US12078237B2 - Transfer cooling structure of vehicle - Google Patents

Transfer cooling structure of vehicle Download PDF

Info

Publication number
US12078237B2
US12078237B2 US17/649,522 US202217649522A US12078237B2 US 12078237 B2 US12078237 B2 US 12078237B2 US 202217649522 A US202217649522 A US 202217649522A US 12078237 B2 US12078237 B2 US 12078237B2
Authority
US
United States
Prior art keywords
fins
transfer case
transfer
vehicle
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/649,522
Other versions
US20220307584A1 (en
Inventor
Syouta Yamada
Masayoshi Enomoto
Masato Fukuda
Takayuki Takamori
Kazuhiro KAGEYAMA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Assigned to MAZDA MOTOR CORPORATION reassignment MAZDA MOTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENOMOTO, MASAYOSHI, KAGEYAMA, KAZUHIRO, FUKUDA, MASATO, TAKAMORI, TAKAYUKI, YAMADA, SYOUTA
Publication of US20220307584A1 publication Critical patent/US20220307584A1/en
Application granted granted Critical
Publication of US12078237B2 publication Critical patent/US12078237B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • F16H57/0415Air cooling or ventilation; Heat exchangers; Thermal insulations
    • F16H57/0416Air cooling or ventilation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0861Insulating elements, e.g. for sound insulation for covering undersurfaces of vehicles, e.g. wheel houses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02008Gearboxes; Mounting gearing therein characterised by specific dividing lines or planes of the gear case
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02043Gearboxes for particular applications for vehicle transmissions
    • F16H2057/02047Automatic transmissions

Definitions

  • the present disclosure relates to a transfer cooling structure of a vehicle, particularly, a transfer cooling structure applied to a four-wheel-drive vehicle.
  • FR front-engine, rear-wheel-drive
  • a drive source e.g., an engine
  • the drive source and a transmission are disposed at a front part of a vehicle body so that their axes extend in a front-and-rear direction of the vehicle body, and the driving force transmitted from the transmission is sent to the rear wheels (main drive wheels) through a rear-wheel output shaft extending rearwardly via a rear-wheel propeller shaft and a rear-wheel differential gear.
  • a transfer device which extracts a driving force to be transmitted to front wheels (auxiliary drive wheels) is provided on the rear-wheel output shaft, and the driving force extracted to a front-wheel output shaft of the transfer device is transmitted to the front wheels via a front-wheel propeller shaft extending forwardly and a front-wheel differential gear.
  • the transfer device is provided, on the rear-wheel output shaft, with a friction clutch for torque distribution control which extracts the driving force for the front wheels, and the driving force extracted by the torque-distribution-control friction clutch is transmitted to the front-wheel output shaft via a chain-type or a gear-type powertrain mechanism.
  • the 4WD vehicle on which the transfer device is mounted controls engagement of the torque-distribution-control friction clutch so as to distribute the driving force to each of the rear-wheel output shaft and the front-wheel output shaft. At this time, the clutch generates heat by friction. Because of this temperature increase, a power transmission performance decreases, and thus, cooling of the clutch is required.
  • JP2018-165522A discloses a cooling structure for a front-engine and front-wheel-drive based 4WD vehicle.
  • a powertrain of the vehicle includes a transmission and a transfer device.
  • the cooling structure cools the powertrain by providing a guiding wall part defining a wind passage part extending in an up-and-down direction between an engine and the powertrain so as to guide air taken-in during a travel (traveling air) from below the vehicle, to the wind passage part.
  • the transfer device accommodating the torque-distribution-control friction clutch, especially the friction clutch easily generates heat and affects the power transmission performance. Therefore, it is required to blow the traveling air to a part where the torque-distribution-control friction clutch is accommodated, to cool the part.
  • Such a transfer device is desired to increase a cooling performance with a simple configuration.
  • the present disclosure is made in view of the above situations, and one purpose thereof is to provide a transfer cooling structure of a vehicle, capable of improving the cooling performance of a transfer device provided with a friction clutch for torque distribution control.
  • a transfer cooling structure of a vehicle including a power source, a transmission, and a transfer device provided with a torque-distribution-control friction clutch, disposed in the order from forward of the vehicle.
  • the structure includes a floor provided to the vehicle and having a tunnel part configured to cover a transmission case of the transmission and a transfer case of the transfer device from above, an insulator attached below the tunnel part to cover the transmission case and the transfer case while having a gap with respect to the transmission case and the transfer case, and a cooling acceleration part provided to the insulator protruding toward the transfer case from the floor side.
  • the cooling acceleration part increases a flow rate of traveling air which is taken in from forward of the vehicle and flows through between the transmission case and the insulator, and then between the transfer case and the insulator. Therefore, the cooling performance of the transfer device provided with the torque-distribution-control friction clutch is improved. Further, with the simple configuration of changing the shape of the part of the insulator which is provided to reduce noise caused by the transmission and the transfer device, the cooling performance of the transfer device can be improved.
  • the gap between the insulator, and the transmission case and the transfer case may be the smallest at the cooling acceleration part.
  • the cooling performance of the transfer device can be further improved.
  • a given member may be provided above the transmission case, and a rectifying cover may be provided at a rear part of the given member.
  • the power source may include a motor, and the given member may include an inverter.
  • the transfer device in a hybrid vehicle including the engine and the motor as the power source, the transfer device can be cooled even when the inverter is disposed above the transmission case.
  • the transfer device provided with the torque-distribution-control friction clutch, a power transmission performance of the hybrid vehicle can be improved.
  • a plurality of fins may be provided to outside of the transfer case, and a fin of the plurality of fins provided to an upper part of the transfer case may have a taller height compared to fins of the plurality of fins provided to other parts of the transfer case.
  • the fin provided to the upper part of the transfer case is formed to have the taller height compared to the fins provided to the other parts of the transfer case, the surface area of the upper fin becomes larger. Therefore, a heat dissipation effect increases, and the cooling effect of the transfer device provided with the torque-distribution-control friction clutch is enhanced.
  • the cooling acceleration part may include a substantially U-shaped curved surface extending in a front-and-rear direction of a vehicle body.
  • the curved surface may curve downwardly in an arc shape from a front end part to a central part of the curved surface in the front-and-rear direction so that the gap with respect to the transfer case is gradually reduced, and curve upwardly in an arc shape from the central part to a rear end part of the curved surface so that the gap with respect to the transfer case is gradually increased.
  • the curved surface may include at the central part an arc part protruding upwardly in a vehicle-width direction so as to conform to the shape of the insulator protruding upwardly to cover above and left and right sides of the transfer case.
  • the plurality of fins may extend in a front-and-rear direction of the vehicle and may be provided to an upper part, a lower part, a left part, and a right part of a cylindrical part of a transfer case body of the transfer device.
  • the fins provided to the upper part may extend perpendicular to a vehicle-width direction, and may be formed to have a taller height compared to the fins provided to the lower part, the fins provided to the left part, and the fins provided to the right part.
  • FIG. 1 is a schematic diagram illustrating a powertrain mechanism of a four-wheel-drive (4WD) vehicle on which a transfer device according to one embodiment of the present disclosure is mounted.
  • FIG. 2 is a cross-sectional view schematically illustrating a transfer cooling structure of the 4WD vehicle when taken along a line II-II of FIG. 1 .
  • FIG. 3 is a schematic diagram illustrating an insulator of the transfer cooling structure illustrated in FIG. 2 .
  • FIG. 4 is a cross-sectional view schematically illustrating the insulator and a transmission when taken along a line IV-IV of FIG. 2 .
  • FIG. 5 is a cross-sectional view schematically illustrating the insulator and the transfer device when taken along a line V-V of FIG. 2 .
  • FIG. 6 is a schematic diagram of a transfer case of the transfer device illustrated in FIG. 1 when seen from a left side in a vehicle-width direction.
  • FIG. 7 is a schematic diagram of the transfer case of the transfer device illustrated in FIG. 1 when seen from a right side in the vehicle-width direction.
  • FIG. 1 is a schematic diagram illustrating a powertrain mechanism of a four-wheel-drive vehicle on which a transfer device according to this embodiment is mounted.
  • a four-wheel-drive (4WD) vehicle 1 on which a transfer device according to this embodiment is mounted is a front-engine rear-wheel-drive (FR) based hybrid 4WD vehicle, and an engine 2 and a motor 3 as drive sources and a transmission 4 are disposed at a front part of a vehicle body so that their axes extend in a front-and-rear direction of the vehicle body.
  • FR front-engine rear-wheel-drive
  • a transfer device 10 is provided so as to transmit a driving force sent from the engine 2 and the motor 3 through the transmission 4 , to rear wheels (main drive wheels) via a rear-wheel propeller shaft extending rearwardly and a rear-wheel differential gear, as well as to extract a driving force to be transmitted to front wheels (auxiliary drive wheels).
  • FIG. 2 is a cross-sectional view schematically illustrating a transfer cooling structure of the 4WD vehicle 1 when taken along a line II-II of FIG. 1 .
  • an inverter 50 which converts direct current from a battery to alternating current and drives the motor 3 is disposed above the transmission 4 near the motor 3 .
  • the inverter 50 is connected, at its rear side, to a harness 51 connected to each of the battery and the motor 3 , and a rectifying cover 52 extending rearwardly is disposed to cover the harness 51 .
  • the rectifying cover 52 is formed to have a curved surface 53 which inclines gradually downwardly to the rear side, and both sides of the curved surface 53 in a vehicle-width direction extend in a direction perpendicular to the vehicle-width direction along both sides of the inverter 50 in the vehicle-width direction.
  • a floor 100 as a floor surface inside a cabin of the 4WD vehicle 1 is disposed above a transmission case 4 a of the transmission 4 and a transfer case 10 a of the transfer device 10 .
  • the floor 100 is provided with a tunnel part 100 a which extends in the front-and-rear direction along the transmission 4 and the transfer device 10 , and is concaved upwardly so as to cover the transmission case 4 a and the inverter 50 , and the transfer case 10 a from above.
  • the floor 100 is coupled, at the front side, with a dash panel 110 which extends upwardly to define the cabin and an engine bay 113 .
  • a dash panel 110 which extends upwardly to define the cabin and an engine bay 113 .
  • both of left and right sides of the dash panel 110 in the vehicle-width direction are coupled to front side panels 111 a and 111 b extending forwardly, respectively.
  • the front side panels 111 a and 111 b are coupled, at the front side, with a front bumper 112 extending to the left and right sides in the vehicle-width direction.
  • the engine 2 and the motor 3 of the 4WD vehicle 1 are disposed in the engine bay 113 surrounded by the front side panels 111 a and 111 b and the front bumper 112 .
  • the front bumper 112 is provided, at its substantially center in the vehicle-width direction, with a front grill 114 having a plurality of openings.
  • the front grill 114 takes traveling air into the engine bay 113 from forward when the 4WD vehicle 1 travels.
  • the 4WD vehicle 1 is provided, at below the tunnel part 100 a of the floor 100 , with an insulator 120 so as to cover the transmission case 4 a and the inverter 50 , and the transfer case 10 a while having a gap with respect to them.
  • the insulator 120 is made of a plate-like member and attached to the floor 100 by a bolt(s) (screw(s)) and a clip(s), and reduces noise caused by the transmission 4 and the transfer device 10 during the traveling of the 4WD vehicle 1 .
  • FIG. 3 is a schematic diagram illustrating the insulator 120 of the transfer cooling structure illustrated in FIG. 2 .
  • the insulator 120 has a shape extending in the front-and-rear direction along the transmission case 4 a and the transfer case 10 a , and protruding upwardly from below so as to cover above and left and right sides of the transmission case 4 a and the transfer case 10 a.
  • the transfer device 10 includes, as a main-drive-wheel output shaft, a rear-wheel output shaft 11 coupled to an output shaft 4 b of the transmission 4 and extending rearwardly (one side in the vehicle front-and-rear direction), as an auxiliary-drive-wheel output shaft, a front-wheel output shaft 12 disposed in parallel with the rear-wheel output shaft 11 , and a powertrain mechanism 13 which transmits the driving force extracted from the rear-wheel output shaft 11 to the front-wheel output shaft 12 .
  • the transfer device 10 includes a coupling provided on the rear-wheel output shaft 11 and having a torque-distribution-control friction clutch 16 coupled to the rear-wheel output shaft 11 to extract the driving force for the front wheels from the driving force transmitted to the rear-wheel output shaft 11 .
  • the torque-distribution-control friction clutch 16 is controlled through energization control of a solenoid by a control unit (not illustrated).
  • the powertrain mechanism 13 is a gear type, and includes a drive gear 14 which is provided to the front side of the torque-distribution-control friction clutch 16 on the rear-wheel output shaft 11 so as to be coupled to the torque-distribution-control friction clutch 16 , and a driven gear 15 which is provided on the front-wheel output shaft 12 and coupled thereto to mesh with the drive gear 14 .
  • the powertrain mechanism 13 transmits the front-wheel driving force, which is extracted from the rear-wheel output shaft 11 by the torque-distribution-control friction clutch 16 , to the front-wheel output shaft 12 .
  • a front-wheel propeller shaft 30 extending forwardly is coupled to a front end part of the front-wheel output shaft 12 .
  • the front-wheel propeller shaft 30 has a universal joint 31 at its rear end part, and is coupled to the front-wheel output shaft 12 via the universal joint 31 .
  • the front-wheel propeller shaft 30 also includes a universal joint 32 at its front end part, and is coupled to an input shaft 41 of a front-wheel differential gear 40 via the universal joint 32 .
  • the input shaft 41 of the front-wheel differential gear 40 is coupled to an axle 42 which is coupled to each of the left and right front wheels.
  • the front-wheel driving force extracted from the rear-wheel output shaft 11 by the torque-distribution-control friction clutch 16 is transmitted to the front-wheel output shaft 12 via the powertrain mechanism 13 , and then transmitted from the front-wheel output shaft 12 to the front wheels via the front-wheel propeller shaft 30 and the front-wheel differential gear 40 .
  • the torque-distribution-control friction clutch 16 extracts the front-wheel driving force while changing a front/rear torque distribution ratio of the front wheels to the rear wheels within a range from 0:100 to 50:50. Note that operation of the torque-distribution-control friction clutch 16 is controlled by a control unit (not illustrated).
  • the transfer device 10 also includes a damper 17 on the rear-wheel output shaft 11 between the torque-distribution-control friction clutch 16 and the drive gear 14 .
  • the damper 17 lowers a resonance frequency at which the drive system on the front-wheel side from the torque-distribution-control friction clutch 16 to the front wheels via the drive gear 14 , the driven gear 15 , the front-wheel output shaft 12 , the front-wheel propeller shaft 30 , and the front-wheel differential gear 40 resonates with a torque vibration of the engine 2 , to be below a practical range.
  • the insulator 120 is provided with a cooling acceleration part 121 which is located to be in agreement with the torque-distribution-control friction clutch 16 of the transfer device 10 in the front-and-rear direction, extends in the front-and-rear direction along the transfer case 10 a , and protrudes toward the transfer case 10 a from the floor 100 side.
  • the cooling acceleration part 121 is provided to overlap with the torque-distribution-control friction clutch 16 in the front-and-rear direction.
  • the cooling acceleration part 121 has a substantially U-shaped curved surface 122 extending in the front-and-rear direction.
  • the curved surface 122 curves downwardly in an arc shape from a front end part 122 a to a central part 122 b of the curved surface 122 in the front-and-rear direction so that a gap with respect to the transfer case 10 a is gradually reduced.
  • the curved surface 122 curves upwardly in an arc shape from the central part 122 b to a rear end part 122 c of the curved surface 122 so that the gap with respect to the transfer case 10 a is gradually increased.
  • the curved surface 122 has, at the central part 122 b , an arc part 122 d protruding upward when seen in the vehicle-width direction so as to conform to the shape of the insulator 120 which protrudes upward to cover above and left and right sides of the transfer case 10 a.
  • the insulator 120 is disposed to cover the transmission case 4 a and the inverter 50 , and the transfer case 10 a while having the gap with respect to them.
  • the gap between the insulator 120 and the transfer case 10 a is the smallest at the cooling acceleration part 121 .
  • the gap between the insulator 120 and the transfer case 10 a is the smallest at the cooling acceleration part 121 , and the gap is set to, but not limited to, about 30 mm.
  • a gap between the insulator 120 and a rear-end part of the inverter 50 is, but not limited to be, equal to the gap between the cooling acceleration part 121 and the transfer case 10 a.
  • FIG. 4 is a cross-sectional view schematically illustrating the insulator 120 and the transmission 4 when taken along a line Iv-Iv of FIG. 2 .
  • the gap between the insulator 120 and the inverter 50 disposed above the transmission case 4 a is formed on both of the left and right sides in the vehicle-width direction.
  • FIG. 5 is a cross-sectional view schematically illustrating the insulator 120 and the transfer device 10 when taken along a line v-v of FIG. 2 .
  • the gap between the insulator 120 and the transfer case 10 a is formed along the insulator 120 which covers above and left and right sides of the transfer case 10 a.
  • the insulator 120 is disposed to cover the transmission case 4 a and the inverter 50 , and the transfer case 10 a while having the gap with respect to them, when the 4WD vehicle 1 travels, as indicated by arrows, traveling air taken into the engine bay 113 through the front grill 114 flows through the gap between the insulator 120 and the transmission case 4 a at the front side of the transmission case 4 a .
  • the traveling air flowing through the gap between the insulator 120 and the transmission case 4 a passes through the gap between the insulator 120 and the inverter 50 , and then, is rectified toward the transfer case 10 a at the rectifying cover 52 disposed at the rearward of the inverter 50 .
  • the traveling air rectified toward the transfer case 10 a flows through the gap between the cooling acceleration part 121 of the insulator 120 and the transfer case 10 a . Since the cooling acceleration part 121 protrudes toward the transfer case 10 a from the floor 100 side, the gap between the insulator 120 and the transfer case 10 a becomes smaller, and a flow rate of the traveling air flowing through the gap increases.
  • the transfer case 10 a By the increase in the flow rate of the traveling air flowing through the gap between the cooling acceleration part 121 of the insulator 120 and the transfer case 10 a , the transfer case 10 a , particularly, a part of the transfer case 10 a where the torque-distribution-control friction clutch 16 is accommodated, is largely cooled.
  • the traveling air flowed through the gap between the cooling acceleration part 121 of the insulator 120 and the transfer case 10 a is discharged rearwardly.
  • FIG. 6 is a schematic diagram of the transfer case 10 a of the transfer device 10 illustrated in FIG. 1 when seen from the left side in the vehicle-width direction.
  • the transfer case 10 a includes a case body 18 , a front cover which covers a front side of the case body 18 , and a rear cover which covers a rear side of the case body 18 , and these components are fixed to each other by a bolt(s) (screw(s)).
  • the case body 18 includes a cylindrical part 18 a extending substantially cylindrically in an axial direction of the rear-wheel output shaft 11 , and a vertical wall part 18 b extending from the cylindrical part 18 a in a direction perpendicular to an axial direction of the front-wheel output shaft 12 , and the torque-distribution-control friction clutch 16 is accommodated inside the cylindrical part 18 a.
  • fins extending in the front-and-rear direction are provided outside of the cylindrical part 18 (in detail, an upper part, a lower part, a left part, and a right part).
  • upper fins 19 a provided to the upper part of the cylindrical part 18 a extend in a direction perpendicular to the vehicle-width direction and in parallel with the rear-wheel output shaft 11 .
  • the upper fins 19 a are formed to be taller in height compared to lower fins 19 b provided to the lower part of the cylindrical part 18 a , left fins 19 c provided to the left part of the cylindrical part 18 a , and right fins 19 d provided to the right part of the cylindrical part 18 a .
  • the vertical wall part 18 b is also provided with vertical wall part fins 19 e extending in the front-and-rear direction, and the upper fins 19 a are formed to be taller in height compared to the vertical wall part fins 19 e.
  • FIG. 7 is a schematic diagram of the transfer case 10 a of the transfer device 10 illustrated in FIG. 1 when seen from the right side. As illustrated in FIG. 7 , the right fins 19 d provided on the right side incline downwardly to the rear side.
  • the upper fins 19 a provided to the upper part of the transfer case 10 a are formed to have the taller height compared to the fins provided to the other parts of the transfer case 10 a , surface areas thereof are large. Therefore, as described above, when traveling air flows through the gap between the cooling acceleration part 121 of the insulator 120 and the transfer case 10 a , a heat dissipation effect increases, and thus, a cooling effect of the transfer case 10 a , particularly, of the cylindrical part 18 a of the transfer case 10 a where the torque-distribution-control friction clutch 16 is accommodated, is enhanced.
  • the insulator 120 provided to cover the transmission case 4 a of the transmission 4 and the transfer case 10 a of the transfer device 10 while having the gap with respect to them, is attached to below the tunnel part 100 a of the floor 100 .
  • the insulator 120 is provided with the cooling acceleration part 121 protruding toward the transfer case 10 a from the floor 100 side.
  • the cooling acceleration part 121 increases the flow rate of traveling air which is taken-in from forward of the 4WD vehicle 1 and flows through between the transmission case 4 a and the insulator 120 , and then between the transfer case 10 a and the insulator 120 . Therefore, a cooling performance of the transfer device 10 provided with the torque-distribution-control friction clutch 16 is improved. Further, with the simple configuration of changing the shape of the part of the insulator 120 which is provided to reduce noise caused by the transmission 4 and the transfer device 10 , the cooling performance of the transfer device 10 can be improved.
  • the cooling performance of the transfer device 10 can be further improved.
  • the inverter 50 is provided above the transmission case 4 a , and the rectifying cover 52 is provided at the rear part of the inverter 50 , traveling air which flows between the transmission 4 and the insulator 120 is rectified to flow through between the transfer case 10 a and the cooling acceleration part 121 of the insulator 120 , thus the transfer device 10 being cooled. Therefore, a power transmission performance of the 4WD vehicle 1 as a hybrid vehicle can be improved. Moreover, also when the harness 51 , etc., is disposed rearward of the inverter 50 , by providing the rectifying cover 52 to cover the harness 51 , generation of turbulence in the traveling air is suppressed, and the cooling of the transfer device 10 is facilitated.
  • the plurality of fins 19 a , 19 b , 19 c , 19 d , and 19 e are provided to the outside of the transfer case 10 a , and the upper fins 19 a provided to the upper part of the transfer case 10 a are formed to have the taller height compared to the fins 19 b , 19 c , 19 d , and 19 e provided to the other parts of the transfer case 10 a . Therefore, the surface areas of the upper fins 19 a become larger, and the heat dissipation effect increases, and the cooling effect of the transfer device 10 provided with the torque-distribution-control friction clutch 16 is enhanced.
  • the gap between the insulator 120 and the transfer case 10 a is the smallest at the cooling acceleration part 121 , and the gap with respect to the rear-end part of the inverter 50 is also equal to the gap between the cooling acceleration part 121 and the transfer case 10 a , only the gap between the cooling acceleration part 121 and the transfer case 10 a may be further smaller.
  • the 4WD vehicle 1 is the hybrid 4WD vehicle, it may be a 4WD vehicle having only the engine 2 as a power source.
  • another member instead of the inverter 50 , another member may be disposed above the transmission case 4 a .
  • another member may not be disposed above the transmission case 4 a.
  • the inverter 50 is disposed above the transmission case 4 a , it may be attached to another location, such as on a side surface of the transmission case 4 a.
  • the transfer case 10 a is cooled by traveling air flowing through the gap between the insulator 120 , and the transmission case 4 a and the transfer case 10 a . Therefore, unlike a case where hole(s) is formed in an undercover provided below the engine 2 , the motor 3 , and the transmission 4 in order to cool the engine 2 , the motor 3 , and the transmission 4 , a flow of air below the undercover is not affected.
  • the torque-distribution-control friction clutch of the transfer device can be cooled with the simple configuration, and thereby, the present disclosure may suitably be used in this type of vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • General Details Of Gearings (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

A transfer cooling structure of a vehicle is provided, the vehicle including a power source, a transmission, and a transfer device provided with a torque-distribution-control friction clutch, disposed in the order from forward of the vehicle. The structure includes a floor provided to the vehicle and having a tunnel part configured to cover a transmission case of the transmission and a transfer case of the transfer device from above, an insulator attached below the tunnel part to cover the transmission case and the transfer case while having a gap with respect to the transmission case and the transfer case, and a cooling acceleration part provided to the insulator protruding toward the transfer case from the floor side.

Description

TECHNICAL FIELD
The present disclosure relates to a transfer cooling structure of a vehicle, particularly, a transfer cooling structure applied to a four-wheel-drive vehicle.
BACKGROUND OF THE DISCLOSURE
As four-wheel-drive (4WD) vehicles, so-called FR (front-engine, rear-wheel-drive) based 4WD vehicles in which a drive source (e.g., an engine) supplies a driving force not only to rear wheels but also to front wheels are known. In such an FR-based 4WD vehicle, the drive source and a transmission are disposed at a front part of a vehicle body so that their axes extend in a front-and-rear direction of the vehicle body, and the driving force transmitted from the transmission is sent to the rear wheels (main drive wheels) through a rear-wheel output shaft extending rearwardly via a rear-wheel propeller shaft and a rear-wheel differential gear. In addition, a transfer device which extracts a driving force to be transmitted to front wheels (auxiliary drive wheels) is provided on the rear-wheel output shaft, and the driving force extracted to a front-wheel output shaft of the transfer device is transmitted to the front wheels via a front-wheel propeller shaft extending forwardly and a front-wheel differential gear.
As such a transfer device, it is known that the transfer device is provided, on the rear-wheel output shaft, with a friction clutch for torque distribution control which extracts the driving force for the front wheels, and the driving force extracted by the torque-distribution-control friction clutch is transmitted to the front-wheel output shaft via a chain-type or a gear-type powertrain mechanism.
The 4WD vehicle on which the transfer device is mounted controls engagement of the torque-distribution-control friction clutch so as to distribute the driving force to each of the rear-wheel output shaft and the front-wheel output shaft. At this time, the clutch generates heat by friction. Because of this temperature increase, a power transmission performance decreases, and thus, cooling of the clutch is required.
For example, JP2018-165522A discloses a cooling structure for a front-engine and front-wheel-drive based 4WD vehicle. A powertrain of the vehicle includes a transmission and a transfer device. The cooling structure cools the powertrain by providing a guiding wall part defining a wind passage part extending in an up-and-down direction between an engine and the powertrain so as to guide air taken-in during a travel (traveling air) from below the vehicle, to the wind passage part.
In the transfer device accommodating the torque-distribution-control friction clutch, especially the friction clutch easily generates heat and affects the power transmission performance. Therefore, it is required to blow the traveling air to a part where the torque-distribution-control friction clutch is accommodated, to cool the part. Such a transfer device is desired to increase a cooling performance with a simple configuration.
SUMMARY OF THE DISCLOSURE
The present disclosure is made in view of the above situations, and one purpose thereof is to provide a transfer cooling structure of a vehicle, capable of improving the cooling performance of a transfer device provided with a friction clutch for torque distribution control.
According to one aspect of the present disclosure, a transfer cooling structure of a vehicle is provided, the vehicle including a power source, a transmission, and a transfer device provided with a torque-distribution-control friction clutch, disposed in the order from forward of the vehicle. The structure includes a floor provided to the vehicle and having a tunnel part configured to cover a transmission case of the transmission and a transfer case of the transfer device from above, an insulator attached below the tunnel part to cover the transmission case and the transfer case while having a gap with respect to the transmission case and the transfer case, and a cooling acceleration part provided to the insulator protruding toward the transfer case from the floor side.
According to this structure, the cooling acceleration part increases a flow rate of traveling air which is taken in from forward of the vehicle and flows through between the transmission case and the insulator, and then between the transfer case and the insulator. Therefore, the cooling performance of the transfer device provided with the torque-distribution-control friction clutch is improved. Further, with the simple configuration of changing the shape of the part of the insulator which is provided to reduce noise caused by the transmission and the transfer device, the cooling performance of the transfer device can be improved.
The gap between the insulator, and the transmission case and the transfer case may be the smallest at the cooling acceleration part.
According to this structure, by the gap between the insulator, and the transmission case and the transfer case being the smallest at the cooling acceleration part, the cooling performance of the transfer device can be further improved.
A given member may be provided above the transmission case, and a rectifying cover may be provided at a rear part of the given member.
According to this structure, even when the given member is provided above the transmission case, since the rectifying cover is provided at the rear part of the member, traveling air which flows between the transmission and the given member is rectified to pass through between the transfer case and the cooling acceleration part of the insulator, and thus the transfer device being cooled. Moreover, also when a harness, etc., is disposed rearward of the given member, by providing the rectifying cover to cover the harness, etc., generation of turbulence in the traveling air is suppressed, and the cooling of the transfer device is facilitated.
The power source may include a motor, and the given member may include an inverter.
According to this structure, in a hybrid vehicle including the engine and the motor as the power source, the transfer device can be cooled even when the inverter is disposed above the transmission case. By cooling the transfer device provided with the torque-distribution-control friction clutch, a power transmission performance of the hybrid vehicle can be improved.
A plurality of fins may be provided to outside of the transfer case, and a fin of the plurality of fins provided to an upper part of the transfer case may have a taller height compared to fins of the plurality of fins provided to other parts of the transfer case.
According to this structure, since the fin provided to the upper part of the transfer case is formed to have the taller height compared to the fins provided to the other parts of the transfer case, the surface area of the upper fin becomes larger. Therefore, a heat dissipation effect increases, and the cooling effect of the transfer device provided with the torque-distribution-control friction clutch is enhanced.
The cooling acceleration part may include a substantially U-shaped curved surface extending in a front-and-rear direction of a vehicle body.
The curved surface may curve downwardly in an arc shape from a front end part to a central part of the curved surface in the front-and-rear direction so that the gap with respect to the transfer case is gradually reduced, and curve upwardly in an arc shape from the central part to a rear end part of the curved surface so that the gap with respect to the transfer case is gradually increased.
The curved surface may include at the central part an arc part protruding upwardly in a vehicle-width direction so as to conform to the shape of the insulator protruding upwardly to cover above and left and right sides of the transfer case.
The plurality of fins may extend in a front-and-rear direction of the vehicle and may be provided to an upper part, a lower part, a left part, and a right part of a cylindrical part of a transfer case body of the transfer device. The fins provided to the upper part may extend perpendicular to a vehicle-width direction, and may be formed to have a taller height compared to the fins provided to the lower part, the fins provided to the left part, and the fins provided to the right part.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a schematic diagram illustrating a powertrain mechanism of a four-wheel-drive (4WD) vehicle on which a transfer device according to one embodiment of the present disclosure is mounted.
FIG. 2 is a cross-sectional view schematically illustrating a transfer cooling structure of the 4WD vehicle when taken along a line II-II of FIG. 1 .
FIG. 3 is a schematic diagram illustrating an insulator of the transfer cooling structure illustrated in FIG. 2 .
FIG. 4 is a cross-sectional view schematically illustrating the insulator and a transmission when taken along a line IV-IV of FIG. 2 .
FIG. 5 is a cross-sectional view schematically illustrating the insulator and the transfer device when taken along a line V-V of FIG. 2 .
FIG. 6 is a schematic diagram of a transfer case of the transfer device illustrated in FIG. 1 when seen from a left side in a vehicle-width direction.
FIG. 7 is a schematic diagram of the transfer case of the transfer device illustrated in FIG. 1 when seen from a right side in the vehicle-width direction.
DETAILED DESCRIPTION OF THE DISCLOSURE
Hereinafter, one embodiment of the present disclosure is described with reference to the accompanying drawings.
FIG. 1 is a schematic diagram illustrating a powertrain mechanism of a four-wheel-drive vehicle on which a transfer device according to this embodiment is mounted. As illustrated in FIG. 1 , a four-wheel-drive (4WD) vehicle 1 on which a transfer device according to this embodiment is mounted, is a front-engine rear-wheel-drive (FR) based hybrid 4WD vehicle, and an engine 2 and a motor 3 as drive sources and a transmission 4 are disposed at a front part of a vehicle body so that their axes extend in a front-and-rear direction of the vehicle body.
On the rear side of the transmission 4, a transfer device 10 is provided so as to transmit a driving force sent from the engine 2 and the motor 3 through the transmission 4, to rear wheels (main drive wheels) via a rear-wheel propeller shaft extending rearwardly and a rear-wheel differential gear, as well as to extract a driving force to be transmitted to front wheels (auxiliary drive wheels).
FIG. 2 is a cross-sectional view schematically illustrating a transfer cooling structure of the 4WD vehicle 1 when taken along a line II-II of FIG. 1 . As illustrated in FIG. 2 , an inverter 50 which converts direct current from a battery to alternating current and drives the motor 3 is disposed above the transmission 4 near the motor 3. The inverter 50 is connected, at its rear side, to a harness 51 connected to each of the battery and the motor 3, and a rectifying cover 52 extending rearwardly is disposed to cover the harness 51. The rectifying cover 52 is formed to have a curved surface 53 which inclines gradually downwardly to the rear side, and both sides of the curved surface 53 in a vehicle-width direction extend in a direction perpendicular to the vehicle-width direction along both sides of the inverter 50 in the vehicle-width direction.
A floor 100 as a floor surface inside a cabin of the 4WD vehicle 1 is disposed above a transmission case 4 a of the transmission 4 and a transfer case 10 a of the transfer device 10. The floor 100 is provided with a tunnel part 100 a which extends in the front-and-rear direction along the transmission 4 and the transfer device 10, and is concaved upwardly so as to cover the transmission case 4 a and the inverter 50, and the transfer case 10 a from above.
Further, the floor 100 is coupled, at the front side, with a dash panel 110 which extends upwardly to define the cabin and an engine bay 113. Referring to FIG. 1 , both of left and right sides of the dash panel 110 in the vehicle-width direction are coupled to front side panels 111 a and 111 b extending forwardly, respectively. The front side panels 111 a and 111 b are coupled, at the front side, with a front bumper 112 extending to the left and right sides in the vehicle-width direction. The engine 2 and the motor 3 of the 4WD vehicle 1 are disposed in the engine bay 113 surrounded by the front side panels 111 a and 111 b and the front bumper 112.
Referring to FIG. 2 , the front bumper 112 is provided, at its substantially center in the vehicle-width direction, with a front grill 114 having a plurality of openings. The front grill 114 takes traveling air into the engine bay 113 from forward when the 4WD vehicle 1 travels.
The 4WD vehicle 1 is provided, at below the tunnel part 100 a of the floor 100, with an insulator 120 so as to cover the transmission case 4 a and the inverter 50, and the transfer case 10 a while having a gap with respect to them. The insulator 120 is made of a plate-like member and attached to the floor 100 by a bolt(s) (screw(s)) and a clip(s), and reduces noise caused by the transmission 4 and the transfer device 10 during the traveling of the 4WD vehicle 1.
FIG. 3 is a schematic diagram illustrating the insulator 120 of the transfer cooling structure illustrated in FIG. 2 . As illustrated in FIG. 3 , the insulator 120 has a shape extending in the front-and-rear direction along the transmission case 4 a and the transfer case 10 a, and protruding upwardly from below so as to cover above and left and right sides of the transmission case 4 a and the transfer case 10 a.
Referring to FIG. 1 , the transfer device 10 includes, as a main-drive-wheel output shaft, a rear-wheel output shaft 11 coupled to an output shaft 4 b of the transmission 4 and extending rearwardly (one side in the vehicle front-and-rear direction), as an auxiliary-drive-wheel output shaft, a front-wheel output shaft 12 disposed in parallel with the rear-wheel output shaft 11, and a powertrain mechanism 13 which transmits the driving force extracted from the rear-wheel output shaft 11 to the front-wheel output shaft 12.
Further, the transfer device 10 includes a coupling provided on the rear-wheel output shaft 11 and having a torque-distribution-control friction clutch 16 coupled to the rear-wheel output shaft 11 to extract the driving force for the front wheels from the driving force transmitted to the rear-wheel output shaft 11. The torque-distribution-control friction clutch 16 is controlled through energization control of a solenoid by a control unit (not illustrated).
The powertrain mechanism 13 is a gear type, and includes a drive gear 14 which is provided to the front side of the torque-distribution-control friction clutch 16 on the rear-wheel output shaft 11 so as to be coupled to the torque-distribution-control friction clutch 16, and a driven gear 15 which is provided on the front-wheel output shaft 12 and coupled thereto to mesh with the drive gear 14. The powertrain mechanism 13 transmits the front-wheel driving force, which is extracted from the rear-wheel output shaft 11 by the torque-distribution-control friction clutch 16, to the front-wheel output shaft 12.
A front-wheel propeller shaft 30 extending forwardly is coupled to a front end part of the front-wheel output shaft 12. The front-wheel propeller shaft 30 has a universal joint 31 at its rear end part, and is coupled to the front-wheel output shaft 12 via the universal joint 31.
The front-wheel propeller shaft 30 also includes a universal joint 32 at its front end part, and is coupled to an input shaft 41 of a front-wheel differential gear 40 via the universal joint 32. The input shaft 41 of the front-wheel differential gear 40 is coupled to an axle 42 which is coupled to each of the left and right front wheels.
Accordingly, the front-wheel driving force extracted from the rear-wheel output shaft 11 by the torque-distribution-control friction clutch 16 is transmitted to the front-wheel output shaft 12 via the powertrain mechanism 13, and then transmitted from the front-wheel output shaft 12 to the front wheels via the front-wheel propeller shaft 30 and the front-wheel differential gear 40.
In the 4WD vehicle 1, the torque-distribution-control friction clutch 16 extracts the front-wheel driving force while changing a front/rear torque distribution ratio of the front wheels to the rear wheels within a range from 0:100 to 50:50. Note that operation of the torque-distribution-control friction clutch 16 is controlled by a control unit (not illustrated).
The transfer device 10 also includes a damper 17 on the rear-wheel output shaft 11 between the torque-distribution-control friction clutch 16 and the drive gear 14. The damper 17 lowers a resonance frequency at which the drive system on the front-wheel side from the torque-distribution-control friction clutch 16 to the front wheels via the drive gear 14, the driven gear 15, the front-wheel output shaft 12, the front-wheel propeller shaft 30, and the front-wheel differential gear 40 resonates with a torque vibration of the engine 2, to be below a practical range.
Next, the insulator 120 of the transfer cooling structure is described in more detail.
Referring to FIG. 2 , the insulator 120 is provided with a cooling acceleration part 121 which is located to be in agreement with the torque-distribution-control friction clutch 16 of the transfer device 10 in the front-and-rear direction, extends in the front-and-rear direction along the transfer case 10 a, and protrudes toward the transfer case 10 a from the floor 100 side. The cooling acceleration part 121 is provided to overlap with the torque-distribution-control friction clutch 16 in the front-and-rear direction.
As illustrated in FIGS. 2 and 3 , the cooling acceleration part 121 has a substantially U-shaped curved surface 122 extending in the front-and-rear direction. The curved surface 122 curves downwardly in an arc shape from a front end part 122 a to a central part 122 b of the curved surface 122 in the front-and-rear direction so that a gap with respect to the transfer case 10 a is gradually reduced. On the other side, the curved surface 122 curves upwardly in an arc shape from the central part 122 b to a rear end part 122 c of the curved surface 122 so that the gap with respect to the transfer case 10 a is gradually increased. Further, the curved surface 122 has, at the central part 122 b, an arc part 122 d protruding upward when seen in the vehicle-width direction so as to conform to the shape of the insulator 120 which protrudes upward to cover above and left and right sides of the transfer case 10 a.
As described above, the insulator 120 is disposed to cover the transmission case 4 a and the inverter 50, and the transfer case 10 a while having the gap with respect to them. Particularly, the gap between the insulator 120 and the transfer case 10 a is the smallest at the cooling acceleration part 121. In this embodiment, the gap between the insulator 120 and the transfer case 10 a is the smallest at the cooling acceleration part 121, and the gap is set to, but not limited to, about 30 mm. Further, a gap between the insulator 120 and a rear-end part of the inverter 50 is, but not limited to be, equal to the gap between the cooling acceleration part 121 and the transfer case 10 a.
FIG. 4 is a cross-sectional view schematically illustrating the insulator 120 and the transmission 4 when taken along a line Iv-Iv of FIG. 2 . As illustrated in FIG. 4 , the gap between the insulator 120 and the inverter 50 disposed above the transmission case 4 a, is formed on both of the left and right sides in the vehicle-width direction.
FIG. 5 is a cross-sectional view schematically illustrating the insulator 120 and the transfer device 10 when taken along a line v-v of FIG. 2 . As illustrated in FIG. 5 , the gap between the insulator 120 and the transfer case 10 a is formed along the insulator 120 which covers above and left and right sides of the transfer case 10 a.
Referring to FIG. 2 , since the insulator 120 is disposed to cover the transmission case 4 a and the inverter 50, and the transfer case 10 a while having the gap with respect to them, when the 4WD vehicle 1 travels, as indicated by arrows, traveling air taken into the engine bay 113 through the front grill 114 flows through the gap between the insulator 120 and the transmission case 4 a at the front side of the transmission case 4 a. The traveling air flowing through the gap between the insulator 120 and the transmission case 4 a passes through the gap between the insulator 120 and the inverter 50, and then, is rectified toward the transfer case 10 a at the rectifying cover 52 disposed at the rearward of the inverter 50.
As described above, the traveling air rectified toward the transfer case 10 a flows through the gap between the cooling acceleration part 121 of the insulator 120 and the transfer case 10 a. Since the cooling acceleration part 121 protrudes toward the transfer case 10 a from the floor 100 side, the gap between the insulator 120 and the transfer case 10 a becomes smaller, and a flow rate of the traveling air flowing through the gap increases. By the increase in the flow rate of the traveling air flowing through the gap between the cooling acceleration part 121 of the insulator 120 and the transfer case 10 a, the transfer case 10 a, particularly, a part of the transfer case 10 a where the torque-distribution-control friction clutch 16 is accommodated, is largely cooled. The traveling air flowed through the gap between the cooling acceleration part 121 of the insulator 120 and the transfer case 10 a is discharged rearwardly.
Next, the transfer case 10 a is described in more detail.
FIG. 6 is a schematic diagram of the transfer case 10 a of the transfer device 10 illustrated in FIG. 1 when seen from the left side in the vehicle-width direction. The transfer case 10 a includes a case body 18, a front cover which covers a front side of the case body 18, and a rear cover which covers a rear side of the case body 18, and these components are fixed to each other by a bolt(s) (screw(s)). The case body 18 includes a cylindrical part 18 a extending substantially cylindrically in an axial direction of the rear-wheel output shaft 11, and a vertical wall part 18 b extending from the cylindrical part 18 a in a direction perpendicular to an axial direction of the front-wheel output shaft 12, and the torque-distribution-control friction clutch 16 is accommodated inside the cylindrical part 18 a.
Outside of the cylindrical part 18 (in detail, an upper part, a lower part, a left part, and a right part), fins extending in the front-and-rear direction are provided. Referring to FIG. 5 , upper fins 19 a provided to the upper part of the cylindrical part 18 a extend in a direction perpendicular to the vehicle-width direction and in parallel with the rear-wheel output shaft 11. The upper fins 19 a are formed to be taller in height compared to lower fins 19 b provided to the lower part of the cylindrical part 18 a, left fins 19 c provided to the left part of the cylindrical part 18 a, and right fins 19 d provided to the right part of the cylindrical part 18 a. Further, referring to FIG. 6 , the vertical wall part 18 b is also provided with vertical wall part fins 19 e extending in the front-and-rear direction, and the upper fins 19 a are formed to be taller in height compared to the vertical wall part fins 19 e.
FIG. 7 is a schematic diagram of the transfer case 10 a of the transfer device 10 illustrated in FIG. 1 when seen from the right side. As illustrated in FIG. 7 , the right fins 19 d provided on the right side incline downwardly to the rear side.
Since the upper fins 19 a provided to the upper part of the transfer case 10 a are formed to have the taller height compared to the fins provided to the other parts of the transfer case 10 a, surface areas thereof are large. Therefore, as described above, when traveling air flows through the gap between the cooling acceleration part 121 of the insulator 120 and the transfer case 10 a, a heat dissipation effect increases, and thus, a cooling effect of the transfer case 10 a, particularly, of the cylindrical part 18 a of the transfer case 10 a where the torque-distribution-control friction clutch 16 is accommodated, is enhanced.
As described above, in the transfer cooling structure according to this embodiment, the insulator 120 provided to cover the transmission case 4 a of the transmission 4 and the transfer case 10 a of the transfer device 10 while having the gap with respect to them, is attached to below the tunnel part 100 a of the floor 100. The insulator 120 is provided with the cooling acceleration part 121 protruding toward the transfer case 10 a from the floor 100 side.
According to this, the cooling acceleration part 121 increases the flow rate of traveling air which is taken-in from forward of the 4WD vehicle 1 and flows through between the transmission case 4 a and the insulator 120, and then between the transfer case 10 a and the insulator 120. Therefore, a cooling performance of the transfer device 10 provided with the torque-distribution-control friction clutch 16 is improved. Further, with the simple configuration of changing the shape of the part of the insulator 120 which is provided to reduce noise caused by the transmission 4 and the transfer device 10, the cooling performance of the transfer device 10 can be improved.
Further, by the gap between the insulator 120, and the transmission case 4 a and the transfer case 10 a being the smallest at the cooling acceleration part 121, the cooling performance of the transfer device 10 can be further improved.
Further, since the inverter 50 is provided above the transmission case 4 a, and the rectifying cover 52 is provided at the rear part of the inverter 50, traveling air which flows between the transmission 4 and the insulator 120 is rectified to flow through between the transfer case 10 a and the cooling acceleration part 121 of the insulator 120, thus the transfer device 10 being cooled. Therefore, a power transmission performance of the 4WD vehicle 1 as a hybrid vehicle can be improved. Moreover, also when the harness 51, etc., is disposed rearward of the inverter 50, by providing the rectifying cover 52 to cover the harness 51, generation of turbulence in the traveling air is suppressed, and the cooling of the transfer device 10 is facilitated.
Further, the plurality of fins 19 a, 19 b, 19 c, 19 d, and 19 e are provided to the outside of the transfer case 10 a, and the upper fins 19 a provided to the upper part of the transfer case 10 a are formed to have the taller height compared to the fins 19 b, 19 c, 19 d, and 19 e provided to the other parts of the transfer case 10 a. Therefore, the surface areas of the upper fins 19 a become larger, and the heat dissipation effect increases, and the cooling effect of the transfer device 10 provided with the torque-distribution-control friction clutch 16 is enhanced.
Although in this embodiment the gap between the insulator 120 and the transfer case 10 a is the smallest at the cooling acceleration part 121, and the gap with respect to the rear-end part of the inverter 50 is also equal to the gap between the cooling acceleration part 121 and the transfer case 10 a, only the gap between the cooling acceleration part 121 and the transfer case 10 a may be further smaller.
Although in this embodiment the 4WD vehicle 1 is the hybrid 4WD vehicle, it may be a 4WD vehicle having only the engine 2 as a power source. In this case, instead of the inverter 50, another member may be disposed above the transmission case 4 a. Alternatively, another member may not be disposed above the transmission case 4 a.
Although in this embodiment the inverter 50 is disposed above the transmission case 4 a, it may be attached to another location, such as on a side surface of the transmission case 4 a.
In this embodiment, the transfer case 10 a is cooled by traveling air flowing through the gap between the insulator 120, and the transmission case 4 a and the transfer case 10 a. Therefore, unlike a case where hole(s) is formed in an undercover provided below the engine 2, the motor 3, and the transmission 4 in order to cool the engine 2, the motor 3, and the transmission 4, a flow of air below the undercover is not affected.
The present disclosure is not limited by the illustrated embodiment, but various improvements and changes in design are possible without departing from the spirit of the present disclosure.
As described above, according to the present disclosure, in the transfer cooling structure of the 4WD vehicle in which the power source, the transmission, the transfer device provided with the torque-distribution-control friction clutch are disposed in this order from forward of the vehicle, the torque-distribution-control friction clutch of the transfer device can be cooled with the simple configuration, and thereby, the present disclosure may suitably be used in this type of vehicles.
It should be understood that the embodiments herein are illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within metes and bounds of the claims, or equivalence of such metes and bounds thereof, are therefore intended to be embraced by the claims.
DESCRIPTION OF REFERENCE CHARACTERS
    • 1 4WD Vehicle
    • 2 Engine
    • 3 Motor
    • 4 Transmission
    • 4 a Transmission Case
    • 10 Transfer Device
    • 10 a Transfer Case
    • 16 Torque-distribution-control Friction Clutch
    • 100 Floor
    • 100 a Tunnel Part
    • 120 Insulator
    • 121 Cooling Acceleration Part

Claims (17)

What is claimed is:
1. A transfer cooling structure of a vehicle including a power source, a transmission, and a transfer device provided with a torque-distribution-control friction clutch, disposed in order from a forward side of the vehicle to a rearward side of the vehicle, the transfer cooling structure comprising:
a floor provided in the vehicle and the floor having a tunnel part configured to cover a transmission case of the transmission and a transfer case of the transfer device from above the transmission case and the transfer case;
an insulator attached below the tunnel part of the floor to cover the transmission case and the transfer case, while having a gap between the insulator and the transmission case and the transfer case; and
wherein the insulator has a cooling acceleration part protruding toward the transfer case from a floor side of the insulator.
2. The structure of claim 1, wherein the gap between the insulator, and the transmission case and the transfer case is the smallest at the cooling acceleration part.
3. The structure of claim 2,
wherein a given member is provided above the transmission case, and
wherein a rectifying cover is provided at a rear part of the given member.
4. The structure of claim 3, wherein the power source includes a motor, and the given member includes an inverter.
5. The structure of claim 4,
wherein a plurality of fins are provided to outside of the transfer case, and
wherein a fin of the plurality of fins provided to an upper part of the transfer case has a taller height compared to fins of the plurality of fins provided to other parts of the transfer case.
6. The structure of claim 1,
wherein a given member is provided above the transmission case, and
wherein a rectifying cover is provided at a rear part of the given member.
7. The structure of claim 6, wherein the power source includes a motor, and the given member includes an inverter.
8. The structure of claim 1,
wherein a plurality of fins are provided to outside of the transfer case, and
wherein a fin of the plurality of fins provided to an upper part of the transfer case has a taller height compared to fins of the plurality of fins provided to other parts of the transfer case.
9. The structure of claim 2,
wherein a plurality of fins are provided to outside of the transfer case, and
wherein a fin of the plurality of fins provided to an upper part of the transfer case has a taller height compared to fins of the plurality of fins provided to other parts of the transfer case.
10. The structure of claim 3,
wherein a plurality of fins are provided to outside of the transfer case, and
wherein a fin of the plurality of fins provided to an upper part of the transfer case has a taller height compared to fins of the plurality of fins provided to other parts of the transfer case.
11. The structure of claim 6,
wherein a plurality of fins are provided to outside of the transfer case, and
wherein a fin of the plurality of fins provided to an upper part of the transfer case has a taller height compared to fins of the plurality of fins provided to other parts of the transfer case.
12. The structure of claim 7,
wherein a plurality of fins are provided to outside of the transfer case, and
wherein a fin of the plurality of fins provided to an upper part of the transfer case has a taller height compared to fins of the plurality of fins provided to other parts of the transfer case.
13. The structure of claim 1, wherein the cooling acceleration part includes a substantially U-shaped curved surface extending in a front-and-rear direction of a vehicle body.
14. The structure of claim 13, wherein the curved surface curves downwardly in an arc shape from a front end part to a central part of the curved surface in the front-and-rear direction so that the gap with respect to the transfer case is gradually reduced, and curves upwardly in an arc shape from the central part to a rear end part of the curved surface so that the gap with respect to the transfer case is gradually increased.
15. The structure of claim 13, wherein the curved surface includes at the central part an arc part protruding upwardly in a vehicle-width direction so as to conform to the shape of the insulator protruding upwardly to cover above and left and right sides of the transfer case.
16. The structure of claim 5,
wherein the plurality of fins extend in a front-and-rear direction of the vehicle and are provided to an upper part, a lower part, a left part, and a right part of a cylindrical part of a transfer case body of the transfer device, and
wherein the fins provided to the upper part extend perpendicular to a vehicle-width direction, and are formed to have a taller height compared to the fins provided to the lower part, the fins provided to the left part, and the fins provided to the right part.
17. The structure of claim 8,
wherein the plurality of fins extend in a front-and-rear direction of the vehicle and are provided to an upper part, a lower part, a left part, and a right part of a cylindrical part of a transfer case body of the transfer device, and
wherein the fins provided to the upper part extend perpendicular to a vehicle-width direction, and are formed to have a taller height compared to the fins provided to the lower part, the fins provided to the left part, and the fins provided to the right part.
US17/649,522 2021-03-25 2022-01-31 Transfer cooling structure of vehicle Active 2043-04-16 US12078237B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-051757 2021-03-25
JP2021051757A JP7494774B2 (en) 2021-03-25 2021-03-25 Vehicle transfer cooling structure

Publications (2)

Publication Number Publication Date
US20220307584A1 US20220307584A1 (en) 2022-09-29
US12078237B2 true US12078237B2 (en) 2024-09-03

Family

ID=83364445

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/649,522 Active 2043-04-16 US12078237B2 (en) 2021-03-25 2022-01-31 Transfer cooling structure of vehicle

Country Status (2)

Country Link
US (1) US12078237B2 (en)
JP (1) JP7494774B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193415A (en) * 1991-06-04 1993-03-16 Bruno's Automotive Products Inc. Continuous radial shield for automatic transmission
US5813491A (en) * 1995-03-07 1998-09-29 Nissan Motor Co., Ltd. Under body structure of motor vehicle
US6276044B1 (en) * 1997-06-09 2001-08-21 Atd Corporation Shaped multilayer metal foil shield structures and method of making
US6663171B2 (en) * 2001-06-06 2003-12-16 Honda Giken Kogyo Kabushiki Kaisha Heat insulator apparatus for vehicle floor
US9688153B2 (en) * 2014-06-13 2017-06-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Electric vehicle
US9925890B2 (en) * 2014-07-15 2018-03-27 Audi Ag Motor vehicle and receiving device for receiving electrical energy storage cells
JP2018165522A (en) 2017-03-28 2018-10-25 マツダ株式会社 Cooling structure of power unit in vehicle
US10371247B2 (en) * 2017-05-08 2019-08-06 Jaguar Land Rover Limited Transmission tunnel encapsulation
US10703304B2 (en) * 2017-05-08 2020-07-07 Jaguar Land Rover Limited Thermal encapsulation apparatus
US11279417B2 (en) * 2017-09-28 2022-03-22 Mazda Motor Corporation Vehicle underbody structure
US11654762B2 (en) * 2020-03-31 2023-05-23 Mazda Motor Corporation Vehicle lower structure
US11835121B2 (en) * 2021-05-27 2023-12-05 Romax Technology Limited Encapsulated gear train for a machine
US11919570B2 (en) * 2021-03-26 2024-03-05 Mazda Motor Corporation Lower structure of electric vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770269B2 (en) 2005-05-24 2011-09-14 マツダ株式会社 4-wheel drive vehicle
JP4875534B2 (en) 2007-04-18 2012-02-15 トヨタ自動車株式会社 Vehicle drive device
JP2019203593A (en) 2018-05-25 2019-11-28 マツダ株式会社 Power transmission device of vehicle

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193415A (en) * 1991-06-04 1993-03-16 Bruno's Automotive Products Inc. Continuous radial shield for automatic transmission
US5813491A (en) * 1995-03-07 1998-09-29 Nissan Motor Co., Ltd. Under body structure of motor vehicle
US6276044B1 (en) * 1997-06-09 2001-08-21 Atd Corporation Shaped multilayer metal foil shield structures and method of making
US6663171B2 (en) * 2001-06-06 2003-12-16 Honda Giken Kogyo Kabushiki Kaisha Heat insulator apparatus for vehicle floor
US9688153B2 (en) * 2014-06-13 2017-06-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Electric vehicle
US9925890B2 (en) * 2014-07-15 2018-03-27 Audi Ag Motor vehicle and receiving device for receiving electrical energy storage cells
JP2018165522A (en) 2017-03-28 2018-10-25 マツダ株式会社 Cooling structure of power unit in vehicle
US10371247B2 (en) * 2017-05-08 2019-08-06 Jaguar Land Rover Limited Transmission tunnel encapsulation
US10703304B2 (en) * 2017-05-08 2020-07-07 Jaguar Land Rover Limited Thermal encapsulation apparatus
US11279417B2 (en) * 2017-09-28 2022-03-22 Mazda Motor Corporation Vehicle underbody structure
US11654762B2 (en) * 2020-03-31 2023-05-23 Mazda Motor Corporation Vehicle lower structure
US11919570B2 (en) * 2021-03-26 2024-03-05 Mazda Motor Corporation Lower structure of electric vehicle
US11835121B2 (en) * 2021-05-27 2023-12-05 Romax Technology Limited Encapsulated gear train for a machine

Also Published As

Publication number Publication date
JP2022149547A (en) 2022-10-07
JP7494774B2 (en) 2024-06-04
US20220307584A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
DE102012220074B4 (en) Body structure of a hybrid vehicle
EP1393952B1 (en) Vehicle driving force control apparatus
JP5067502B2 (en) Cooling air introduction structure
US8631886B2 (en) Structure of electric vehicle
EP2473722B1 (en) Air introduction structure
US9688153B2 (en) Electric vehicle
EP2842782A1 (en) Cooling device for vehicle
CN103347726B (en) Cooling air introduction structure
CN109895867B (en) Center floor panel for vehicle
CN102317099A (en) Vehicle front portion structure
EP4549208A1 (en) Vehicle driving device and vehicle
US12049255B2 (en) Lower structure of electric vehicle
US11919570B2 (en) Lower structure of electric vehicle
US20200398643A1 (en) Vehicle cooling mechanism
JP5338642B2 (en) Motor mounting structure
US12078237B2 (en) Transfer cooling structure of vehicle
JP5402827B2 (en) Cooling air introduction structure
CN212242947U (en) Front structure of vehicle
JP2017094771A (en) vehicle
US20220305896A1 (en) Lower structure of electric vehicle
US11772478B2 (en) Vehicle
US20250222758A1 (en) Plug-in hybrid electric vehicle
US20240300581A1 (en) Vehicle body front part structure
EP4163188B1 (en) Vehicle-body
JP7552302B2 (en) Vehicle undercarriage

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAZDA MOTOR CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMADA, SYOUTA;ENOMOTO, MASAYOSHI;FUKUDA, MASATO;AND OTHERS;SIGNING DATES FROM 20211130 TO 20211207;REEL/FRAME:058836/0308

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE