US1490219A - Resilient driving connection - Google Patents

Resilient driving connection Download PDF

Info

Publication number
US1490219A
US1490219A US1490219DA US1490219A US 1490219 A US1490219 A US 1490219A US 1490219D A US1490219D A US 1490219DA US 1490219 A US1490219 A US 1490219A
Authority
US
United States
Prior art keywords
shaft
bearing
sleeve
driving connection
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US1490219A publication Critical patent/US1490219A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles

Definitions

  • Our invention relates to resilient driving connections and particularly to flexible shafts.
  • One of the objects of our invention is to provide a flexible shaft through which power is transmitted from a driving member to a driven member, of such form that shock or jars incident to the Operation of the mechanism, or relative irregularities of movement therebetween will be absorbed or compensated for.
  • a further object of our invention is-the provision of a flexible shaft of such construction that it will withstand bending strains and at the same time yield under torsional stresses.
  • the driving connections ofr railway motors are also subject to strains by reason of irregularities in the track.
  • Figure l is a View, in longitudinal section, of a machine employing Our invention.
  • Fig. 2 is a modified form of shaft construction thatV isadapted to carry two ,ings'7l and 8 are carried in brackets 9 and 1Y0,
  • the entire weight of the armature 51 is .carried by the hollow shaft,. or sleeve member, 6, and theV shaft 6 is keyed at point 11 to a shaft 12 'of steel or other iiexible material, or the shaft 1-2 may have la press fit with the sleeve member 6.
  • the shaft 12 is an enlarged portion 14.
  • a pinion V1.5 is keyed to the shaft at its thicker end.
  • the shaft v12 is supported by the sleeve member 6 and is non-rotatable with respect thereto, while at its enlarged end, the shaft 12 is in direct bearing engagement with and is supported by, the bearing 8.
  • the sleeve member extends only partially across the.
  • Lubrication may be introduced through the bearings 7 and 8, in any desired manner, as, for instance, through openings 18 in each of the end brackets 10 and into journal boxes 19 that have communication with the interior faces of the bearing members 7 and 8.
  • Oil deflectors 2O and 21 are provided and function in the usual manner.
  • a sleeve member 6 l1s provided to serve as a shaft for the armature and is supported in bearings 8 and 8a.
  • Two shaft members 12a are provided that function in the same manner as that just described in connection with the shaft 12 of Fig. 1.
  • the shaft sections 12a are secured to the sleeve 6a by a press fit or key connection, at 11a.

Description

April 15 1924.
v l 1,490,219 J. M. LABBERToN Erm..
RES ILIENT DRIVING CONNECTION Filed April 25. 1'921 d m 'i BY I TOREY Patented pr. 15, 1924.
UNITED, STATES 1,490,219 PATE NT OFFICE.
` JOHN M. LABBERTON OE WILKINSRURG, AND `GEORGE M.' EATON AND NORMAN W.
sToRER, OE PITTSBURGH, PENNSYLVANIA, AssIGNoRs To WEsTINGHoUsE ELEC- TRIO a MANUFACTURING COMPANY, A CORPORATION or PENNSYLVANIA.
RESILIENT DRIVING CONNECTION".
Application filed April 25,1921. Serial No. 464,417. l
vv To all 'whom t may concern:
Be it known that we, JOHN M. LABBERTON, a citizen of the United States, and a resident of Wilkinsburg, in the county of Allegheny and State of Pennsylvania, and GEORGE M. EATON, a citizen of the United States, and a resident of Pittsburgh, in the county of Allegheny and State of Pennsylvania, and NORMAN WV. STORER, a citizen of the United States, and a resident of Pittsburgh, in the county of Allegheny and State of Pennsylvania, have invented a new and useful Improvement in Resilient Driving `Connections, of which the following is a specification.
Our invention relates to resilient driving connections and particularly to flexible shafts.
, One of the objects of our invention is to provide a flexible shaft through which power is transmitted from a driving member to a driven member, of such form that shock or jars incident to the Operation of the mechanism, or relative irregularities of movement therebetween will be absorbed or compensated for.A
A A further object of our invention is-the provision of a flexible shaft of such construction that it will withstand bending strains and at the same time yield under torsional stresses.
-Stated generally, our invention contempinions.
plates the provision of a flexible shaft that possesses both a high degree of strength and of resilience. ally applicable inV connection with electric motors wherein the motor, through its shaft and a pinion thereon drives a gear. In such construction, any irregularity of tooth formation in either the gear or the pinion subjects the armature of the motor to shocks, and, in cases wherein there are pinions on both ends of the shaft, that drive -rigidly connected gears, any irregularitiesl in tooth formation tend to seriously injure the teeth and to cause an undue strain upon the rmechanism associated with the gears and pinions.
Furthermore, in the case ofalternating current motors, the vibration caused by the alternations of the current is frequently.
transmitted to the driven apparatus, and, when the frequency of alternating of the mitted are` quite Our. invention is exception' current is low, the vibrations thus translikely to be highly objectionable. y
The driving connections ofr railway motors are also subject to strains by reason of irregularities in the track.
.c While flexible shafts have heretofore been employed in drives of a similar character,
shaft, with the result that the flexible shaft would wear rapidly, by reason of the relative rotative and transverse movements that took'place between the hollow shaft and the flexible shaft mounted therein.
By means of our construction, we are enabledto properly lubricatethe flexible shaft land to secure a proper degree of resilience Y witho-ut the sacrifice ofcapacity to withstand bending strains.
In .the accompanying drawing, Figure l is a View, in longitudinal section, of a machine employing Our invention, and
Fig. 2 is a modified form of shaft construction thatV isadapted to carry two ,ings'7l and 8 are carried in brackets 9 and 1Y0,
respectively, .thatl close the ends ofthe motor The entire weight of the armature 51 is .carried by the hollow shaft,. or sleeve member, 6, and theV shaft 6 is keyed at point 11 to a shaft 12 'of steel or other iiexible material, or the shaft 1-2 may have la press fit with the sleeve member 6. The shaft 12 is an enlarged portion 14. A pinion V1.5 is keyed to the shaft at its thicker end.
It will be apparent that, at its reduced end, the shaft v12 is supported by the sleeve member 6 and is non-rotatable with respect thereto, while at its enlarged end, the shaft 12 is in direct bearing engagement with and is supported by, the bearing 8. The sleeve member extends only partially across the.
bearing face of the member 8, and clearance is provided between the shaft 12 and the sleeve 6 throughout the entire length of the sleeve with the exception of the relatively small portion thereof that lies within the bearing 7.
Lubrication may be introduced through the bearings 7 and 8, in any desired manner, as, for instance, through openings 18 in each of the end brackets 10 and into journal boxes 19 that have communication with the interior faces of the bearing members 7 and 8. Oil deflectors 2O and 21 are provided and function in the usual manner. Y
It will be apparent that the greatest bending stresses on the shaft 12 occur at its pinion end, that is at the bearing 8, and that the greatest resilience o-f the shaft is adjacent to its reduced end 18.
As the distance from the pinion end of the'shaft, in a direction toward its reduced end, increases, the bending strain on the shaft decreases, and the torsional flexibility thereof increases, so that the greatest bending strain is applied to a portion of the shaft that is subject to the least torsional deflection and the greatest torsional deflection occurs in the po-rtion where the smallest amount of bending strain is imposed.
Inasmuch as the variation in thickness of the shaft is uniform from one end to the other thereof, it will be clear that the combined bending and torsional strains are substantially the same at any point throughout the active length of the shaft.
An important feature of the invention resides in the manner in which the sleeve 6 and the shaft 12 are supported in the bearing 8. Our improved bearingy permits the lubrication of both the enlarged end of the shaft 12 and o-f the adjacent end of the sleeve 6. If the sleeve 6 were to be extended to the outer end of the bearing 8, the enlarged end of the shaft 12 would have bearing engagement with the interior face of the sleeve. Such construction would prevent proper lubrication of the enlargedV end of the shaft, and relative rotative movement thereof with respect to the sleeve 6, as well as its transverse movements therein, would suib-ject their opposing bearing faces to excessive wea-r.
' In F ig. 2, there is shown a construction of a form that may be employed in con- 'nection with motors with which it is desired to employ two pinions.
In such construction, a sleeve member 6 l1s provided to serve as a shaft for the armature and is supported in bearings 8 and 8a.
Two shaft members 12a are provided that function in the same manner as that just described in connection with the shaft 12 of Fig. 1. In the modied construction, the shaft sections 12a are secured to the sleeve 6a by a press fit or key connection, at 11a.
It will be apparent that pinions carried on the ends of the shafts 12EL will be liexible relative to each other and also flexible relative to the sleeve or motor shaft 6a. The former feature is important in cases where the respective pinions have driving connection with a pair of rigidly connected gears, in that irregularities of tooth engagement between the gear and pinion at one end will not result in undue stresses either upon such members directly nor upon the driving connections at the opposite end of the shaft.
We claim as our invention:
1. The combination with a driving motor, of a hollow shaft therefor, a rod secured to the hollow shaft at one end and extending therethrough to a point beyond the other end of the hollow shaft, a bearing for the first-named end of the hollow shaft and a bearing for the other end of said shaft and for the rod, the free end of the rod and the bearing being so formed as to have cooperative bearing engagement.
2. The combination with a driving motor, of a hollow shaft therefor, a rod extending through the hollow shaft and secured to it at one end, a gear member secured to the free end of the rod, a bearing member for the first named end of the hollow shaft, and a bearing for the other end of the hollow .shaft and for the adjacent end of the rod.
3. The combination with a driving motor, of a rotatable supporting member therefor and a flexible shaft having one of its ends connected to the rotatable member and its other end supported' independently thereof, the shaft adjacent to its latter named end being of enlarged cross-sectional area and comparatively rigid.
4f. The combination with a driving motor, of a rotatable supporting member therefor and a shaft having one of its ends connected to the rotatable member and its other end supported independently thereof and adapted to carry a gear wheel,v the shaft being of comparatively small cross-sectional area adjacent to its irst-named end and increasing in cross-sectional area Iin a direction towards its other end.
5. The combination with a driving motor, of a rotatable sup-porting member therefor and a shaft having one of its ends connected to the rotatable member and its other end supported independently thereof, the shaft adjacent to vits first-named end being of reduced cross-sectional area and adapted the first-named end of the shaft being of to yield readily under torsional stresses. relatively large cross-sectional area. 10
6. In driving mechanism, a flexible shaft, In testimony whereof, We have hereunto a hearing adjacent toy one end of the shaft, subscribed our names this 18th day of a driving connection adjacent to the bear- April, 1921.
ing, a driving connection adjacent to the JOHN M. LABBERTON.
other end of the shaft, and mea-ns for sup- GEORGE M. EATON.
porting the latter named end against strains, NORMAN W. STORER.
US1490219D Resilient driving connection Expired - Lifetime US1490219A (en)

Publications (1)

Publication Number Publication Date
US1490219A true US1490219A (en) 1924-04-15

Family

ID=3406497

Family Applications (1)

Application Number Title Priority Date Filing Date
US1490219D Expired - Lifetime US1490219A (en) Resilient driving connection

Country Status (1)

Country Link
US (1) US1490219A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760719A (en) * 1952-06-30 1956-08-28 Garrett Corp Compressor
US3037455A (en) * 1957-09-04 1962-06-05 Ford Motor Co Pumps
US3274799A (en) * 1964-03-30 1966-09-27 Eugene G Danner Drive-shaft arrangement for a fluid circulating device
US4227092A (en) * 1977-11-30 1980-10-07 The United States Of America As Represented By The Secretary Of The Army Hand cranked electrical power source
US4272971A (en) * 1979-02-26 1981-06-16 Rockwell International Corporation Reinforced tubular structure
US4348247A (en) * 1979-02-26 1982-09-07 Rockwell International Corporation Method of fabricating a reinforced tubular structure
US5320580A (en) * 1990-07-09 1994-06-14 Simon Joseph A Lightweight drive shaft
US20150171704A1 (en) * 2012-03-30 2015-06-18 Techni Holding As Torsion compensator
US11131247B2 (en) 2018-01-30 2021-09-28 General Electric Company Additively manufactured rotating shaft

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760719A (en) * 1952-06-30 1956-08-28 Garrett Corp Compressor
US3037455A (en) * 1957-09-04 1962-06-05 Ford Motor Co Pumps
US3274799A (en) * 1964-03-30 1966-09-27 Eugene G Danner Drive-shaft arrangement for a fluid circulating device
US4227092A (en) * 1977-11-30 1980-10-07 The United States Of America As Represented By The Secretary Of The Army Hand cranked electrical power source
US4272971A (en) * 1979-02-26 1981-06-16 Rockwell International Corporation Reinforced tubular structure
US4348247A (en) * 1979-02-26 1982-09-07 Rockwell International Corporation Method of fabricating a reinforced tubular structure
US5320580A (en) * 1990-07-09 1994-06-14 Simon Joseph A Lightweight drive shaft
US20150171704A1 (en) * 2012-03-30 2015-06-18 Techni Holding As Torsion compensator
US10205364B2 (en) * 2012-03-30 2019-02-12 Techni Holding As Torsion compensator
US11131247B2 (en) 2018-01-30 2021-09-28 General Electric Company Additively manufactured rotating shaft

Similar Documents

Publication Publication Date Title
US1490219A (en) Resilient driving connection
US2592309A (en) Flexible coupling
US3135224A (en) Traction motor suspension
US1933456A (en) Dust guard
US1645510A (en) Flexible element
US1561476A (en) Torque-cushioning device
US1750559A (en) Railway car
US1673959A (en) Yieldable coupling, toothed wheel, and the like
US3194083A (en) Hollow power transmission members
US1506739A (en) Resilient driving connection
US1275029A (en) Resilient driving connection.
US1326568A (en) Toothed-wheel driving mechanism of electric locomotives.
US2439919A (en) Flexible drive
US2234070A (en) Suspension means for the driving motors in electric traction vehicles
US2179425A (en) Drive for vehicle axles
US1367625A (en) Power-transmission mechanism
US1635551A (en) Quill drive
US1649119A (en) Flexible shaft
US1118371A (en) Electric locomotive.
US1729435A (en) Flexible gear wheel
US1062172A (en) Motor-vehicle.
US816611A (en) Flexible connection and suspension device for gearless motors.
US1511390A (en) Flexible shaft
US1417937A (en) Gear for railway motors
US2360521A (en) Transmission mechanism