US1762903A - Self-dispensing liquid package - Google Patents

Self-dispensing liquid package Download PDF

Info

Publication number
US1762903A
US1762903A US112584A US11258426A US1762903A US 1762903 A US1762903 A US 1762903A US 112584 A US112584 A US 112584A US 11258426 A US11258426 A US 11258426A US 1762903 A US1762903 A US 1762903A
Authority
US
United States
Prior art keywords
pressure
pipe
liquid
gas
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US112584A
Inventor
John F Werder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22344713&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US1762903(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US112584A priority Critical patent/US1762903A/en
Application granted granted Critical
Publication of US1762903A publication Critical patent/US1762903A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N19/00Lubricant containers for use in lubricators or lubrication systems

Definitions

  • This invention relates to a dispensing can for use with liquid under pressure of gases dissolved or absorbed therein.
  • a lubricant oil containing an absorbed or dissolved gas therein, which oil is maintained in storage under a substantial pressure, varying for example from 50 to 7 lbs. according to conditions of manufacture and the season of the year, and which is intended to be dispensed in a small jet under the pressure of the gas within a receptacle, which gas is maintained under such a substantial 1 pressure by the escape of the dissolved gas from the lubricating mixture itself during the progress of the dispensing.
  • the device is not, however, limited solely to such employment, but may be utilized in other circumstances where the storage and the dispensing of small quantities of various liquids is to be attained.
  • this forming operation takes place co-incidentally with the testingofthe nished' cans for possible leakage.
  • The'present system therefore presents-the advantage of a cheaply manufactured can which is tested in the course of manufacturing, and which is capable'of manufacture .on
  • Figure 1 represents the can-partly ele-' vation and partly ,in section, showmgjhe 1926. Serial No. 112,584.
  • the can is formed as shown in Fig. l of the cylindrical side wall or bodyl0,. the upper end wall or head 11 and the'lower end wall or head 12, which arej oined together by soldering or seaming, and when the can blank is assembled of these three members, it constitutes a cylinder with sub- -stantially flat ends, as the can ends themselves are recessed inwardly.
  • hese heads are formed with ridges therein to assist in the bulging is to be accomplished later.
  • hese heads are formed in the usual manner on stamping machines and the ends are placed upon the can bodies or sleeves by the usual machinery employed for that purpose, and the solder joint to secure them to the sleeve requires no particular attention above that now required in such operations. It is preferred to provide the supportingfeet, hereinafter descrbed, in the lower end of the can during the operation of forming the can end. As will be seen in Fig.
  • any ridges or projections in the can ends should not extend beyond the flat plane defined by the periphery of such" ends, since otherwise these projectio s would come in contact with the guides u-ring the transportation of the can from one part of the assembly machine to another, and possibly result in wedging or sticking of the can in these, guides.
  • the top head 11 of the can is preferably pierced by a suitable instrument .so that the edges of the aperture thus formed are curled downwardly as shown at l3 and form a long bearing to .receive the plug 14 .of a
  • this ipe and'the end 11 of the can by a suitable sealing means, preferably-by forming a closed joint of easilyfus ble solder.
  • the third operation consists in mounting within the can a vertical discharge pipe 17'. which extends into the can through the aperture above referred to, and projects for a distance sufiicient when the pressure within the interior of the can is atmospheric, to
  • valve body 18 The valve is formed with a.
  • the solder connection between the pipe 15 and the can'end 11 is first loosened by the a plicationv of heat, and the can is detache from the pipe 15.
  • the pipe 17, carrying the valve 18, is then inserted in the aperture, and forms a snug fit with the downwardly curled edges 13 thereof. It is pushed down until the valve rests upon the top of the can,
  • the discharge pipe 17 is inserted in and permanently secured to the lower end of the valve body, preliminary to the operation of placing the pipe within the can proper: in this way the valve body and the pipe ma be handled as a unit and there is no liab' 'ty of the becomin separated from the valve y during t e operation .of assembling within the .can.
  • a httle solder may now be placed at the joining edge of the valve body 18 and the can top 11, and a soldering iron run then ready for sale. It has been foundin practice that a conneaoos around the joint to secure the valve body rigidly in place. The can is now complete.
  • The'filling operation is next accomplished, I which consists in placing the can in a suitable rack and bringing the discharge nozzle 23 of the valve into sealing contact with a feeder pi e.'
  • the mixture of lubricant and gas, un er pressure is brought into the feeder pipe, and is forced into the container through the o 11 valve. .
  • the entering mixture 0 lubricant and as is under a pressure of 50 to 75 lbs. it is ound in practice that the cans become substantially half filled with the mixture. It is preferred to have the can in an inverted position during this operation, so that the mixture passes from the valve upwardly into the discharge pipe 17 andoverfiows from the open end of the latter into the can.
  • Another method of o eration for this purpose is to previously gas which is employed in the mixture, and then force the mixture in under gradually mcreasing pressure. 7
  • valve stem 21 When the can has been filled, the valve stem 21 is screwed down.
  • the container 'is tainer filled with this lubricant mixture may the pressure upon the liquid increases sli htly in summer owing to the heating e ect the can with the be kept for a very-long time without loss :7
  • thepipe 17 When li uid under pressure is first admitted to t e can to fill it, thepipe 17 is very close to the bottom 12 of the can, but its open'end is sufficiently uncovered to permit the liquid to flow into the can. After the can has been filled, the. ends of the can are forced outward by reason of the high internal pressure, and assume a position such as shown with some exaggeration for clearness in Fig. 2, in which the duct 17 is held well above the bottom 12 of the can. The liquid level is indicated by the line a; near the top.
  • the quantity of the liquid with dissolved gas therein is de. creased and thereby the pressure of the gas above the liquid in the. can momentarily decreases at each discharge: since the lubricant mixture is preferably saturated with gas when the can is full, this lowering of pressure of the gas above the liquid causes a giving off of gas from'the liquid itself,
  • the pressure within the can likewise somewhat decreases, so that when but a few drops remain within the can the pressure has fallen to around 20 or 25 lbs. This is sufficient to still deliver the last drops to a considerable projective distance from the nozzle 23.
  • the internal pressure is no longer capable of supporting the ends of the can in the extreme bulged-position shown in Fig. 2, and these ends, being of flexible and resilient sheet metal, tend to retreat to the position shown in Fig. 3, thedifl'erence being indicated by the pairs of dot-and-v dash lines in these figures.
  • the ends will again bulge outwardly a disone-sixteenth of an inch or more away from ⁇ the bottom 12 of the can when under the initial pressure of 50 lbs. As the pressure decreases, the can ends gradually return, so
  • fina-lly the tube is substantially in contact with the bottom 12 as aforesaid.
  • the small annular ridges or corrugations as shown at 25, in the heads of the cans it is preferred to form the small annular ridges or corrugations as shown at 25, in the heads of the cans to facilitate the bulging operation.
  • the bottom end 12* 1s I such cans In order to cause the can to stand firmly upon its bottom 7 in a vertical position, the bottom end 12* 1s I such cans must be employed in an inverted position.
  • a pressure-liquid-storage and dispensing receptacle including inwardly biased,
  • a storage and dispensing receptacle for liquids containing a dissolved gas under pressure including top and bottom walls and a pipe sealed; in said top wall and extending within said receptacle and present ing its openlower end substantially at said bottom wall, at least one of said walls being flexible, resilient' and inwardly biased, whereby said pipe is supported to present its lower end at varying distances from said bottom vwall according to the pressure within the receptacle.
  • a pressure-liquid storage and dispensing receptacle comprising side, top and bottom walls; said top wall having an aperture with downwardly curled guide edges, a pipe guided by said edges and extending downwardly into said can and presenting its open lower end substantially at the bottom wall of said can, and a valve connected to the upper-end of said pipe; said valve, pipe and top wall being secured and sealed together.
  • a pressurefliquid storage and dispensing receptacle comprising side, top and bottom walls; a valve body-having a nozzle and a closure. element; a discharge pipe set in said body; said top wall having an aperture to receive said'pipe, and said valve body forming a stop against said top wall to support said pi e in said can with its lower end substantially at said bottom wall; and a solder securing and sealing joint between said valve body, said pipe and said top wall.
  • a storage and dispensing receptacle including sheet-metal side walls and ends, one of said ends having an aperture with an inwardly directed flange surrounding the same, a discharge tube projecting through said aperture and guided by said flange,
  • valve body mounted upon the outer surface of said end and secured to said tube
  • a packagecomprising a sheet metal can having resilient, inwardly biased convex ends, said an absorbed gas to a point where the internal pressure causes said ends to bulge outwardly, and a discharge pipe secured in said top end and extending downwardly into proximity with the bottom end, whereby, as the liquid is discharged and the pressure "decreases, the end of said pipe is caused to approach said bottom more and more closely, so that the last remaining portion of said liquid ,can enter the same.
  • a package comprising a sheet metal can having v flexible ends, said can being filled with a' liquid charged with an absorbed gas. to a point ,where the internal pressure causes the said ends to bulge, a' discharge pipe secured in and passing throughfthe upper end and extending downwardly into the liquid, and a manually operated valve. controlling the upper end of said pipe.
  • a ackbody and ends and having vonly crimped ture. age comprising a sheet metal can consisting 0 ing filled with a liquid charged with an absorbedgas to such a degree as to produce a relatively high internalpressure, a discontrolled discharge nozzle and containingan oil liquid at ordinary temperatures and pressures and saturated with a dissolved gas under-pressure.
  • a package comprising a thin sheet metal can consisting of body and ends, and having only crimped and soldered seams and joints, said can containing a liquid charged with an absorbed gas to such a degree as to produce at normal temperatures an internal 'pres-' sure of approximately fifty pounds to the square inch, a discharge nozzle communicating with the interior of the can and mounted on one of its ends, and a'manually operated valve controlling said nozzle.
  • a package comprising a hermetically sealed sheet metal can having a manually controlled discharge opening, and containing a hydrocarbon liquid at ordinary temperatures and pressures and charged with an absorbed incombustible gas under pressure.
  • a package comprising a hermeticall.
  • sealed'sheet metal can having a top and ottom, a discharge pipe extending from a. point near the bottom up through the top, and a manually operated valve controlling the upper end of said pipe, said can containing a hy drocarbon oil liquid at ordinary temperatures and pressures and charged with an .absorbed neutral gas under pressure.
  • a storage and dispensing receptacle comprising "a top wall formed of sheet metal and having therein an aperture surrounded by a downwardly and inwardly extending flange, .a pipe passing tightly through said aperture and engaging. said 'flange, and means .for securing said pipe to said top wall.
  • “14:. storage and dispensing receptacle comprising a top wall formed of sheet metal and having: an aperture therein,.the metal surrounding said aperture being curled downwardly and inwardly to fofrm'an an nular flange on the under side of said top .wall, a pipe passing through said-faperture engaging said flange, and means 1 and snugly for securing said pipe in POSltIOD;

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Description

June 10, 1930. w R 1,762,903
SELF DI-SPENSINGLIQUID PACKAGE I I Filed May 29. 1926 Patented June 10, 1930 un t-En smrss PA N orsFics JOHN F. WERDEB, OF CLEVELAND, OHIO, ASSIGNOR OF ONE-HALF TO EDMUND ROGERS SELF-DISPENSING LIQUID PACKAGE i Application filed May 29,
This invention relates to a dispensing can for use with liquid under pressure of gases dissolved or absorbed therein.
It more particularly concerns a receptacle 5 for holding and dispensing the lubricant mixture set forth in my copending application Serial No. 103,352, filed April 20, 1926,
, which discloses the use of a lubricant, oil containing an absorbed or dissolved gas therein, which oil is maintained in storage under a substantial pressure, varying for example from 50 to 7 lbs. according to conditions of manufacture and the season of the year, and which is intended to be dispensed in a small jet under the pressure of the gas within a receptacle, which gas is maintained under such a substantial 1 pressure by the escape of the dissolved gas from the lubricating mixture itself during the progress of the dispensing. The device is not, however, limited solely to such employment, but may be utilized in other circumstances where the storage and the dispensing of small quantities of various liquids is to be attained.
;It has been found difiicult in practice to construct cans of sheet metal which are capable of withstanding the pressures involved. The ends or heads-of such cans must necessarily be bulged or convex to a certain extent,-and yet it is difiicult, if not impossible, to handle rounded or convex ends in the guideways of the usual can making machines.
I therefore propose to make and, assemble the cans with flat heads or ends, so that they can readily pass throu'gn the machines, and then subject them to a forming operation for producing the necessary bulging ends. In practice, this forming operation, takes place co-incidentally with the testingofthe nished' cans for possible leakage.
The'present system therefore presents-the advantage of a cheaply manufactured can which is tested in the course of manufacturing, and which is capable'of manufacture .on
the usual machine.
In the drawings:
-- Figure 1 represents the can-partly ele-' vation and partly ,in section, showmgjhe 1926. Serial No. 112,584.
when only a small portion of the lubricant material remains therein.
The can is formed as shown in Fig. l of the cylindrical side wall or bodyl0,. the upper end wall or head 11 and the'lower end wall or head 12, which arej oined together by soldering or seaming, and when the can blank is assembled of these three members, it constitutes a cylinder with sub- -stantially flat ends, as the can ends themselves are recessed inwardly.
These heads are formed with ridges therein to assist in the bulging is to be accomplished later. hese heads are formed in the usual manner on stamping machines and the ends are placed upon the can bodies or sleeves by the usual machinery employed for that purpose, and the solder joint to secure them to the sleeve requires no particular attention above that now required in such operations. It is preferred to provide the supportingfeet, hereinafter descrbed, in the lower end of the can during the operation of forming the can end. As will be seen in Fig. 1,however, it is essential that any ridges or projections in the can ends should not extend beyond the flat plane defined by the periphery of such" ends, since otherwise these projectio s would come in contact with the guides u-ring the transportation of the can from one part of the assembly machine to another, and possibly result in wedging or sticking of the can in these, guides. I
The top head 11 of the can is preferably pierced by a suitable instrument .so that the edges of the aperture thus formed are curled downwardly as shown at l3 and form a long bearing to .receive the plug 14 .of a
operation which ,-,form a tight seal between a collar .,16.on
this ipe and'the end 11 of the can, by a suitable sealing means, preferably-by forming a closed joint of easilyfus ble solder.
2 v I l through the pipe 15 into the interior of the can, and the pressure is increased within.
the body of the can until the latter is subjected to an internal pressure of, for example, 100 lbs. to the square inch. This pressure causes the ends to. become bulged into the position shown in dotted lines at 11 and 12 in Fig. 1. This constitutes the second operation of forming the can. During this operation, which occurs at a pressure greater than that later to be employed during storage, the can is tested: and in the event of a poor joint or a poor seam, leakage or rupture will occur.
The third operation consists in mounting within the can a vertical discharge pipe 17'. which extends into the can through the aperture above referred to, and projects for a distance sufiicient when the pressure within the interior of the can is atmospheric, to
'bring its lower end substantially into contact with the bottom 12 of the can. It is preferred to form this pipe of small metal tubing and to attach to its upper end a valve body 18. The valve is formed with a.
knurled operating head 20 and a screw stem 21 which has a cone 22 at its lower end adapted to seat upon and close a' passage through the valve body. When this cone 22 is lifted from its seat, the contents of the pipe 17 may be discharged through a lateral nozzle23.
Themethod of making this valve and its particular structure is set forth in my copending application Serial No. 124,150, filed July 22, 1926, and since this valve itself forms no part of the present invention save as a controlling means for the discharge tube, reference is made to the copending application for a disclosure of the inter-T6? structure of the valve.
A In order to fit the pre-assembled-pipe 17 and valve body 18 in the can, the solder connection between the pipe 15 and the can'end 11 is first loosened by the a plicationv of heat, and the can is detache from the pipe 15. The pipe 17, carrying the valve 18, is then inserted in the aperture, and forms a snug fit with the downwardly curled edges 13 thereof. It is pushed down until the valve rests upon the top of the can,
asshown in Figure 2.
It will be understood that the discharge pipe 17 is inserted in and permanently secured to the lower end of the valve body, preliminary to the operation of placing the pipe within the can proper: in this way the valve body and the pipe ma be handled as a unit and there is no liab' 'ty of the becomin separated from the valve y during t e operation .of assembling within the .can. A httle solder may now be placed at the joining edge of the valve body 18 and the can top 11, and a soldering iron run then ready for sale. It has been foundin practice that a conneaoos around the joint to secure the valve body rigidly in place. The can is now complete.
The'filling operation is next accomplished, I which consists in placing the can in a suitable rack and bringing the discharge nozzle 23 of the valve into sealing contact with a feeder pi e.' The mixture of lubricant and gas, un er pressure, is brought into the feeder pipe, and is forced into the container through the o 11 valve. .When the entering mixture 0 lubricant and as is under a pressure of 50 to 75 lbs., it is ound in practice that the cans become substantially half filled with the mixture. It is preferred to have the can in an inverted position during this operation, so that the mixture passes from the valve upwardly into the discharge pipe 17 andoverfiows from the open end of the latter into the can. The air remaining within the can is trapped in the upper portion thereof durin this first filling operation. The feeder pipe is then closed, and the can moved slightl away from the connection which is appl ed to the nozzle 23 The air contained in the inverted can is then discharged throuillis he pipe 17 and the nozzle 23. During t operation very little gas will escape from the lubricant mixture,
- it is foundin practice that about one-half of the former empty space in the can is filled before the back ressure builds up The relief of sufliciently to stop the ow. the air and gas contained above the fluid is again accomplished as before, and-a further g operation takes place. It is found in practice that in this way with four or five leedings of the trapped air, the can is 'substantiall filled with the mixture.
"Very litt e of the absorbed gas is lost in this way, since this gas is more soluble in the liquid than is the air contained within the can, and the escape of a slight quantity of the gas into the air assists in rapidly scavaging away the air without arr excessive loss of dissolved gas, When pressure is again placed upon the can the. gas which may have collected in the can is again brought into solution in the mixture.
Another method of o eration for this purpose is to previously gas which is employed in the mixture, and then force the mixture in under gradually mcreasing pressure. 7
When the can has been filled, the valve stem 21 is screwed down. The container 'is tainer filled with this lubricant mixture may the pressure upon the liquid increases sli htly in summer owing to the heating e ect the can with the be kept for a very-long time without loss :7
andv the lower solubility of gas in the liquid whilewarm, but it is redissolved again when cooled. The pressure therefore varies in a filled can between 50 to 75 lbs. in practice according to the prevailing temperatures.
When li uid under pressure is first admitted to t e can to fill it, thepipe 17 is very close to the bottom 12 of the can, but its open'end is sufficiently uncovered to permit the liquid to flow into the can. After the can has been filled, the. ends of the can are forced outward by reason of the high internal pressure, and assume a position such as shown with some exaggeration for clearness in Fig. 2, in which the duct 17 is held well above the bottom 12 of the can. The liquid level is indicated by the line a; near the top.
As the lubricant is dispensed from the nozzle from time' to time, the quantity of the liquid with dissolved gas therein is de. creased and thereby the pressure of the gas above the liquid in the. can momentarily decreases at each discharge: since the lubricant mixture is preferably saturated with gas when the can is full, this lowering of pressure of the gas above the liquid causes a giving off of gas from'the liquid itself,
Whereby the gaseous pressure above the liquid is restored, and is maintained in a stable equilibrium in such phase relation to the liquid solution that saturation always is present in the liquid at the particular pressure and temperature existing, and the gas maintains the whole mixture at a substantial pressure above atmospheric.
As the volume of liquid decreases, the pressure within the can likewise somewhat decreases, so that when but a few drops remain within the can the pressure has fallen to around 20 or 25 lbs. This is sufficient to still deliver the last drops to a considerable projective distance from the nozzle 23. The internal pressure, however, is no longer capable of supporting the ends of the can in the extreme bulged-position shown in Fig. 2, and these ends, being of flexible and resilient sheet metal, tend to retreat to the position shown in Fig. 3, thedifl'erence being indicated by the pairs of dot-and-v dash lines in these figures. As the ends move closer together, the end of pipe 17 approa-ches the bottom 12*, so that finally the pipe is substantially in contact with the bottom as set forth above, and therefore capable of removing the last few drops from the lowest point of the canwhen the-latter is held in a vertical position.
It will be understood that, for example, when a pressure of lbs. is admitted into the interior of the can for bulging it, the ends will each move outward a distance of say threesixteenths of an inch. When this pressure is released the. ends, being biased inwardly, will each return about one-thirtysecond of an inch, ora total of one-sixteenth of an inch. When the lubricant mixture is forced in under a pressure of 50 to 75 lbs.
. the ends will again bulge outwardly a disone-sixteenth of an inch or more away from\ the bottom 12 of the can when under the initial pressure of 50 lbs. As the pressure decreases, the can ends gradually return, so
that fina-lly the tube is substantially in contact with the bottom 12 as aforesaid.
Whileit has been stated to be preferred to have the ends of the can capable of relative movement toward and away from each other, yet it is not essential that the material forming these ends should permit this yield ing, since the receptacle may be satisfactorily employed when very thick sheet metal is used and no substantial change of the distance between the ends occurs as a result of the varying pressures within the can.
As above stated, it is preferred to form the small annular ridges or corrugations as shown at 25, in the heads of the cans to facilitate the bulging operation. In order to cause the can to stand firmly upon its bottom 7 in a vertical position, the bottom end 12* 1s I such cans must be employed in an inverted position.
It is apparent that the invention is not limited to the specific form or procedure described, but that it may be modified within the scope of the appended claims.
What I claim is: y
a 1. A pressure-liquid-storage and dispensing receptacle including inwardly biased,
resilient, flexible'top and bottom walls and a pipe fastened to said top wall and extending within said receptacle and presenting its open lower end substantially at said bottom wall, the lower end of said pipe being sup-' ported by. said top wall at varying distances from said bottom wall by the action of the pressure within the receptacle upon said flexible walls.
2. A storage and dispensing receptacle for liquids containing a dissolved gas under pressure, including top and bottom walls and a pipe sealed; in said top wall and extending within said receptacle and present ing its openlower end substantially at said bottom wall, at least one of said walls being flexible, resilient' and inwardly biased, whereby said pipe is supported to present its lower end at varying distances from said bottom vwall according to the pressure within the receptacle.
3. A pressure-liquid storage and dispensing receptacle comprising side, top and bottom walls; said top wall having an aperture with downwardly curled guide edges, a pipe guided by said edges and extending downwardly into said can and presenting its open lower end substantially at the bottom wall of said can, and a valve connected to the upper-end of said pipe; said valve, pipe and top wall being secured and sealed together.
4. A pressurefliquid storage and dispensing receptacle comprising side, top and bottom walls; a valve body-having a nozzle and a closure. element; a discharge pipe set in said body; said top wall having an aperture to receive said'pipe, and said valve body forming a stop against said top wall to support said pi e in said can with its lower end substantially at said bottom wall; and a solder securing and sealing joint between said valve body, said pipe and said top wall.
5. A storage and dispensing receptacle including sheet-metal side walls and ends, one of said ends having an aperture with an inwardly directed flange surrounding the same, a discharge tube projecting through said aperture and guided by said flange,
'. a valve body mounted upon the outer surface of said end and secured to said tube,
and a solder sealing and supporting joint between said valve body and said end.
6. As an article of manufacture, a packagecomprising a sheet metal can having resilient, inwardly biased convex ends, said an absorbed gas to a point where the internal pressure causes said ends to bulge outwardly, and a discharge pipe secured in said top end and extending downwardly into proximity with the bottom end, whereby, as the liquid is discharged and the pressure "decreases, the end of said pipe is caused to approach said bottom more and more closely, so that the last remaining portion of said liquid ,can enter the same.
7. As anarticle of manufacture, a package comprising a sheet metal can having v flexible ends, said can being filled with a' liquid charged with an absorbed gas. to a point ,where the internal pressure causes the said ends to bulge, a' discharge pipe secured in and passing throughfthe upper end and extending downwardly into the liquid, and a manually operated valve. controlling the upper end of said pipe.
8. As an article of manufacture, a ackbody and ends and having vonly crimped ture. age comprising a sheet metal can consisting 0 ing filled with a liquid charged with an absorbedgas to such a degree as to produce a relatively high internalpressure, a discontrolled discharge nozzle and containingan oil liquid at ordinary temperatures and pressures and saturated with a dissolved gas under-pressure.
10. As an article of manufacture, a package comprising a thin sheet metal can consisting of body and ends, and having only crimped and soldered seams and joints, said can containing a liquid charged with an absorbed gas to such a degree as to produce at normal temperatures an internal 'pres-' sure of approximately fifty pounds to the square inch, a discharge nozzle communicating with the interior of the can and mounted on one of its ends, and a'manually operated valve controlling said nozzle.
7 11. As an article of manufacture; a package comprising a hermetically sealed sheet metal can having a manually controlled discharge opening, and containing a hydrocarbon liquid at ordinary temperatures and pressures and charged with an absorbed incombustible gas under pressure.
12. As an article of manufacture, a package comprising a hermeticall". sealed'sheet metal can having a top and ottom, a discharge pipe extending from a. point near the bottom up through the top, and a manually operated valve controlling the upper end of said pipe, said can containing a hy drocarbon oil liquid at ordinary temperatures and pressures and charged with an .absorbed neutral gas under pressure.
13. A storage and dispensing receptacle comprising "a top wall formed of sheet metal and having therein an aperture surrounded by a downwardly and inwardly extending flange, .a pipe passing tightly through said aperture and engaging. said 'flange, and means .for securing said pipe to said top wall.
"14:. storage and dispensing receptacle comprising a top wall formed of sheet metal and having: an aperture therein,.the metal surrounding said aperture being curled downwardly and inwardly to fofrm'an an nular flange on the under side of said top .wall, a pipe passing through said-faperture engaging said flange, and means 1 and snugly for securing said pipe in POSltIOD;
In testimony whereof I aflix =my signa- JOHN F. w sRbER.
US112584A 1926-05-29 1926-05-29 Self-dispensing liquid package Expired - Lifetime US1762903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US112584A US1762903A (en) 1926-05-29 1926-05-29 Self-dispensing liquid package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US112584A US1762903A (en) 1926-05-29 1926-05-29 Self-dispensing liquid package

Publications (1)

Publication Number Publication Date
US1762903A true US1762903A (en) 1930-06-10

Family

ID=22344713

Family Applications (1)

Application Number Title Priority Date Filing Date
US112584A Expired - Lifetime US1762903A (en) 1926-05-29 1926-05-29 Self-dispensing liquid package

Country Status (1)

Country Link
US (1) US1762903A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2537226A (en) * 1946-12-09 1951-01-09 Bundy Tubing Co Pressure holding and dispensing container
US2626834A (en) * 1949-11-10 1953-01-27 Ronor Corp Aerosol spray nozzle, valve, and can top construction
US2746797A (en) * 1951-11-07 1956-05-22 Rene Maurice Achille Joseph Po Atomizing apparatus
US3255925A (en) * 1964-02-03 1966-06-14 Robert H Park Closure for plastic containers
US4175670A (en) * 1978-03-22 1979-11-27 Reynolds Metals Company Container construction
US4732292A (en) * 1978-06-16 1988-03-22 Schmalbach-Lubeca Gmbh Flexible bottom profile for drawn and ironed beverage can
US20130206796A1 (en) * 2008-12-25 2013-08-15 Shigeru Hayakawa Synthetic resin container having inverted, folded back bottom wall
US20170267408A1 (en) * 2015-12-21 2017-09-21 Bill Martinez Dry Cup
US20170369198A1 (en) * 2016-06-22 2017-12-28 Stupid Good Beverage Company, LLC Container with product removal mechanism

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2537226A (en) * 1946-12-09 1951-01-09 Bundy Tubing Co Pressure holding and dispensing container
US2626834A (en) * 1949-11-10 1953-01-27 Ronor Corp Aerosol spray nozzle, valve, and can top construction
US2746797A (en) * 1951-11-07 1956-05-22 Rene Maurice Achille Joseph Po Atomizing apparatus
US3255925A (en) * 1964-02-03 1966-06-14 Robert H Park Closure for plastic containers
US4175670A (en) * 1978-03-22 1979-11-27 Reynolds Metals Company Container construction
US4732292A (en) * 1978-06-16 1988-03-22 Schmalbach-Lubeca Gmbh Flexible bottom profile for drawn and ironed beverage can
US20130206796A1 (en) * 2008-12-25 2013-08-15 Shigeru Hayakawa Synthetic resin container having inverted, folded back bottom wall
US8746494B2 (en) * 2008-12-25 2014-06-10 Yoshino Kogyosho Co., Ltd. Synthetic resin container having inverted, folded back bottom wall
US9238521B2 (en) 2008-12-25 2016-01-19 Yoshino Kogyosho Co., Ltd. Synthetic resin container having inverted, folded back bottom wall
US10023347B2 (en) 2008-12-25 2018-07-17 Yoshino Kogyosho Co., Ltd. Synthetic resin container having inverted, folded back bottom wall
US20170267408A1 (en) * 2015-12-21 2017-09-21 Bill Martinez Dry Cup
US20170369198A1 (en) * 2016-06-22 2017-12-28 Stupid Good Beverage Company, LLC Container with product removal mechanism
US10696432B2 (en) * 2016-06-22 2020-06-30 Stupid Good Beverage Company, LLC Container with product removal mechanism

Similar Documents

Publication Publication Date Title
US2321836A (en) Dispensing cask for preserving liquids
US1762903A (en) Self-dispensing liquid package
US2405201A (en) Method of forming closed metal capsules
US2288895A (en) Self-heating container
US2345081A (en) Siphon construction
US2872760A (en) Method for packaging fluid materials
US2685383A (en) Pressure bulb cap
US2952278A (en) Spray head and filling plug
US1788261A (en) Sheet-metal can and method of making the same
US1977862A (en) Extractor
US1761072A (en) Container for oils, etc
US2615443A (en) Self-heating container
US2082323A (en) Method of forming receptacles
US1885678A (en) Carbonating vessel
US2165684A (en) Portable liquid container and means for filling the same
US1875902A (en) Filling and charging device
US1471952A (en) Method of making containers
US2856102A (en) Pressure dispensing container
US1521668A (en) Attachment fob gasoline tanks
US3512676A (en) Container end structure
US3233780A (en) Gas charged liquid container construction and method
US2025141A (en) Apparatus for filling metal containers
US2599319A (en) Filling and capping equipment
US2154647A (en) Tank filling apparatus
US1992875A (en) Liquid seal vent