaded elastic closure cap
US3993210A (en) * 1974-12-19 1976-11-23 Anchor Hocking Corporation Container closure and manufacture
US4491219A (en) * 1981-03-25 1985-01-01 Lechler Chemie Gmbh Container for two-component systems
US4998638A (en) * 1982-10-26 1991-03-12 Nihon Seikan Kabushiki Kaisha Can and method of manufacturing the same
US5791506A (en) * 1996-07-02 1998-08-11 Charles Chang Sealing container which includes a two-part cap for displaying a cosmetic product
US5845802A (en) * 1997-06-13 1998-12-08 Bruns; Steven A. Grease cartridge carrier
US20180178951A1 (en) * 2016-12-22 2018-06-28 Ramondin Capsulas, S.A. Multilayer aluminum capsule
US11021299B2 (en) * 2018-04-02 2021-06-01 Libo Cosmetics Co., Ltd. Capping structure and container having the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2446226A (en) * 1944-09-22 1948-08-03 Super Seal Container Corp Container and closure cap to be used therewith
US2586775A (en) * 1947-06-10 1952-02-26 Armstrong Cork Co Plastic container closure
US2617553A (en) * 1948-09-01 1952-11-11 A H Wirz Inc Screw threaded elastic closure cap
US2576917A (en) * 1948-09-30 1951-12-04 Armstrong Cork Co Linerless venting closure
US2582489A (en) * 1949-05-09 1952-01-15 Rudolph E Krueger Pressure sealing bottle cap
US3993210A (en) * 1974-12-19 1976-11-23 Anchor Hocking Corporation Container closure and manufacture
US4491219A (en) * 1981-03-25 1985-01-01 Lechler Chemie Gmbh Container for two-component systems
US4998638A (en) * 1982-10-26 1991-03-12 Nihon Seikan Kabushiki Kaisha Can and method of manufacturing the same
US5791506A (en) * 1996-07-02 1998-08-11 Charles Chang Sealing container which includes a two-part cap for displaying a cosmetic product
US5845802A (en) * 1997-06-13 1998-12-08 Bruns; Steven A. Grease cartridge carrier
US20180178951A1 (en) * 2016-12-22 2018-06-28 Ramondin Capsulas, S.A. Multilayer aluminum capsule
US10457448B2 (en) * 2016-12-22 2019-10-29 Ramondin Capsulas, S.A. Multilayer aluminum capsule
US11021299B2 (en) * 2018-04-02 2021-06-01 Libo Cosmetics Co., Ltd. Capping structure and container having the same

Similar Documents

Publication Publication Date Title
US1832669A (en) Self-sealing cap for containers
US2616581A (en) Nursing outfit
US2663463A (en) Container having a flexible nozzle and a flexible cap
US2003657A (en) Cap for drinking glasses
US2681742A (en) Container cap liner
US2582026A (en) Closure for container having a neck with a reduced outer portion and a bore, and seals for said bore and said reduced portion
US3319836A (en) Spill-proof bottle closure
US2837234A (en) Self contained drinking tube and bottle cap
US4054221A (en) Bottle closure
US2343512A (en) Ice bag and closure therefor
US2547590A (en) Container for condiments and the like and sifter cap therefor
US1978946A (en) Closure for bottles and other receptacles
US2901139A (en) Sealing disc for metallic cap closures, crown closures or the like
US2639058A (en) Elastically sealed closure for containers
US3632005A (en) Double-seal plastic cap with flexible rim-engaging flange
US3115981A (en) Closure assembly for vacuum bottles
US3073473A (en) Decanter assembly
US2756889A (en) Vacuum bottle with removable bottom
US3235114A (en) Jar seal
US2046227A (en) Closure cap for jars
US2944690A (en) Closure for vacuum insulated vessels
US2740229A (en) Powder dispenser
US1515560A (en) Closure arrangement for containers
US2144287A (en) Two-part cap
US1823861A (en) Container for toilet powder