US12000690B2 - Cable-based measuring system - Google Patents
Cable-based measuring system Download PDFInfo
- Publication number
- US12000690B2 US12000690B2 US17/232,896 US202117232896A US12000690B2 US 12000690 B2 US12000690 B2 US 12000690B2 US 202117232896 A US202117232896 A US 202117232896A US 12000690 B2 US12000690 B2 US 12000690B2
- Authority
- US
- United States
- Prior art keywords
- measuring
- computer system
- recited
- handheld device
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000005259 measurement Methods 0.000 claims abstract description 99
- 239000000463 material Substances 0.000 claims description 26
- 238000012545 processing Methods 0.000 claims description 18
- 238000004806 packaging method and process Methods 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 abstract description 16
- 238000004590 computer program Methods 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241001553178 Arachis glabrata Species 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013479 data entry Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000013403 standard screening design Methods 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/04—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
- G01B11/043—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B57/00—Automatic control, checking, warning, or safety devices
- B65B57/10—Automatic control, checking, warning, or safety devices responsive to absence, presence, abnormal feed, or misplacement of articles or materials to be packaged
- B65B57/12—Automatic control, checking, warning, or safety devices responsive to absence, presence, abnormal feed, or misplacement of articles or materials to be packaged and operating to control, or stop, the feed of wrapping materials, containers, or packages
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B3/00—Measuring instruments characterised by the use of mechanical techniques
- G01B3/11—Chains for measuring length
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/0021—Measuring arrangements characterised by the use of mechanical techniques for measuring the volumetric dimension of an object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/02—Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/02—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B2210/00—Specific aspects of the packaging machine
- B65B2210/04—Customised on demand packaging by determining a specific characteristic, e.g. shape or height, of articles or material to be packaged and selecting, creating or adapting a packaging accordingly, e.g. making a carton starting from web material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/58—Wireless transmission of information between a sensor or probe and a control or evaluation unit
Definitions
- Computer systems and related technology affect many aspects of society. Indeed, the computer system's ability to process information has transformed the way we live and work. Computer systems now commonly perform a host of tasks (e.g., word processing, scheduling, accounting, etc.) that prior to the advent of the computer system were performed manually.
- tasks e.g., word processing, scheduling, accounting, etc.
- Computer systems have been applied to the field of shipping, packaging, and fulfillment.
- computer systems are now used to manage inventory information related to items that are to be packaged (e.g., item dimensions), and to generate custom-sized box templates based on the inventory information.
- custom sized boxes In addition to reducing the inefficiencies associated with storing pre-made boxes of numerous sizes, creating custom sized boxes also reduces packaging and shipping costs. In the fulfillment industry it is estimated that shipped items are typically packaged in boxes that are about 40% larger than the shipped items. Boxes that are too large for a particular item are more expensive than a box that is custom sized for the item due to the cost of the excess material used to make the larger box.
- filling material e.g., Styrofoam, foam peanuts, paper, air pillows, etc.
- pressure e.g., when boxes are taped closed or stacked.
- Customized sized boxes also reduce the shipping costs associated with shipping items compared to shipping the items in oversized boxes.
- a shipping vehicle filled with boxes that are 40% larger than the packaged items is much less cost efficient to operate than a shipping vehicle filled with boxes that are custom sized to fit the packaged items.
- a shipping vehicle filled with custom sized packages can carry a significantly larger number of oversized packages, which can reduce the number of shipping vehicles required to ship that same number of items. Accordingly, in addition or as an alternative to calculating shipping prices based on the weight of a package, shipping prices are often affected by the size of the shipped package. Thus, reducing the size of an item's package can reduce the price of shipping the item.
- the present invention extends to methods, systems, apparatus, and computer program products for a cable-based measuring system.
- the cable-based measuring system is a component of an on-demand material processing system that converts raw materials (e.g., fanfold materials) into physical box templates.
- the cable-based measuring system can obtain measurements for an item to be packaged, and communicate those measurements to material processing equipment for creation of an appropriately-sized box template.
- a cable-based measuring system includes a cable.
- the cable comprises an inner cable member positioned within an outer cable housing.
- the inner cable member is configured to move linearly within the outer cable housing.
- the cable-based measuring system also includes a measuring device.
- the measuring device is configured to generate measurement information regarding movement of the inner cable member relative to the outer cable housing.
- a computer system is configured to initiate creation of a box template and/or update an item database. When initiating creation of a box template, the computer system receives the measurement information from the measuring device and then initiates creation of a box template based on the measurement information. When updating the item database, the computer system updates an item database containing dimensional information for one or more physical items.
- a measuring device includes one or more encoders.
- the encoder(s) are configured to detect movement of an inner cable member relative to an outer cable member.
- the encoder(s) are also configured to generate measurement information relating to movement of the inner cable member relative to the outer cable member.
- the measuring device also includes a communications mechanism, which is configured to communicate the measurement information to a computer system. Based on receipt of the measurement information, the computer system is configured to initiate creation of a box template and/or update a database.
- a method for identifying three-dimensional object measurements includes a computer system receiving measurement data.
- the measurement data indicates length as a function of time, and represents at least three orthogonal dimensional measurements corresponding to dimensions of a three-dimensional object or group of objects.
- the computer system Based on the measurement data, the computer system identifies a length of each dimensional measurement, including a length, a width, and a height of the three-dimensional object/group of objects.
- the computer system then (i) initiates creation of a physical box template from raw material, the physical box template being configured to be erected into a box sized to accommodate the three-dimensional object/group of objects, and/or (ii) updates a database, including creating an item entry for the three-dimensional object in the database or updating an item entry for the three-dimensional object in the database.
- FIG. 1 A illustrates a cable-based measuring system that facilitates measurement of dimensions of three-dimensional objects
- FIG. 1 B illustrates a measuring device and cable being used to measure a dimension of a three-dimensional object
- FIG. 2 A illustrates a length versus time graph representing measurements of three different three-dimensional objects
- FIG. 2 B illustrates a length versus time graph representing measurements of three different three-dimensional objects
- FIG. 2 C illustrates a length versus time graph representing measurements of three different three-dimensional objects
- FIG. 3 A illustrates an exemplary configuration of a cable-based measuring system
- FIG. 3 B illustrates an exemplary configuration of a cable-based measuring system
- FIG. 4 illustrates an exemplary computing environment that facilitates identifying three-dimensional object measurements
- FIG. 5 illustrates a flow chart of an example method for identifying three-dimensional object measurements.
- the present invention extends to methods, systems, apparatus, and computer program products for a cable-based measuring system.
- the cable-based measuring system is a component of an on-demand material processing system that converts raw materials (e.g., fanfold materials) into physical box templates.
- the cable-based measuring system can obtain measurements for an item to be packaged, and communicate those measurements to material processing equipment for creation of an appropriately-sized box template.
- a cable-based measuring system includes a cable.
- the cable comprises an inner cable member positioned within an outer cable housing.
- the inner cable member is configured to move linearly within the outer cable housing.
- the cable-based measuring system also includes a measuring device.
- the measuring device is configured to generate measurement information regarding movement of the inner cable member relative to the outer cable housing.
- a computer system is configured to initiate creation of a box template and/or update an item database. When initiating creation of a box template, the computer system receives the measurement information from the measuring device and then initiates creation of a box template based on the measurement information. When updating the item database, the computer system updates an item database containing dimensional information for one or more physical items.
- a measuring device includes one or more encoders.
- the encoder(s) are configured to detect movement of an inner cable member relative to an outer cable member.
- the encoder(s) are also configured to generate measurement information relating to movement of the inner cable member relative to the outer cable member.
- the measuring device also includes a communications mechanism, which is configured to communicate the measurement information to a computer system. Based on the measurement information, the computer system is configured to initiate creation of a box template and/or update a database.
- a method for identifying three-dimensional object measurements includes a computer system receiving measurement data.
- the measurement data indicates length as a function of time, and represents at least three orthogonal dimensional measurements corresponding to dimensions of a three-dimensional object or group of objects.
- the computer system Based on the measurement data, the computer system identifies a length of each dimensional measurement, including a length, a width, and a height of the three-dimensional object/group of objects.
- the computer system then (i) initiates creation of a physical box template from raw material, the physical box template being configured to be erected into a box sized to accommodate the three-dimensional object/group of objects, and/or (ii) updates a database, including creating an item entry for the three-dimensional object in the database or updating an item entry for the three-dimensional object in the database.
- Embodiments of the present invention may comprise or utilize a special purpose or general-purpose computer including computer hardware, such as, for example, one or more processors and system memory, as discussed in greater detail below.
- Embodiments within the scope of the present invention also include physical and other computer-readable media for carrying or storing computer-executable instructions and/or data structures.
- Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer system.
- Computer-readable media that store computer-executable instructions are computer storage media (devices).
- Computer-readable media that carry computer-executable instructions are transmission media.
- embodiments of the invention can comprise at least two distinctly different kinds of computer-readable media: computer storage media (devices) and transmission media.
- Computer storage media includes RAM, ROM, EEPROM, CD-ROM, solid state drives (“SSDs”) (e.g., based on RAM), Flash memory, phase-change memory (“PCM”), other types of memory, other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.
- SSDs solid state drives
- PCM phase-change memory
- a “network” is defined as one or more data links that enable the transport of electronic data between computer systems and/or modules and/or other electronic devices.
- a network or another communications connection can include a network and/or data links which can be used to carry desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. Combinations of the above should also be included within the scope of computer-readable media.
- program code means in the form of computer-executable instructions or data structures can be transferred automatically from transmission media to computer storage media (devices) (or vice versa).
- computer-executable instructions or data structures received over a network or data link can be buffered in RAM within a network interface module (e.g., a “NIC”), and then eventually transferred to computer system RAM and/or to less volatile computer storage media (devices) at a computer system.
- a network interface module e.g., a “NIC”
- NIC network interface module
- computer storage media (devices) can be included in computer system components that also (or even primarily) utilize transmission media.
- Computer-executable instructions comprise, for example, instructions and data which, when executed at a processor, cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions.
- the computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, or even source code.
- the invention may be practiced in network computing environments with many types of computer system configurations, including, personal computers, desktop computers, laptop computers, message processors, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile telephones, PDAs, tablets, pagers, routers, switches, and the like.
- the invention may also be practiced in distributed system environments where local and remote computer systems, which are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and wireless data links) through a network, both perform tasks.
- program modules may be located in both local and remote memory storage devices.
- FIG. 1 A illustrates an exemplary cable-based measuring system 100 that facilitates measurement of dimensions of three-dimensional objects.
- cable-based measuring system 100 includes cable 102 , measuring device 104 (or control box), and computer system 106 .
- Measuring device 104 and computer system 106 may be incorporated into a single device or system, or may be connected to one another via a hard-wired and/or wireless communications mechanism. Accordingly, measuring device 104 and computer system 106 can create and exchange message related data with one another and possibly with other computer systems or devices.
- Cable 102 comprises any mechanism which enables movement of one member relative to another member and which enables measurement of the length of the movement of the members relative to one another.
- cable 102 comprises inner cable member 108 , which is positioned at least partially within outer cable housing 110 .
- Inner cable member 108 is configured to move linearly within outer cable housing 110 .
- inner cable member 108 has a length exceeding a length of outer cable housing 110 , enabling inner cable member 108 to extend beyond outer cable housing 110 at one or both ends of outer cable housing 110 .
- inner cable member 108 and outer cable housing 110 are substantially rigid along a linear direction of cable 102 and are configured to transmit mechanical force by movement of inner cable member 108 relative to outer cable housing 110 .
- cable 102 may comprise a Bowden-type cable (e.g., a cable type which is often used as part of braking and/or gear shifting systems on bicycles).
- Bowden-type cable e.g., a cable type which is often used as part of braking and/or gear shifting systems on bicycles.
- movement (in either linear direction) of inner cable member 108 relative to outer cable housing 110 at one end of cable 102 translates to a corresponding movement of inner cable member 108 relative to outer cable housing 110 at the opposing end of cable 102 .
- outer cable housing 110 may comprise a multi-layer housing which may include one or more of: an outer coating (e.g., plastic and/or rubber), a rigid support structure (e.g., steel), and/or a friction-reduction layer (e.g., plastic).
- inner cable member may comprise a single material (e.g., steel).
- cable 102 (including both inner cable member 108 and outer cable housing 110 ) may be comprised of a single material, such as plastic.
- inner cable member 108 is substantially flexible compared to outer cable housing 110 .
- inner cable member 108 may comprise a string or rope made of natural or synthetic fibers, and may pass through a relatively rigid outer cable housing 110 (e.g., a plastic outer cable housing).
- outer cable housing 110 e.g., a plastic outer cable housing.
- inner cable member 108 can be configured to be pulled through outer cable housing 110 at one end of cable 102 , and to generate a corresponding movement of inner cable member 108 relative to outer cable housing 110 at an opposing end of cable 102 .
- first end 102 a of cable 102 interfaces with measuring device 104 .
- Measuring device 104 is configured to detect movement of inner cable member 108 relative to outer cable housing 110 using encoder(s) 112 .
- a first end of outer cable housing 110 (corresponding to first end 102 a of cable 102 ) is attached to measuring device 104 in a stationary manner that enables movement of inner cable member 108 relative to outer cable housing 110 through encoder(s) 112 .
- a first end of inner cable member 108 (also corresponding to first end 102 a of cable 102 ) is attached to a return mechanism, which is configured to apply a force to inner cable member 108 . The applied force is configured to draw inner cable member 108 toward measuring device 104 , as discussed in more detail later in connection with at least FIGS. 3 A- 3 B .
- Opposing second end 102 b of cable 102 is configured to be usable for measuring object dimensions.
- second end 102 b of cable 102 is configured to enable a corresponding second end of inner cable member 108 to be pulled away from a corresponding second end of outer cable housing 110 .
- cable 102 may comprise a plurality of measurement knobs, such as knob 114 a attached to the second end of inner cable member 108 and knob 114 a attached to the second end of outer cable housing 110 .
- Knobs 114 a / 114 a provide mechanisms for gripping the second end of inner cable member 108 and the second end of outer cable housing 110 , and provide reference points for measurement.
- knobs 114 a / 114 b a user is enabled to pull the second end of inner cable member 108 from the second end of outer cable housing 110 and to position knobs 114 a / 114 b at the outer boundaries of a dimension to be measured. As the user does so, the first end of inner cable member 108 moves relative to the first end of outer cable housing 110 at measuring device 104 , and this movement is measured using encoder(s) 112 .
- FIG. 1 B illustrates measuring device 104 and cable 102 being used to measure a dimension of a three-dimensional object.
- a user has pulled knob 114 a (which is attached to the second end of inner cable member 108 ) away from knob 114 b (which is attached to the second end of outer cable housing 110 ).
- length 116 of inner cable member 108 has been pulled out of outer cable housing 110 .
- a corresponding length of inner cable member 108 (not shown) has also been pulled into outer cable housing 110 at first end 102 a of cable 102 (corresponding to measuring device 104 ). Movement of the corresponding length of inner cable member 108 is detected by encoder(s) 112 .
- Encoders(s) 112 can comprise any combination of one or more devices configured to record movement of inner cable member 108 relative to outer cable housing 110 at first end 102 a of cable 102 (corresponding to measuring device 104 ).
- encoders(s) 112 can include one or more optical encoding devices or sensors which detect movement of inner cable member 108 using light, such as by detecting changes in color and/or brightness, by use of one or more laser(s), etc.
- encoders(s) 112 can include one or more mechanical encoders which detect movement of inner cable member 108 using mechanical means, such as through use of gears, pins, pulleys, spools, etc.
- encoders(s) 112 are configured to convert detected movement of inner cable member 108 into a computer-understandable format, such as an analog or digital signal, packet data, etc.
- encoders(s) 112 are configured to generate a series of electronic pulses. Each electronic pulse may indicate a particular length of movement of inner cable member 108 relative to outer cable housing 110 , a distance of rotation of a spool, pulley, or gear, or any other appropriate measurement.
- Encoders(s) 112 may also generate directional information, indicating which direction inner cable member 108 is moving relative to outer cable housing 110 (e.g., whether knob 114 a is being moved toward knob 114 b or away from knob 114 b ).
- Measuring device 104 is configured to send cable movement information (or measurement information), generated by encoders(s) 112 , to computer system 106 .
- Computer system 106 analyzes received cable movement information to determine one or more dimensions being measured with cable 102 .
- measuring device 104 is configured to send raw encoder data (e.g., analog or digital pulses generated by encoder(s) 112 ) to computer system 106 .
- Computer system 106 then converts the raw encoder data into length and time information.
- measuring device 104 is configured to send length and time information to computer system 106 directly. It will be appreciated that it may be preferable for measuring device 104 to be constructed in a cheap and durable manner. As such, it may be preferable for measuring device 104 to send raw encoder data in order to simplify construction of measuring device 104 .
- FIGS. 2 A- 2 C illustrate exemplary length versus time graphs, each representing orthogonal dimensions of three different three-dimensional objects/groups of objects.
- the Y (vertical) axis represents length (e.g., in imperial or metric units) and the X (horizontal) axis represents time.
- each graph of FIGS. 2 A- 2 C shows the length of inner cable member 108 as it extends from and retracts into outer cable member 110 over time.
- each graph of FIGS. 2 A- 2 C represent the distance between knob 114 a and knob 114 b (i.e., length 116 ) as a user positions the knobs over each orthogonal dimension of three different three-dimensional objects/groups of objects.
- each three-dimensional object may actually include a plurality of objects, such as a bundle of objects.
- the length versus time graphs may represent orthogonal dimensions of at least one three-dimensional bundle of objects.
- each object can be recognized using peaks and zero points.
- computer system 106 may recognize zero point 202 as the beginning of a new object (Object 1), identify three dimensions of the object based on first peak 204 , second peak 206 , and third peak 208 , and recognize zero point 210 as the end of Object 1 and possibly the beginning of a new object (e.g., Object 2).
- Object 2 may be identified based on peaks 212 , 214 , and 216 and zero points 210 and 218 ;
- Object 3 may be identified based on peaks 220 , 222 , and 224 and zero points 218 and 226 .
- Computer system 106 may recognize Object 1 based on the first set of three peaks (i.e., peaks 226 , 228 , and 230 ), recognize Object 2 based on the second set of three peaks (i.e., peaks 232 , 234 , and 236 ), and recognize Object 3 based on the third set of three peaks (i.e., peaks 238 , 240 , and 242 ).
- zero points 244 , 246 , 248 , and 248 occur between peaks within corresponding objects, these zero points have no effect on determining whether objects begin or end. In some embodiments, however, a zero point held for a predefined amount of time (e.g., one second) may signal a reset, causing computer system 106 to recognize the beginning of a new object, the re-measurement of a dimension, etc.
- a predefined amount of time e.g., one second
- plateau 254 may override peak 252 .
- Overriding peaks with plateaus may be useful when a user has pulled too much inner cable length for a given dimensional measurement. In this circumstance, the user need only reduce the inner cable length to the object dimension and hold the length for a short time (e.g., one second) to generate a recognizable plateau.
- FIGS. 2 A- 2 C have illustrated some exemplary dimensional identification algorithms, it will be appreciated that additional recognition steps can be used, such as the use of buttons, the use of spoken commands, the use of time delays, etc. Furthermore, combinations of any of the foregoing analytical techniques are also within the scope of this disclosure.
- measuring device 104 or computer system 106 may include input and feedback mechanisms which assist in measuring dimensions of physical objects.
- measuring device 106 may include lights or buzzers which can be used to indicate measurement status (e.g., error conditions, the recognition of a dimension, the beginning of an object, the end of an object, etc.).
- computer system 106 may provide similar feedback via a computerized user interface.
- measuring device 104 and/or computer system 106 may provide buttons, switches, or user interface controls which enable a user to expressly signal the beginning or end of an object, to correct error conditions, or to provide any other appropriate user interactivity.
- Computer system 106 is also configured to update a local or remote database with dimensional information. Once the dimensions of an object have been recognized by computer system 106 , computer system 106 can add those dimensions to the database when appropriate. For example, computer system 106 may add a new entry for the object, or update an existing entry for the object. Each entry can contain the dimensional information.
- Computer system 106 is also configured to initiate creation of physical box templates based on measured object dimensions.
- computer system 106 is configured to communicate with a material processing machine/system that creates (e.g., stamps or cuts) custom-sized box templates from raw (e.g., fanfold) material.
- the material processing machine/system can create box templates on-demand. Examples of material processing machines/systems are disclosed in U.S. Pat. No. 6,840,898, issued Jan. 11, 2005, and entitled Apparatus for the Positioning of a Tool or a Tool Holder in a Machine Designed for Processing a Sheet Material, which is hereby incorporated herein by reference in its entirety.
- cable-based measuring system 100 can enable a user to measure objects and add object dimensions to the database when appropriate by positioning cable members on each dimension of an object. For example, if a user is packaging a particular object, the user can identify the object with computer system 106 (e.g., through a bar code scan, a RFID scan, an item entry). If an entry for the object does not yet exist in the database, or if the information is incorrect or incomplete, the user can use cable 102 and measuring device 104 to measure the dimensions of the object. Computer system 106 can then update the database as appropriate, either automatically or with user-interaction. Computer system 106 can additionally or alternatively initiate creation of one or more custom-sized boxes for packaging the object (or like objects).
- FIGS. 3 A and 3 B illustrate exemplary configurations of cable-based measuring system 100 .
- FIG. 3 A illustrates that measuring device 104 may be used in connection with computer system 106 at workstation 302 (e.g., a table).
- Measuring device 104 can be embodied as a self-contained apparatus that can be placed on or near workstation 302 .
- measuring device 104 includes a mechanism configured to apply a force to inner cable member 108 which retracts inner cable member 108 through outer cable housing toward measuring device 104 .
- measuring device 104 may include a spool onto which a portion of inner cable member 108 is wound by a spring, motor, or other mechanism. Measuring device 104 therefore retracts inner cable member 108 onto the spool after a user has pulled an opposite end of inner cable member 108 from outer cable housing 110 to measure a dimension of an object (as indicated by arrow 304 ).
- FIG. 3 B illustrates an alternative embodiment in which measuring device 104 is incorporated into workstation 302 .
- an end of outer cable housing 110 is mounted to measuring device 104 , and inner cable member 108 passes through one or more encoders in measuring device 104 .
- Counterweight 306 is attached to inner cable member 108 .
- Counterweight 106 is configured to enable the force of gravity to retract inner cable member 108 .
- counterweight 306 retracts that cable (as indicated by arrow 304 ).
- FIG. 4 illustrates an exemplary computing environment 400 that facilitates identifying three-dimensional object measurements.
- computing environment 400 includes measuring device 104 , computer system 106 , and database 408 .
- Each of the depicted computer systems is connected to one another over (or is part of) a network, such as, for example, a Local Area Network (“LAN”), a Wide Area Network (“WAN”), and even the Internet.
- LAN Local Area Network
- WAN Wide Area Network
- each of the depicted computer systems as well as any other connected computer systems and their components can create message related data and exchange message related data (e.g., Internet Protocol (“IP”) datagrams and other higher layer protocols that utilize IP datagrams, such as, Transmission Control Protocol (“TCP”), Hypertext Transfer Protocol (“HTTP”), Simple Mail Transfer Protocol (“SMTP”), etc.) over the network.
- IP Internet Protocol
- TCP Transmission Control Protocol
- HTTP Hypertext Transfer Protocol
- SMTP Simple Mail Transfer Protocol
- computer system 106 includes communications component 402 , analysis component 404 , database component 406 , user interaction component 410 , and box template component 412 .
- Communications component 204 is configured to receive measurement data/information from measuring device 104 .
- Communications component 204 can be configured to receive raw encoder data from measuring device 104 , and/or can be configured to receive more refined data (e.g., a length versus time data plot) from measuring device 104 .
- the measurement data received by communications component 402 can include three-dimensional measurement information for one or more objects.
- Analysis component 404 is configured to receive measurement data from communications component 402 , and to perform appropriate processing and/or analysis on the measurement data.
- analysis component 404 is configured to process raw encoder data to convert it into more refined data (e.g., length versus time data).
- Analysis component 404 performs analysis on the measurement data to determine the dimensions of one or more objects. For example, analysis component 404 may analyze data plots similar to those of FIGS. 2 A- 2 C to ascertain the orthogonal dimensions (e.g., length, width, and height) of one or more objects represented by the measurement data.
- Database component 406 is configured to update information in local and/or remote database 408 . For example, after ascertaining the dimensions of an object, database component 406 can add the dimensions for that object in an entry in database 408 , or can update an existing entry. Database component 406 can also be configured to retrieve dimensional information from database 408 . For example, using user interaction component 408 , a user can indicate that the dimensions of an object are desired. Database component 406 can then retrieve any existing information from database 408 , or report that the information does not exist.
- User interaction component 410 is configured to provide any appropriate user interface(s) to a user, and to enable user input from the user.
- user interaction component 410 can be configured to enable a user to retrieve and update object dimension information, to perform measurement operations, to initiate creation of a box template (based on dimensional information stored in database 408 or based on new measurement information obtained with measuring device 104 ), etc.
- Box template component 412 is configured to communicate with a material processing machine or system (not shown) to initiate creation of a box template that is appropriately sized to accommodate an object having dimensions represented by the measurement data. As such, box template component 412 can initiate the on-demand creation of custom boxes as objects are measured using measuring device 104 .
- FIG. 5 illustrates a flow chart of an example method 500 for identifying three-dimensional object measurements. Method 500 will be described with respect to the components and data of computer architecture 400 and cable-based measuring system 100 .
- Method 500 includes an act of receiving measurement data, the measurement data indicating length as a function of time, the measurement data indicating at least three orthogonal dimensional measurements, each dimensional measurement corresponding to a dimension of a three-dimensional object (act 502 ).
- communications component 402 can receive measurement data from measuring device 104 , which is part of cable-based measuring system 100 .
- the measurement data can comprise raw data from encoders (e.g., pulse information), or can contain more refined data (e.g., a length/time plot). As depicted in FIGS. 2 A- 2 C , the measurement data can represent orthogonal dimensions of three-dimensional objects.
- Method 500 also includes an act of identifying a length of each dimensional measurement, including identifying at least a length, a width, and a height of the three-dimensional object based on the measurement data (act 504 ).
- analysis component 404 can analyze the received measurement data to identify dimensions of one or more objects.
- identification of object dimensions can be performed by identifying peaks, plateaus, zero points, etc. in the measurement data. The peaks, plateaus, zero points, etc. can result from movement by a user of inner cable member 108 relative to outer cable housing 108 of cable 102 .
- Method 500 also includes an act of the computer system performing one or both of: (i) initiating creation of a physical box template from raw material, the physical box template being configured to be erected into a box sized to accommodate the three-dimensional object, or (ii) updating a database, updating the database including one or more of: (i) creating an item entry for the three-dimensional object in the database, or (ii) updating an item entry for the three-dimensional object in the database (act 506 ).
- box template component 412 can send object dimensions or template information to a material processing machine (not shown) to initiate creation of a physical box template from raw (e.g., fanfold) material.
- the physical box template when assembled, is sized to accommodate the three-dimensional object that is represented by the measurement data. It will be appreciated that in some instances this may involve creating a physical box template having one or more dimensions that are larger than the three-dimensional object (e.g., to accommodate padding/filling materials).
- Updating the database can include one or more of: (i) creating an item entry for the three-dimensional object in the database, or (ii) updating an item entry for the three-dimensional object in the database.
- the item entry can include one or more of: (i) an appropriate box size for the three-dimensional object and/or (ii) the identified length, a width, and a height of the three-dimensional object.
- database component 406 can update database 408 .
- the measuring device comprises two handheld sensors.
- Each handheld sensor can be configured as one or both of a wireless transmitter and/or a wireless receiver.
- the transmitter/receiver sensors can be used to wirelessly determine the length of the dimension.
- Measurement may be carried out wirelessly using various types of electromagnetic waves such as light (e.g., laser), radio waves (e.g., radar). Measurement may additionally or alternatively be carried out wirelessly using sound waves.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/232,896 US12000690B2 (en) | 2012-01-09 | 2021-04-16 | Cable-based measuring system |
US18/733,788 US20240318953A1 (en) | 2012-01-09 | 2024-06-04 | Cable-based measuring system |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261584588P | 2012-01-09 | 2012-01-09 | |
US201261587013P | 2012-01-16 | 2012-01-16 | |
PCT/US2012/070659 WO2013106177A1 (en) | 2012-01-09 | 2012-12-19 | Cable-based measuring system |
US201414370741A | 2014-07-03 | 2014-07-03 | |
US15/340,839 US10281260B2 (en) | 2012-01-09 | 2016-11-01 | Cable-based measuring system |
US16/353,929 US11022425B2 (en) | 2012-01-09 | 2019-03-14 | Cable-based measuring system |
US17/232,896 US12000690B2 (en) | 2012-01-09 | 2021-04-16 | Cable-based measuring system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/353,929 Division US11022425B2 (en) | 2012-01-09 | 2019-03-14 | Cable-based measuring system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/733,788 Division US20240318953A1 (en) | 2012-01-09 | 2024-06-04 | Cable-based measuring system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210231430A1 US20210231430A1 (en) | 2021-07-29 |
US12000690B2 true US12000690B2 (en) | 2024-06-04 |
Family
ID=48781807
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/370,741 Active 2033-04-26 US9541422B2 (en) | 2012-01-09 | 2012-12-19 | Cable-based measuring system |
US15/340,839 Active 2032-12-29 US10281260B2 (en) | 2012-01-09 | 2016-11-01 | Cable-based measuring system |
US16/353,929 Active US11022425B2 (en) | 2012-01-09 | 2019-03-14 | Cable-based measuring system |
US17/232,896 Active 2033-04-09 US12000690B2 (en) | 2012-01-09 | 2021-04-16 | Cable-based measuring system |
US18/733,788 Pending US20240318953A1 (en) | 2012-01-09 | 2024-06-04 | Cable-based measuring system |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/370,741 Active 2033-04-26 US9541422B2 (en) | 2012-01-09 | 2012-12-19 | Cable-based measuring system |
US15/340,839 Active 2032-12-29 US10281260B2 (en) | 2012-01-09 | 2016-11-01 | Cable-based measuring system |
US16/353,929 Active US11022425B2 (en) | 2012-01-09 | 2019-03-14 | Cable-based measuring system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/733,788 Pending US20240318953A1 (en) | 2012-01-09 | 2024-06-04 | Cable-based measuring system |
Country Status (3)
Country | Link |
---|---|
US (5) | US9541422B2 (en) |
EP (2) | EP2802888B1 (en) |
WO (1) | WO2013106177A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9541422B2 (en) | 2012-01-09 | 2017-01-10 | Packsize Llc | Cable-based measuring system |
US11045174B2 (en) | 2015-09-25 | 2021-06-29 | Covidien Lp | Patient movement sensor |
CN110730319B (en) * | 2019-10-12 | 2022-03-08 | 深圳创维-Rgb电子有限公司 | Television, television control method and control device |
Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4893074A (en) | 1988-05-13 | 1990-01-09 | Intest Corporation | Electronic device testing system |
US4977524A (en) | 1989-01-03 | 1990-12-11 | Hunter Engineering Company | Electronic measuring gauge and apparatus for accurate vehicle stance diagnosis and guidance in effecting wheel alignment |
US5042015A (en) | 1989-09-01 | 1991-08-20 | Quantronix, Inc. | Measuring method and apparatus |
US5770864A (en) | 1996-12-31 | 1998-06-23 | Pitney Bowes Inc. | Apparatus and method for dimensional weighing utilizing a laser scanner or sensor |
US5867019A (en) | 1996-10-23 | 1999-02-02 | Bmf Engineering Inc. | Power cable voltage tester |
US5948024A (en) | 1995-10-19 | 1999-09-07 | Snap-On Technologies, Inc. | Vehicle alignment condition measurement and display |
WO2000063637A1 (en) | 1999-04-16 | 2000-10-26 | The Secretary Of State For Trade & Industry | Electronic measuring tape |
US20020091310A1 (en) * | 2001-01-05 | 2002-07-11 | Lmb Technologie Gmbh | Apparatus and system for monitoring objects contained inside a living body |
US6658755B2 (en) | 1999-07-08 | 2003-12-09 | Yair Nomberg | Measuring device, and method for programming a soft feature key of an electronic device |
US6663153B2 (en) | 2001-06-07 | 2003-12-16 | Mark E. Brunson | Removable attachment device for tape measure |
US6775639B1 (en) | 1997-11-07 | 2004-08-10 | James Herbert Mason | Computerized vehicle alignment system |
US6785973B1 (en) | 1999-11-03 | 2004-09-07 | E. Knip & Co. | Measuring device comprising a movable measuring probe |
US6840898B2 (en) | 1998-10-09 | 2005-01-11 | Emsize Ab | Apparatus for the positioning of a tool or a tool holder in a machine designed for processing a sheet material |
US6928029B2 (en) | 2003-11-20 | 2005-08-09 | Brandon Rickman | Combination tape measure and range finder |
EP1671763A1 (en) | 2004-12-15 | 2006-06-21 | Robert W. Wise | Adjustable fence for a chop saw |
WO2006115350A1 (en) | 2005-04-26 | 2006-11-02 | Cheol-Yun Lee | System for designing packing box online and design method using the same |
US20070121096A1 (en) | 2003-09-12 | 2007-05-31 | Kurt Giger | Method and device for ensuring interaction between a distance meter and a surveying application |
US20080020916A1 (en) | 2006-07-12 | 2008-01-24 | Greg Magnell | System and method for making custom boxes for objects of random size or shape |
US20080072443A1 (en) | 2006-09-26 | 2008-03-27 | Powell Bradley J | 3-dimensional Cable Guide and Cable Based Position Transducer |
US20080104855A1 (en) | 2006-11-07 | 2008-05-08 | Eidosmed Llc | Digital depth gauge |
US7403900B2 (en) | 2002-06-04 | 2008-07-22 | Global Sensor Systems, Inc | Franking system and method |
US7602505B2 (en) | 2005-11-16 | 2009-10-13 | Sick Ag | Method for the automatic parameterization of measuring systems |
US20090313844A1 (en) | 2008-06-20 | 2009-12-24 | Swanson David W | Measuring device with extensible cord and method |
US20100135550A1 (en) * | 2007-06-25 | 2010-06-03 | Real Imaging Ltd. | Method, device and system for thermography |
US20100208769A1 (en) | 2007-08-01 | 2010-08-19 | Endress + Hauser Wetzer Gmbh + Co. Kg | Apparatus for determing and/or monitoring temperature |
US20100259474A1 (en) * | 2009-04-08 | 2010-10-14 | Gesturetek, Inc. | Enhanced handheld screen-sensing pointer |
US20100275456A1 (en) | 2009-04-29 | 2010-11-04 | Peter Maxwell Lord | Digital measuring device |
US20110061962A1 (en) | 2009-09-15 | 2011-03-17 | Robert Bosch Gmbh | Steering angle sensor |
US20110301730A1 (en) * | 2010-06-02 | 2011-12-08 | Sony Corporation | Method for determining a processed audio signal and a handheld device |
US8131654B2 (en) | 2008-12-11 | 2012-03-06 | Pitney Bowes Inc. | System and method for dimensional rating of mail pieces |
US20120206339A1 (en) * | 2009-07-07 | 2012-08-16 | Elliptic Laboratories As | Control using movements |
US20120313900A1 (en) * | 2009-10-07 | 2012-12-13 | Elliptic Laboratories As | User interfaces |
US20130000252A1 (en) | 2009-12-12 | 2013-01-03 | Packsize, Llc | Creating on-demand packaging based on custom arrangement of items |
US20130050080A1 (en) * | 2009-10-07 | 2013-02-28 | Elliptic Laboratories As | User interfaces |
US20130102324A1 (en) * | 2011-10-21 | 2013-04-25 | Microsoft Corporation | Device-to-device relative localization |
WO2013106177A1 (en) | 2012-01-09 | 2013-07-18 | Packsize Llc | Cable-based measuring system |
US20130232804A1 (en) | 2012-03-08 | 2013-09-12 | Holding Prodim Systems B. V. | Apparatus for pointing spatial coordinates, comprising a movable hand-held probe and a portable base unit, and a related method |
US20140021940A1 (en) | 2012-07-20 | 2014-01-23 | Jung Eui HONG | Electric power monitoring device and an apparatus using alternating current power having the same |
US20140059981A1 (en) | 2010-12-15 | 2014-03-06 | Packsize Llc | Apparatus, systems and methods for using handheld measurement devices to create on-demand packaging |
US20140101948A1 (en) | 2012-10-12 | 2014-04-17 | E Measuring Device Limited | Garment Measurement and Reporting System |
US20140352164A1 (en) | 2013-06-04 | 2014-12-04 | Scott Goldstein | Tape Measure with Measurement Indicia Dial |
US20150369579A1 (en) | 2011-06-24 | 2015-12-24 | Pi Tape Corporation | Optical readout device to provide visual information |
US20160040971A1 (en) | 2014-08-07 | 2016-02-11 | Charles Hoge | Bluetooth tape measure system |
US9651363B2 (en) | 2012-07-24 | 2017-05-16 | Datalogic Usa, Inc. | Systems and methods of object measurement in an automated data reader |
-
2012
- 2012-12-19 US US14/370,741 patent/US9541422B2/en active Active
- 2012-12-19 EP EP12864854.0A patent/EP2802888B1/en active Active
- 2012-12-19 WO PCT/US2012/070659 patent/WO2013106177A1/en active Application Filing
- 2012-12-19 EP EP19179545.9A patent/EP3561440A1/en not_active Withdrawn
-
2016
- 2016-11-01 US US15/340,839 patent/US10281260B2/en active Active
-
2019
- 2019-03-14 US US16/353,929 patent/US11022425B2/en active Active
-
2021
- 2021-04-16 US US17/232,896 patent/US12000690B2/en active Active
-
2024
- 2024-06-04 US US18/733,788 patent/US20240318953A1/en active Pending
Patent Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4893074A (en) | 1988-05-13 | 1990-01-09 | Intest Corporation | Electronic device testing system |
US4977524A (en) | 1989-01-03 | 1990-12-11 | Hunter Engineering Company | Electronic measuring gauge and apparatus for accurate vehicle stance diagnosis and guidance in effecting wheel alignment |
US5042015A (en) | 1989-09-01 | 1991-08-20 | Quantronix, Inc. | Measuring method and apparatus |
US5948024A (en) | 1995-10-19 | 1999-09-07 | Snap-On Technologies, Inc. | Vehicle alignment condition measurement and display |
US5867019A (en) | 1996-10-23 | 1999-02-02 | Bmf Engineering Inc. | Power cable voltage tester |
US5770864A (en) | 1996-12-31 | 1998-06-23 | Pitney Bowes Inc. | Apparatus and method for dimensional weighing utilizing a laser scanner or sensor |
US6775639B1 (en) | 1997-11-07 | 2004-08-10 | James Herbert Mason | Computerized vehicle alignment system |
US6840898B2 (en) | 1998-10-09 | 2005-01-11 | Emsize Ab | Apparatus for the positioning of a tool or a tool holder in a machine designed for processing a sheet material |
WO2000063637A1 (en) | 1999-04-16 | 2000-10-26 | The Secretary Of State For Trade & Industry | Electronic measuring tape |
US6658755B2 (en) | 1999-07-08 | 2003-12-09 | Yair Nomberg | Measuring device, and method for programming a soft feature key of an electronic device |
US6785973B1 (en) | 1999-11-03 | 2004-09-07 | E. Knip & Co. | Measuring device comprising a movable measuring probe |
US20020091310A1 (en) * | 2001-01-05 | 2002-07-11 | Lmb Technologie Gmbh | Apparatus and system for monitoring objects contained inside a living body |
US6663153B2 (en) | 2001-06-07 | 2003-12-16 | Mark E. Brunson | Removable attachment device for tape measure |
US7403900B2 (en) | 2002-06-04 | 2008-07-22 | Global Sensor Systems, Inc | Franking system and method |
US20070121096A1 (en) | 2003-09-12 | 2007-05-31 | Kurt Giger | Method and device for ensuring interaction between a distance meter and a surveying application |
US6928029B2 (en) | 2003-11-20 | 2005-08-09 | Brandon Rickman | Combination tape measure and range finder |
EP1671763A1 (en) | 2004-12-15 | 2006-06-21 | Robert W. Wise | Adjustable fence for a chop saw |
US7882772B2 (en) | 2004-12-15 | 2011-02-08 | Wise Robert W | Repetitive fence for cross-cutting materials |
WO2006115350A1 (en) | 2005-04-26 | 2006-11-02 | Cheol-Yun Lee | System for designing packing box online and design method using the same |
US7602505B2 (en) | 2005-11-16 | 2009-10-13 | Sick Ag | Method for the automatic parameterization of measuring systems |
US20080020916A1 (en) | 2006-07-12 | 2008-01-24 | Greg Magnell | System and method for making custom boxes for objects of random size or shape |
US20080072443A1 (en) | 2006-09-26 | 2008-03-27 | Powell Bradley J | 3-dimensional Cable Guide and Cable Based Position Transducer |
US20080104855A1 (en) | 2006-11-07 | 2008-05-08 | Eidosmed Llc | Digital depth gauge |
US20100135550A1 (en) * | 2007-06-25 | 2010-06-03 | Real Imaging Ltd. | Method, device and system for thermography |
US20100208769A1 (en) | 2007-08-01 | 2010-08-19 | Endress + Hauser Wetzer Gmbh + Co. Kg | Apparatus for determing and/or monitoring temperature |
US20090313844A1 (en) | 2008-06-20 | 2009-12-24 | Swanson David W | Measuring device with extensible cord and method |
US8131654B2 (en) | 2008-12-11 | 2012-03-06 | Pitney Bowes Inc. | System and method for dimensional rating of mail pieces |
US20100259474A1 (en) * | 2009-04-08 | 2010-10-14 | Gesturetek, Inc. | Enhanced handheld screen-sensing pointer |
US20100275456A1 (en) | 2009-04-29 | 2010-11-04 | Peter Maxwell Lord | Digital measuring device |
US8356419B2 (en) | 2009-04-29 | 2013-01-22 | Peter Maxwell Lord | Digital measuring device |
US20120206339A1 (en) * | 2009-07-07 | 2012-08-16 | Elliptic Laboratories As | Control using movements |
US20110061962A1 (en) | 2009-09-15 | 2011-03-17 | Robert Bosch Gmbh | Steering angle sensor |
US20120313900A1 (en) * | 2009-10-07 | 2012-12-13 | Elliptic Laboratories As | User interfaces |
US20130050080A1 (en) * | 2009-10-07 | 2013-02-28 | Elliptic Laboratories As | User interfaces |
US20130000252A1 (en) | 2009-12-12 | 2013-01-03 | Packsize, Llc | Creating on-demand packaging based on custom arrangement of items |
US20110301730A1 (en) * | 2010-06-02 | 2011-12-08 | Sony Corporation | Method for determining a processed audio signal and a handheld device |
US20140059981A1 (en) | 2010-12-15 | 2014-03-06 | Packsize Llc | Apparatus, systems and methods for using handheld measurement devices to create on-demand packaging |
US20150369579A1 (en) | 2011-06-24 | 2015-12-24 | Pi Tape Corporation | Optical readout device to provide visual information |
US20130102324A1 (en) * | 2011-10-21 | 2013-04-25 | Microsoft Corporation | Device-to-device relative localization |
WO2013106177A1 (en) | 2012-01-09 | 2013-07-18 | Packsize Llc | Cable-based measuring system |
US20150077765A1 (en) | 2012-01-09 | 2015-03-19 | Packsize Llc | Cable-based measuring system |
US9541422B2 (en) | 2012-01-09 | 2017-01-10 | Packsize Llc | Cable-based measuring system |
US20170045351A1 (en) | 2012-01-09 | 2017-02-16 | Packsize Llc | Cable-Based Measuring System |
US20190212127A1 (en) | 2012-01-09 | 2019-07-11 | Packsize Llc | Cable-Based Measuring System |
US20130232804A1 (en) | 2012-03-08 | 2013-09-12 | Holding Prodim Systems B. V. | Apparatus for pointing spatial coordinates, comprising a movable hand-held probe and a portable base unit, and a related method |
US20140021940A1 (en) | 2012-07-20 | 2014-01-23 | Jung Eui HONG | Electric power monitoring device and an apparatus using alternating current power having the same |
US9651363B2 (en) | 2012-07-24 | 2017-05-16 | Datalogic Usa, Inc. | Systems and methods of object measurement in an automated data reader |
US20140101948A1 (en) | 2012-10-12 | 2014-04-17 | E Measuring Device Limited | Garment Measurement and Reporting System |
US20140352164A1 (en) | 2013-06-04 | 2014-12-04 | Scott Goldstein | Tape Measure with Measurement Indicia Dial |
US20160040971A1 (en) | 2014-08-07 | 2016-02-11 | Charles Hoge | Bluetooth tape measure system |
Non-Patent Citations (6)
Title |
---|
Final Office Action received for U.S. Appl. No. 15/340,839, dated Sep. 27, 2018. |
International Search Report and Written Opinion for PCT/US2012/070659 dated Mar. 11, 2013. |
Non-Final Office Action received for U.S. Appl. No. 16/353,929, dated Jul. 9, 2020, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/353,929, dated Nov. 19, 2020, 15 pages. |
Office Action received for U.S. Appl. No. 14/370,741, dated Apr. 21, 2016. |
Office Action received for U.S. Appl. No. 15/340,839, dated Apr. 18, 2018. |
Also Published As
Publication number | Publication date |
---|---|
EP2802888A1 (en) | 2014-11-19 |
US20170045351A1 (en) | 2017-02-16 |
US20210231430A1 (en) | 2021-07-29 |
US20190212127A1 (en) | 2019-07-11 |
US11022425B2 (en) | 2021-06-01 |
US20150077765A1 (en) | 2015-03-19 |
EP2802888A4 (en) | 2015-02-25 |
US20240318953A1 (en) | 2024-09-26 |
US9541422B2 (en) | 2017-01-10 |
EP2802888B1 (en) | 2019-10-02 |
US10281260B2 (en) | 2019-05-07 |
WO2013106177A1 (en) | 2013-07-18 |
EP3561440A1 (en) | 2019-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12000690B2 (en) | Cable-based measuring system | |
US9896231B2 (en) | Packaging station system and related methods | |
JP6126661B2 (en) | Device, system, and method for individually packaging using portable measuring instrument | |
US7298467B2 (en) | Method of determining a horizontal profile line defined by walls that are essentially vertical, and an apparatus for implementing said method | |
US10402890B2 (en) | Box-last packaging system, method, and computer program product | |
CN104236629B (en) | Pull wire type measuring system and method applied to spatial location accuracy and track measurement of industrial robot | |
CN106643603A (en) | Intelligent device for precise cutting and measurement of ship cable | |
CN102778205A (en) | Method and device for detecting diameter of grinding rod | |
CN202669192U (en) | Multiple-unit integrated Internet of Things mark laser marking system | |
KR102390004B1 (en) | Apparatus, method and computer-readable storage medium for non-destructive inspection of bicycle based on analyzing amount of scale change | |
US20180052949A1 (en) | Construction management system | |
Prasse et al. | Concept of automated load detection for de-palletizing using depth images and RFID data | |
CN116399873A (en) | Machine vision-based sheet defect labeling method, device, equipment and medium | |
EP3530573B1 (en) | Method and computer system for utilizing a converting machine for making custom packaging templates | |
KR20180122654A (en) | Balancing weight application machines and methods of using them | |
US11326908B2 (en) | Apparatus for measuring wire and cable length via electronic sensing of reel rotation in communication with a network-connected database | |
CN103808272A (en) | Height indicator | |
CN207595417U (en) | A kind of automatic carton loading system | |
US11892338B2 (en) | Four-dimension (4D) scale for distribution and warehouse management, and associated methods | |
US11630027B1 (en) | Testing rigs having variable mass properties for robotic end effectors and associated methods of use | |
US20240347395A1 (en) | Object dimensioning apparatus and related methods | |
RU108597U1 (en) | DEVICE FOR NON-CONTACT MEASURING LENGTH OF ROLL MATERIAL | |
JP2005074469A (en) | Folding method and folding system | |
JP2013088534A (en) | Wire rod for identification mark and forming device thereof | |
JP2013086819A (en) | Method of measuring gap position in tied bundle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
AS | Assignment |
Owner name: PACKSIZE, LLC, UTAH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PETTERSSON, NIKLAS;REEL/FRAME:056301/0527 Effective date: 20210430 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:PACKSIZE LLC;REEL/FRAME:068730/0393 Effective date: 20240819 |