US1545560A - Airplane propeller - Google Patents

Airplane propeller Download PDF

Info

Publication number
US1545560A
US1545560A US730475A US73047524A US1545560A US 1545560 A US1545560 A US 1545560A US 730475 A US730475 A US 730475A US 73047524 A US73047524 A US 73047524A US 1545560 A US1545560 A US 1545560A
Authority
US
United States
Prior art keywords
blade
seam
edge
metal
edges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US730475A
Inventor
Heath Spencer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US730475A priority Critical patent/US1545560A/en
Application granted granted Critical
Publication of US1545560A publication Critical patent/US1545560A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • B64C11/205Constructional features for protecting blades, e.g. coating

Definitions

  • This invention relates to airplane propellers and has particular reference to propellers made of wood or other non-metallic material in which it is necessary to protect the propeller' blades by metal sheathing covering those portions of the blades most exposed to wear.
  • Figure 1 is a plan view
  • Figure 2 is a section on line 2-2 of F. ⁇ 1;
  • Figure 3 is a section on line 3 3 of ig. 1;
  • FIG. 4 is a section showing the method of metal sheathing heretofore employed.v
  • the second turning consists in folding the three-ply dotted portion back against thel upper portion 12, thus completing the lock joint as shown at 10.
  • This second turning has the im ortant eHect of drawing and 'stretching t e portions 12 and 13 tight and firm over the wood and bringing the seam itself hard up against the edge of the blade with the firm stiffness and 'protection of four thicknesses of metal instead of two.
  • the thickness of metal and the size of the seam 10 is much smaller than in my illustration so that the seam imbeds itself partially into the edge of the blade with llttle if any-distortion of the general contour.
  • This stretching and double locking seam has been found of itself sufficiently strong to hold but its stren h can be further increased by running so der in between the folds of the seam, 1n which ca se the solder at the edge of the seam 17 .further im roves the contour.
  • the stretching and locking seam is of peculiar value as applied to the leading edge of the blade (which is most exposed to injury and wear) but when both edges of the blade where the metal is applied are considerably curved the stretchlng and locking seam is formed on both edges of the blade.
  • one edge is straight or nearly so I prefer making the tip section for both sides of the blade in one plece and bending it without a seam over the straight edge of the blade as shown at 20 in Figs. 1 and 3 and forming the lock. seam along the other edge of the blade and around the end.
  • a sheathed propeller blade including sheet material applied to both sides ot' the blade and joined at the edge of the blade by a double turned seam providing four thicknesses of sheet material at the seamed portion.
  • a sheathed propeller blade including sheet material applied to both sides of the blade and joined at the leading edge of the blade by a seam providing four thicknesses of the sheet material.
  • a sheathed propeller blade including sheet material applied to both sides of the bl-ade, the material being bent seamless over one edge of the blade and joined by a'seam on the other edge of the blade.
  • a sheathed propeller blade including sheet material ap lied to both sides of the blade, the materia being bent seamless over that edge of the blade having the lesser exposure to injury and wear and being joined y a -seam providing four thicknesses of the sheet material at that edge of the blade having the greater exposure to injury and wear.
  • a sheathed propeller blade including sectional sheet material applied to both sides of the blade and joined at the leading ed e ot" the blade by a seam providing four thicknesses of the sheet material.
  • a sheathed propeller blade including sheet material applied to both sides of the blade and joined at the edge of the blade by a folded seam providing a plurality of thicknesses of sheet material at the seamed portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

S. HEATH AIRPLANE PROPELLER July 14, 192s.A 1,545,560
Filed Aug, 6, 1924 Patented July 14, .1925.
PA'iifnrr OFFICE.
SPENGEB HEATH, F ELKBIDGE, MARYLAND.
AIBPLANE rnoPELLEn.
application mea' august e, 1924. serial in. 730,475.
To all 'whom t may concern:
Be it known that I, SPENCER HEATH, a
i citizen of the United States, residing at Elkridge, 'in the county of Howard and State of Maryland, have invented certain new and useful Improvements in ,Airplane j Propellers, of which the following is a specification.
This invention relates to airplane propellers and has particular reference to propellers made of wood or other non-metallic material in which it is necessary to protect the propeller' blades by metal sheathing covering those portions of the blades most exposed to wear. l
The objects of this invention aieto pr0- vide means for fitting the metal more closely and rml to the wood, especially on its convex si e, to provide more secure means for joining the metal at the edges of the blades and to provide more durable protection of the edges of the blade against damage With these and other objects in view I have invented the improvements described in this specification and illustrated by the attached drawing, in which:
Figure 1 is a plan view;
Figure 2 is a section on line 2-2 of F.` 1; Figure 3 is a section on line 3 3 of ig. 1; and
Figure 4 is a section showing the method of metal sheathing heretofore employed.v
For ten or twelve years it has been the practice to attach the sheet metal to the blade faces by rivets or screws with the metal extending somewhat beyond the edges of the blades and to bend the metal over 'the ed es of the wood in plain laps as shown in 1g. 4, the metal being held together onl by solder between the portions lap ed. nder this practice there are two specia difficulties:
First, in applying the metal and `joining it at the edges of the blades there is no practicable means for stretching and drawing the metal tightly and smoothly over the surface of the wood, the consequence being that there is cushion-like effect between the rlvets or screws and at the lapped edges the metal does not draw firmly down against the wood, thus making the edge of the propeller insubstantial and subject to dents. Second, the soldered lap joints frequently crystallize and give way under the intense vibration of 1500 to 2000 and upwards revolutions per minute. i
To obviate these diiiculties I use a double lock seam for joining the metal at the edges of the blades. This seam is clearly shown at numeral 10 in Figs. l, 2 and 3. The metal is first secured to the wood in that port-ion remote from the part to be seamed i as by the line of rivets 11 (with few or only temporary fastenings near the edge to be seamed) The edges of the upper and lower sheets of metal 12 .and 13 `are carried forward together in a straight '-line as shown by the vdot-ted lines at 14 and 15, the lower sheety projecting further than the upper and turned back upon it as shown dotted at 16 to make a three-ply portion beyond the edge of the blade. This is called the first turning. The second turning consists in folding the three-ply dotted portion back against thel upper portion 12, thus completing the lock joint as shown at 10. This second turning has the im ortant eHect of drawing and 'stretching t e portions 12 and 13 tight and firm over the wood and bringing the seam itself hard up against the edge of the blade with the firm stiffness and 'protection of four thicknesses of metal instead of two.
In practice, the thickness of metal and the size of the seam 10 is much smaller than in my illustration so that the seam imbeds itself partially into the edge of the blade with llttle if any-distortion of the general contour. This stretching and double locking seam has been found of itself sufficiently strong to hold but its stren h can be further increased by running so der in between the folds of the seam, 1n which ca se the solder at the edge of the seam 17 .further im roves the contour.
n account of the metal crystallizing when put in single sheets, I refer to apply the metal on each side of the lade in several sections in accordance with my U. S. Patent No. 1,339,886, and with overlapped edges as shown at 18 and 19 in Fig. 1.
The stretching and locking seam is of peculiar value as applied to the leading edge of the blade (which is most exposed to injury and wear) but when both edges of the blade where the metal is applied are considerably curved the stretchlng and locking seam is formed on both edges of the blade. However, where one edge is straight or nearly so I prefer making the tip section for both sides of the blade in one plece and bending it without a seam over the straight edge of the blade as shown at 20 in Figs. 1 and 3 and forming the lock. seam along the other edge of the blade and around the end.
This bending Without seam is most desired Where the trailing edge of the blade is the straight edge, the protective interlocking seam then being formed, asV shown on the drawing, on the leading edge, which is the edge most subject to wear.
While I have described my invention as relating to Wooden blades protected by metal sheets it is to be understood as applying' to -any materials that can be manipulated in the general manner described.
Besides the advantages of close fitting sheets and harder and more durable edges a further value of this method of sheathing lies in that actthat by it the sheathing can be adequately secured to the blades Without employment of an solder in the seams this not only making t e Work more economical but opening up the employment as blade sheathing of such materials as duralumin7 and other light and strong alloys or other desirable materials which it, may not be practicable to unite by soldered seams.
Having fully described my invention and the method of its practice, What I claim is:
l. A sheathed propeller blade including sheet material applied to both sides ot' the blade and joined at the edge of the blade by a double turned seam providing four thicknesses of sheet material at the seamed portion. y
2. A sheathed propeller blade including sheet material applied to both sides of the blade and joined at the leading edge of the blade by a seam providing four thicknesses of the sheet material.
31 A sheathed propeller blade including sheet material applied to both sides of the bl-ade, the material being bent seamless over one edge of the blade and joined by a'seam on the other edge of the blade.
4. A sheathed propeller blade including sheet material ap lied to both sides of the blade, the materia being bent seamless over that edge of the blade having the lesser exposure to injury and wear and being joined y a -seam providing four thicknesses of the sheet material at that edge of the blade having the greater exposure to injury and wear.
5. A sheathed propeller blade including sectional sheet material applied to both sides of the blade and joined at the leading ed e ot" the blade by a seam providing four thicknesses of the sheet material.
6. The method of sheathing propeller blades Which consists in appl ing sheet material to both sides of the blades With the edges of said material projecting beyond the edge of the blade, attaching the material to the blade at some distance from the projecting edges and doubling said edges together in such manner as to stretch the material between its attachment to the blade and its projecting edges and at the same time to form an interlocking seam.
7. A sheathed propeller blade including sheet material applied to both sides of the blade and joined at the edge of the blade by a folded seam providing a plurality of thicknesses of sheet material at the seamed portion.
In testimony whereof, I hereunto aiiix my signature.
SPENCER HEATH.
US730475A 1924-08-06 1924-08-06 Airplane propeller Expired - Lifetime US1545560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US730475A US1545560A (en) 1924-08-06 1924-08-06 Airplane propeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US730475A US1545560A (en) 1924-08-06 1924-08-06 Airplane propeller

Publications (1)

Publication Number Publication Date
US1545560A true US1545560A (en) 1925-07-14

Family

ID=24935515

Family Applications (1)

Application Number Title Priority Date Filing Date
US730475A Expired - Lifetime US1545560A (en) 1924-08-06 1924-08-06 Airplane propeller

Country Status (1)

Country Link
US (1) US1545560A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2725240A1 (en) * 1994-09-30 1996-04-05 Gen Electric A FIN OF COMPOSITE MATERIAL, ESPECIALLY FOR TURBOMOTORS
US20100296942A1 (en) * 2009-05-21 2010-11-25 Rolls-Royce Plc Reinforced composite aerofoil blade
US8556579B2 (en) 2009-05-21 2013-10-15 Rolls-Royce Plc Composite aerofoil blade with wear-resistant tip
US9151173B2 (en) 2011-12-15 2015-10-06 General Electric Company Use of multi-faceted impingement openings for increasing heat transfer characteristics on gas turbine components
FR3041683A1 (en) * 2015-09-28 2017-03-31 Snecma DAWN COMPRISING A PLATED ATTACK SHIELD AND METHOD OF FABRICATING THE BLADE
US9638209B1 (en) 2015-07-08 2017-05-02 Van Scott Cogley Ceiling fan blade attachment
US10787243B2 (en) * 2017-07-13 2020-09-29 Ratier-Figeac Sas Protection of propeller components

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785498A (en) * 1994-09-30 1998-07-28 General Electric Company Composite fan blade trailing edge reinforcement
FR2725240A1 (en) * 1994-09-30 1996-04-05 Gen Electric A FIN OF COMPOSITE MATERIAL, ESPECIALLY FOR TURBOMOTORS
US20100296942A1 (en) * 2009-05-21 2010-11-25 Rolls-Royce Plc Reinforced composite aerofoil blade
US8556579B2 (en) 2009-05-21 2013-10-15 Rolls-Royce Plc Composite aerofoil blade with wear-resistant tip
US8647070B2 (en) * 2009-05-21 2014-02-11 Rolls-Royce Plc Reinforced composite aerofoil blade
US9151173B2 (en) 2011-12-15 2015-10-06 General Electric Company Use of multi-faceted impingement openings for increasing heat transfer characteristics on gas turbine components
US9638209B1 (en) 2015-07-08 2017-05-02 Van Scott Cogley Ceiling fan blade attachment
FR3041683A1 (en) * 2015-09-28 2017-03-31 Snecma DAWN COMPRISING A PLATED ATTACK SHIELD AND METHOD OF FABRICATING THE BLADE
WO2017055726A1 (en) * 2015-09-28 2017-04-06 Safran Aircraft Engines Blade comprising a leading edge shield and method of manufacturing the blade
CN108026777A (en) * 2015-09-28 2018-05-11 赛峰飞机发动机公司 Blade and its manufacture method including folding leading edge protector
RU2730201C2 (en) * 2015-09-28 2020-08-19 Сафран Эркрафт Энджинз Blade, vane manufacturing method and turbojet engine containing such blade
US10883374B2 (en) 2015-09-28 2021-01-05 Safran Aircraft Engines Blade comprising a folded leading edge shield and method of manufacturing the blade
US10787243B2 (en) * 2017-07-13 2020-09-29 Ratier-Figeac Sas Protection of propeller components

Similar Documents

Publication Publication Date Title
US3090087A (en) Stock material for use as edging strip
US1545560A (en) Airplane propeller
US2441858A (en) Method of making fabricated structures
US1946129A (en) Noiseless propeller blade for aircraft
US3420477A (en) Integral fuel tank
US2323316A (en) Seam construction
US1404849A (en) Sheathing for aeroplane propellers
US2125882A (en) Aircraft construction
US1009644A (en) Method of fastening paper sheets and the like.
US1124637A (en) Canoe.
US2351121A (en) Curved structure
US1298541A (en) Sheet-metal covering.
US933A (en) Mode of covering the roofs of buildings with tin-plate or other metal
US2067665A (en) Veneered tubing
US1630558A (en) Joint for sheet-metal plates
US467999A (en) Screw-beaded sheet-metal pipe
US46147A (en) Improved rudder with corrugated surfaces
US1132952A (en) Car-roofing.
US1716402A (en) Composite sheet material
US1880479A (en) Airplane truss joint construction
US2007308A (en) Method of soldering
US929666A (en) Metallic hoop.
US1559173A (en) Screw propeller
US1855768A (en) Aeroplane wing
US1038195A (en) Corner-protector.