US1747535A - Aromatic diacidyl compound and process for preparing the same - Google Patents

Aromatic diacidyl compound and process for preparing the same Download PDF

Info

Publication number
US1747535A
US1747535A US227050A US22705027A US1747535A US 1747535 A US1747535 A US 1747535A US 227050 A US227050 A US 227050A US 22705027 A US22705027 A US 22705027A US 1747535 A US1747535 A US 1747535A
Authority
US
United States
Prior art keywords
compound
chloride
diacidyl
aromatic
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US227050A
Inventor
Wulff Otto
Sedlmayr Robert
Eckert Wilhelm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Aniline Works Inc
Original Assignee
General Aniline Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Aniline Works Inc filed Critical General Aniline Works Inc
Application granted granted Critical
Publication of US1747535A publication Critical patent/US1747535A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/788Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with keto groups bound to a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • C07C45/46Friedel-Crafts reactions

Definitions

  • R for hydrogen or a CO-alkyl group or CO aryl group and any aromatic or aliphatic acid chloride to act upon each other in the presence of aluminium chloride, with or without the use of a diluent, and, in case the R stands for hydrogen, by subjecting the hydrocarbons vfirst to the action of an acld chloride at about 0 C. and then the action of a further quantity of an acid chloride at a temperature of about 30 C.,to 100 C. in the presence of aluminium chloride.
  • Diacidyl-hydrocarbons arealready per se known, for instance those'of nesitylene, anthracene, phenanthrene; however, in view of the peculiar mannerin which the aluminium quantity from the high boiling portions of the reactlon product obtalned 1n the manufacture of 5-acetyl-acenaphthene. Therefore, diacetyl-acenaphthene cannot be industrially prepared in this way. It is only by our present invention that a practical way has been found to prepare the diacetyl-acenaphthene with a good yield. a
  • Our new process may, for instance be carried out in such a manner that there is used as parent material either a mixture .of aluminium chloride and ready-made monoacidyl-hydrocarbon or the crude aluminiumchloride-monoketo compounds produced in the manufacture 0f monoacidyl-hydrocarbons from a hydrocarbon, an acid chlom ride and aluminiumchloride, either directly or if preferred after separating the solvent.
  • a third way to carry out the new process is to start from the respective hydrocarbons and to proceed in the manner set forth in the 9, following examples.
  • the diacidyl-hydrocarbons of-the naphthalene and acenaphthene are of considerable technical interest as being valuable intermediate products for the manufacture of vat 85 dyestufi's.
  • reaction may also be performed in a solution of :carbon jdisulfide.
  • the resulting crude product after being-decomposed with wateror the like and dried, is; purified by re-- vcrystallization from alcohol or extraction with ether, there being left; undissolveda considerable quantity of a dark-secondary condensation product. ;
  • the 'dibenzoylacenaphthene crystallizes from-the solvent in nice crystals havinga melting point of 143.
  • T e yield amounts to'about 50' per cent.
  • the product is then is blown off by meansofsteam and the product of the reaction, after it has cooled, is sep arated, washed and dried. It is then dissolved in hot alcohol and an residue left is filtered ofli. After cooling, t e diacetyl acenaphthene crystallizesin beautiful'crystals which melt at'146 C; A further quantity of. the principal substance canbe obtained from the mother liquor by concentration and a portion of unaltered 5-acetyl acenaphtheneby vacuum distillation or" by crystallization.
  • X and Y stand for hydrogen or jointly for the group I-I C-CH and R rep resents hydrogen, CO-alkyl or CO-aryl, to react with an acid chloride in the presencepf aluminium chloride.
  • X and Y stand for hydrogen or jointly for the group H CCH to react with an acid chloride, first with a quantity at about 0 C. and then with a further quantity at a temperature of about 30 C. to 100 C., in the presence of aluminium chloride.
  • X and Y stand for hydrogen or jointly for the group PFC-CH and R represents hydrogen, CO-alkyl or CO-aryl, to react with benzoyl chloride in the presence of aluminium chloride.
  • X and Y stand for hydrogen or jointly for the group H il-CF1 to react with benzoyl chloride, first with a quantity at about 0 C. and then with a further quantity at a temperature of about 30 to 100 (3., in the presence of aluminium chloride.
  • R stands for hydrogen, CO-alkyl or CO-aryl to react with benzoyl chloride in the presence of aluminium chloride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

' Patented Feb; 18, 1930 I.
7 UNITED STATES j PATENT o'rro WULFF ND ROBERT snnLmAYn; or MUNICH, Annywnnnnn ncxnnr, on.
nocns'r-on-rnn-mnm, GERMAN AssIeNons' o ennnnar. ANILINE wonxs. 1nd,;
on NEW YORK, N. Y., A conroRA'rIoN on DELAWARE ABOMATIG DIAGIID Y L comrounn Ann rnocnss non nnnrenme rnn shite in, Drawing. Application filed October 18,1927, iiiiileezow, ajndiii ei ifiany o tane- 2 s, 1920.
wherein X and Y stand for two hydrogen atoms or for the group HzC-CH; 3 I
and R for hydrogen or a CO-alkyl group or CO aryl group and any aromatic or aliphatic acid chloride to act upon each other in the presence of aluminium chloride, with or without the use of a diluent, and, in case the R stands for hydrogen, by subjecting the hydrocarbons vfirst to the action of an acld chloride at about 0 C. and then the action of a further quantity of an acid chloride at a temperature of about 30 C.,to 100 C. in the presence of aluminium chloride.
Diacidyl-hydrocarbons arealready per se known, for instance those'of nesitylene, anthracene, phenanthrene; however, in view of the peculiar mannerin which the aluminium quantity from the high boiling portions of the reactlon product obtalned 1n the manufacture of 5-acetyl-acenaphthene. Therefore, diacetyl-acenaphthene cannot be industrially prepared in this way. It is only by our present invention that a practical way has been found to prepare the diacetyl-acenaphthene with a good yield. a
Our new process may, for instance be carried out in such a manner that there is used as parent material either a mixture .of aluminium chloride and ready-made monoacidyl-hydrocarbon or the crude aluminiumchloride-monoketo compounds produced in the manufacture 0f monoacidyl-hydrocarbons from a hydrocarbon, an acid chlom ride and aluminiumchloride, either directly or if preferred after separating the solvent.
A third way to carry out the new process is to start from the respective hydrocarbons and to proceed in the manner set forth in the 9, following examples.
The diacidyl-hydrocarbons of-the naphthalene and acenaphthene are of considerable technical interest as being valuable intermediate products for the manufacture of vat 85 dyestufi's.
The following examples serve to illustrate our invention but they are not intended to limit it thereto, all parts being parts by weight. at,
(1) 23 grams of a-benzoylnaphthalene are mixed with 16 grams of benzoyl chloride and there are then cautiously added 15 grams of aluminium chloride at about 30 C. to 35 C. There are then added in the course of one 95 houranother quantity of 21 grams of aluminium chloride while wellstirring, during which operation the temperature is gradually raised from 45 C. to C. and finallykept for another half hour at 0. During, the 100 reaction I hydrochloric acid escapes.
efiervescence; The dark brown melt thus obtained is decomposed'w'ith water, separated from the aqueous ortion; washed first with "diluted caustic so Solution and then with products (having a melting. point of about 300 C, under 12 mm. press'ure).- I 4 v The yield of"1;5-dibenzoylnaphthalene amounts to approximately 60 per cent of the isomeric (presumably-1.8-) dibenzoylnaph- 1 thalene to about 20 f'per'cent of the theory,
(2) 26 "grams, 0 5-benzoylacenaphthene are subjected to reaction as indicated in Example 1, keeping however the temperature generally somewhat lower, finally atabout 70 C. and whiletaking care that the mass is well and vigorously stirred, because the melt tends to become 'very viscous and stiff. The
reaction may also be performed in a solution of :carbon jdisulfide. The resulting crude product, after being-decomposed with wateror the like and dried, is; purified by re-- vcrystallization from alcohol or extraction with ether, there being left; undissolveda considerable quantity of a dark-secondary condensation product. ;The 'dibenzoylacenaphthene crystallizes from-the solvent in nice crystals havinga melting point of 143.
C. From the mother liquors can be obtained a further'quantity of the roduct as well as unaltered monoketone. T e yield amounts to'about 50' per cent.-
"(3) 19,5 grams of 5-acetylacenaphthene are mixed "and; stirred with 'a small quantity of carbon disulfide and to this mixture are 7 slowly added 15 grams of aluminium chloride, 1 whereupon. the orangecolored aluminium-' Y fchloride.compound separates in the form of a, magma .a There isthenaddedby drops. in
thezcourseof about hour, while very well stirring, aconcentrated solution in carbon disulfide" of the compound obtained from 12 1 gramsof'acetyl chloride and l4 grams of alu-- i chloride, during which operation the s de begins to boil. 7 decomposed with water, thecarbon disulfide tem "erature is kept at 30 G..to 35 "C. and
muc hydrochloric acid escapes. There are then furthermore slowly added '6 grams of aluminiumichloride, theresulting dark, thick mass. isthoro'ughly stirred and finally; the tel lngierature is raised until the carbon ;di-
The product is then is blown off by meansofsteam and the product of the reaction, after it has cooled, is sep arated, washed and dried. It is then dissolved in hot alcohol and an residue left is filtered ofli. After cooling, t e diacetyl acenaphthene crystallizesin beautiful'crystals which melt at'146 C; A further quantity of. the principal substance canbe obtained from the mother liquor by concentration and a portion of unaltered 5-acetyl acenaphtheneby vacuum distillation or" by crystallization.
The'yieldof diace y 5 I i to. -80 per cent of the converted 5-acetyl-' acenaphthene.
1(4) 128 parts of'naphthalene are sus- I pended in 128 parts of benzoylchloride at 0 (land to this mixture are added by portions 200 grains of-aluminium chloride, carebeing taken that the temperature does not exceed 0 C. The mass 'is kept at a temperature of 0 C. until the evolution of hydrochloric acid has ceased; there are then again added 160 grams of .benzoyl chloride; the whole'ii's heated to 3040 'C. and at this temperature 150 grams of aluminium chloride are added in portions. When all of the aluminium chloride has been introduced, the mass isheated to C. there are again added 200 grams of aluminium chloride and the whole heated for one hour to C. The final product, after being decomposed with water and distilledby means of steam yield when recrystallized from lacial acetic 1 .5-dibenzoylnaphthalenew1th a yield of 70 per 7 cent. 7
I Into a mixture of 46 parts na ch oride in 400 parts of carbon disulfide. are
' introduced, while externally cooling, 110
parts of aluminium chloride care being taken:
of acei phthene and 99 parts of -'mono-chloracetylby cooling that the solvent does not become v heated by the reaction-heat to the boiling point. After all of the'aluminium chloride has been introduced the mass is allowed to stand fora rather long time (preferably for about 24 hours) while cooling and it is then heated for about one'hour on the steam bath.
After decomposition with ice followed by distillation with steam to remove the carbon disulfide, the residue is recrystallized from glacial acetic acid. The so obtained hitherto unknown dichloroacetylacenaphthene which has'probably the following formula: 1
' Q 4 Inc-#011,, '1 w shows the form of large almost colorless needles, melting at 194 C(to 195 C. In this manner the said compound is obtained ut 70 per cent.- v e (6) If instead of the chloracetyl chloride according to Example 5, acet l chloride is used and the operatlons carrie out with the "by a single operation and with a yield of same quantities as indicated in this example, there is obtained after purification and reprecipitation of the crude product from alcohol, the di-acetyl-acenaphthene in colorless prisms melting at 146 C.
We claim:
1. The process of preparing an aromatic diacidyl compound which comprises causing a clompound of the following general formu a:
wherein X and Y stand for hydrogen or jointly for the group I-I C-CH and R rep resents hydrogen, CO-alkyl or CO-aryl, to react with an acid chloride in the presencepf aluminium chloride.
2. The process of preparing an aromatic diacidyl compound which comprises causing a compound of the following general formula:
wherein X and Y stand for hydrogen or jointly for the group H CCH to react with an acid chloride, first with a quantity at about 0 C. and then with a further quantity at a temperature of about 30 C. to 100 C., in the presence of aluminium chloride.
3. The process of preparing an aromatic diacidyl compound which comprises causing a compound of the following general formula:
wherein X and Y stand for hydrogen or jointly for the group PFC-CH and R represents hydrogen, CO-alkyl or CO-aryl, to react with benzoyl chloride in the presence of aluminium chloride.
4. The process of preparing an aromatic diacidyl compound which comprises causing a compound of the following general formula:
wherein X and Y stand for hydrogen or jointly for the group H il-CF1 to react with benzoyl chloride, first with a quantity at about 0 C. and then with a further quantity at a temperature of about 30 to 100 (3., in the presence of aluminium chloride.
5. The process of preparing an aromatic diacidyl compound which comprises causing a compound of the following general formula mula
wherein R stands for hydrogen, CO-alkyl or CO-aryl to react with benzoyl chloride in the presence of aluminium chloride.
8. The process of preparing an aromatic diacidyl compound which comprises causing naphthalene to react w'th benzoyl chloride, first with a quantity at ipbout 0 C. and then with a further quantity at a temperature of about 30 C. to 100 0., in the presence of aluminium chloride.
In testimony whereof, we aflix our signatures.
OTTO WULFF. ROBERT SEDLMAYR. DR. WILHELM ECKERT.
US227050A 1926-10-23 1927-10-18 Aromatic diacidyl compound and process for preparing the same Expired - Lifetime US1747535A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1747535X 1926-10-23

Publications (1)

Publication Number Publication Date
US1747535A true US1747535A (en) 1930-02-18

Family

ID=7741613

Family Applications (1)

Application Number Title Priority Date Filing Date
US227050A Expired - Lifetime US1747535A (en) 1926-10-23 1927-10-18 Aromatic diacidyl compound and process for preparing the same

Country Status (1)

Country Link
US (1) US1747535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013078A (en) * 1959-10-27 1961-12-12 Du Pont Process for the preparation of 1, 5-dibenzoylnaphthalene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013078A (en) * 1959-10-27 1961-12-12 Du Pont Process for the preparation of 1, 5-dibenzoylnaphthalene

Similar Documents

Publication Publication Date Title
US2191831A (en) Manufacture of di-(4-hydroxyphenyl)-dimethyl methane
US1965842A (en) Production of hydroxybenzenephthaleins
US2262262A (en) Process of making maleanils
US1747535A (en) Aromatic diacidyl compound and process for preparing the same
US3845102A (en) Process for preparing the methacrylate esters of multibrominated phenol derivatives
US1790097A (en) New process for introducing sulphocyanic groups in organic compounds
US1951686A (en) New process of preparing arylacetic acids and new product obtainable thereby
US2077548A (en) Production of dinaphthylene oxide
Mosettig et al. STUDIES IN THE PHENANTHRENE SERIES. II. PHENANTHRENE CARBOXYLIC ACIDS AND 9-BROMOPHENANTHRENE DERIVATIVES1
US1895788A (en) Process of making anthraquinones
US3408408A (en) Process for preparing bis-(3, 5, 6-trichloro-2-hydroxyphenyl) methane
US1887396A (en) Aromatic halogen-methyl compound and alpha process of preparing it
US1160595A (en) Process for the manufacture of esters of oxy fatty acids.
US2358048A (en) Preparation of esters of polybasic cyclic unsaturated acids
US1702002A (en) Cyclic ketonic compound and process of making it
US2007241A (en) office
US2903463A (en) Process for the manufacture and recovery of a chlorine-containing carboxylic anhydride
US1906221A (en) Hydroxy-diphenylindoles
US1972219A (en) Aromatic cyano-acetyl compound and process of preparing it
US3357992A (en) Process for preparing sultones
US3058998A (en) Process of preparing olefins of sulfonate esters of secondary alcohols
US2072237A (en) Manufacture of aromatic carboxylic derivatives
US2195289A (en) 2- and 2:7-di-alkylarylcarbamylfluorenes and fluorene-2- and 2:7-di-carboxylic acids and a process of making them
US1910470A (en) Halogen-naphthalene-ketones and process of preparing them
US4038309A (en) Production of 2-hydroxynaphthalene-3-carboxylic acid