US11956648B2 - Optimize commissioning in ZigBee network - Google Patents

Optimize commissioning in ZigBee network Download PDF

Info

Publication number
US11956648B2
US11956648B2 US17/255,465 US201917255465A US11956648B2 US 11956648 B2 US11956648 B2 US 11956648B2 US 201917255465 A US201917255465 A US 201917255465A US 11956648 B2 US11956648 B2 US 11956648B2
Authority
US
United States
Prior art keywords
network
state
network node
node
enter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/255,465
Other languages
English (en)
Other versions
US20210274363A1 (en
Inventor
Zhi Zhong Zz Zhang
Dun Fa Df Chen
Hao QUE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signify Holding BV
Original Assignee
Signify Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Signify Holding BV filed Critical Signify Holding BV
Assigned to SIGNIFY HOLDING B.V. reassignment SIGNIFY HOLDING B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PHILIPS LIGHTING HOLDING B.V.
Assigned to PHILIPS LIGHTING HOLDING B.V. reassignment PHILIPS LIGHTING HOLDING B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QUE, Howard, CHEN, DUN FA DF, ZHANG, ZHI ZONG ZZ
Publication of US20210274363A1 publication Critical patent/US20210274363A1/en
Application granted granted Critical
Publication of US11956648B2 publication Critical patent/US11956648B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the invention relates to the field of commissioning of network devices in wireless networks, such as—but not limited to—ZigBee networks and in particular ZigBee lighting control networks.
  • Wireless networks broadly deploy and, for example, wireless devices in a company or a family can form a personal area network (PAN), thereby allowing data to be transmitted within the company or the family via the PAN thus formed.
  • PAN personal area network
  • ZigBee is a protocol for low-power, low-rate and low-cost communication in the Internet of Things (IoT), which is based on an IEEE 802.15.4 standard defining the operation of low-rate wireless PANs (WPANs) and allows to adequately and affordably control a wide range of devices in a mesh or tree-based topology.
  • Each ZigBee network as a wireless mesh network or a WPAN can be either a centralized security network or a distributed security network, and application of such ZigBee networks may include, for example, home automation, office automation, building automation, retail services, smart energy, wireless sensing, wireless lighting control and so on.
  • FIG. 1 shows conventional PANs as centralized security networks 110 A, 110 B, in which three logical device types of node, such as coordinator (C), router (R) and end device (E) as specified according to the ZigBee protocol, are illustrated.
  • Each node is made up of one or more devices and is designated, at any point in time, to only one of the logical types.
  • Coordinators and routers are usually devices that are mains-powered, whereas end devices are usually battery-powered.
  • the coordinator which includes a Trust Center (TC) is adapted to initialize and form its centralized security network and activate its Trust center functionality, provided that a single coordinator is respectively attributed to each centralized security network and shall not attempt to join another network.
  • TC Trust Center
  • the coordinator (C) searches for a suitable radio frequency (RF) channel, which is available and without interference with the WLAN frequencies in use, and assigns a PAN identifier (PAN ID) to its network (i.e., its PAN) and a network address to itself.
  • PAN ID PAN identifier
  • the coordinator (C) and the routers (R) can allow other network nodes among the routers (R) and end devices (E) to join, through a so-called commissioning method of auto-join, the network thus formed as depicted in FIG. 1 , and enter a commissioned (or joined-network) state (CS) from a factory-new (or factory-default) state (FNS) as depicted in FIG.
  • CS commissioned (or joined-network) state
  • FNS factory-new (or factory-default) state
  • the network node may be adapted to enter a second state from a first state once the network node has joined a first network being a PAN with a coordinator, the first network being other than the second network, and adapted to enter a third state from the second state once the network node has left the first network, e.g., received from the first network a message to leave the first network, the network node entered the third state, the third state being different from the first and the second states, the network node enters the first state from the third state upon a predetermined trigger condition is met.
  • the first and second networks may be ZigBee networks.
  • the network node Once entered the third state, the network node may become unresponsive with respect to the first network in terms, for example, of message, command, frame, request or the like received by itself from the first network and other than the dedicated message. Thanks to the additional third state, the network node having left an undesired network as the first network can be avoided to join it again, for example, during a commissioning procedure of auto-join allowing the network node to join its desired network as the second network.
  • the network node may be adapted to start a timer once the network node has left the first network, e.g. after receiving a message to leave the first network, the timer having a predetermined time duration, and adapted to enter the first state from the third state once the predetermined time duration of the timer has expired.
  • the network node can use an appropriate countdown of the timer to remain in the third state, the countdown allowing the second network to have time enough to form and open and allowing the network node to join the second network as formed.
  • the network node may be adapted to enter the first state from the third state once the network node has received a message instructing the network node to enter the first state (refer it as a dedicated message hereinafter) from the first network or from the second network.
  • a message instructing the network node to enter the first state (refer it as a dedicated message hereinafter) from the first network or from the second network.
  • only the network node entered in the third state can be responsive to the dedicated message, which may be sent by the first network or the second network.
  • the network node may be adapted to enter the second state from the first state once the network node has joined the second network. Thereby, the commissioning procedure of auto-join can be achieved starting from the first state.
  • the network node leaving a network can be initiated by the network coordinator or by the network node itself.
  • a message to leave the first network may be received from a coordinator node of the first network, or the network node sends a leave network request to the coordinator.
  • a coordinator node At each mesh network is associated a single coordinator node, which may be a gateway, a ZigBee coordinator or a ZigBee transceiver.
  • the dedicated message from the first network may be received from a coordinator node of the first network after closing the first network, and the dedicated message from the second network may be received from a coordinator of the second network.
  • a coordinator node which may be a gateway, a ZigBee coordinator or a ZigBee transceiver.
  • the dedicated message may be a new message or an enhanced existing message.
  • the new message may be a new proprietary message and the enhanced existing message may be an enhanced beacon message, in which the protocol ID of network (NWK) layer information may be set to a value “1” instead of “0” for a “normal” protocol ID as it is disclosed in the ZigBee specification about the NWK layer information field in the beacon payload.
  • NWK network
  • the enhanced existing message may be an enhanced permit-join request having a predetermined time duration (e.g., three seconds) and a predetermined structure (e.g., in the form of three continuous normal permit-join requests having each a time duration of one second).
  • a predetermined time duration e.g., three seconds
  • a predetermined structure e.g., in the form of three continuous normal permit-join requests having each a time duration of one second.
  • the first state may be a factory-new state
  • the second state may be a commissioned (or joined-network) state
  • the third state may be a not-commissioned or pre-factory-new state.
  • the third state can be an additional state with respect to the factory-new and commissioned states specified in the ZigBee standard, e.g. like a state of idle.
  • the third state is different from the first state and the second state and in which the network node won't start commission procedure of auto-join as in first state.
  • the network node in third state are only responsive to predetermined trigger conditions to enter first state.
  • the network node enters the first state from the third state upon a reboot of the network node, e.g. a manually reboot.
  • a lighting system may comprise a plurality of network nodes as claimed in the first aspect and/or in any of the examples of the first aspect. Thereby, the lighting control can be optimized.
  • a method may comprise entering a second state from a first state once the network node has joined a first network, the first network being other than the second network, and entering a third state from the second state once the network node has received from the first network a message to leave the first network, the network node entered the third state being responsive with respect to the first network and/or the second network by receiving a dedicated message to join network or being unresponsive with respect to the first network.
  • the method may comprise starting a timer once the network node has received the message to leave the first network, the timer having a predetermined time duration, and entering the first state from the third state once the predetermined time duration of the timer has expired.
  • the method may comprise entering the first state from the third state once the network node has received the dedicated message from the first network and/or from the second network.
  • the method may comprise entering the second state from the first state once the network node has joined the second network.
  • a computer program product may comprise program instructions or code means such that, when the computer program product is run on a processing unit of the computing device, the computing device is arranged to perform the method as claimed in the third aspect and/or in any of the examples of the third aspect.
  • the above apparatuses may be implemented based on discrete hardware circuitries with discrete hardware components, integrated chips, or arrangements of chip modules, or based on signal processing devices or chips controlled by software routines or programs stored in memories, written on a computer readable media, or downloaded from a network, such as the Internet.
  • FIG. 1 shows personal area networks as centralized security networks, according to a conventional embodiment
  • FIG. 2 shows a schematic state diagram indicating two state transitions of a network node, according to a conventional embodiment
  • FIG. 3 shows a schematic state diagram indicating three state transitions of a network node, according to an embodiment of the present invention
  • FIG. 4 shows a signaling diagram illustrating the step of commissioning the network node to join the first network, according to an embodiment of the present invention
  • FIG. 5 is a signaling diagram illustrating the step for a network node to leave the first network, according to an embodiment of the present invention
  • FIG. 6 is a signaling diagram illustrating the step for a network node to join the second network, according to an embodiment of the present invention
  • FIG. 7 shows a schematic architecture of a lighting system, according to an embodiment of the present invention.
  • FIGS. 8 A and 8 B show a signaling diagram illustrating a complete procedure for a luminaire device to leave a network created by a gateway and join another network created by another gateway, according to an embodiment of the present invention.
  • FIGS. 9 A and 9 B show an alternative signaling diagram illustrating a complete procedure for a luminaire device to leave a network created by a gateway and join another network created by another gateway, according to an embodiment of the present invention.
  • Embodiments of the present invention will be described based on a ZigBee network conforming to the ZigBee standard, as an example of a wireless mesh network.
  • the present invention is not limited thereto, and the method provided by the present invention may be applied to any wireless mesh network and be based on different wireless network standards.
  • FIG. 2 there are typically two states, namely a first state designated as factory-new (or factory-default) state (FNS), and a second state designated as commissioned (or joined-network) state (CS), in which a network node (i.e., an end device or a router) will operate in the ZigBee network.
  • FNS factory-new
  • CS joined-network state
  • a network node i.e., an end device or a router
  • FIG. 3 shows a schematic state diagram indicating three state transitions of a network node, according to a first embodiment of the present invention.
  • the network node may, in addition to the FNS and CS states, be adapted to enter a third state designated as pre-factory-new state (PFNS) and corresponding to a not-commissioned state.
  • PFNS pre-factory-new state
  • the unexpected network node i.e., the network node connected to the undesired network, will enter the PFNS state from the CS state by receiving the “Leave-Req” command from the coordinator (C) in order to leave the first network.
  • the unexpected network node will reboot or reset to enter the FNS state from the PFNS state, after receiving a dedicated message to join the second network (for example, from the second network, i.e., the ZigBee network that it actually desires to join, or for example, from the first network, i.e., the ZigBee network that it was required to leave), and/or after expiry of a timer having a predetermined time duration.
  • the network node becomes unresponsive with respect to the first network in terms, for example, of message, command, frame, request or the like other than the dedicated message.
  • the unexpected network node will join the second network through the commissioning step of auto-join by changing its state from FNS to CS (i.e., by entering the CS state from the FNS state).
  • an unexpected network node in a network will be avoided to reboot or reset just after leaving the network and automatically join again the same network according to the commissioning step of auto-join.
  • the procedure for a network node leaving a network and joining another network will be described in detail with reference to accompanying drawings.
  • FIG. 4 shows a signaling diagram illustrating the step of commissioning the network node NN to join the first network, according to an embodiment of the present invention.
  • the coordinator C 1 of the first network initializes and forms its network before opening it at step S 402 .
  • the network node NN scans its environment in order to find an open network. Once the established first network has been found, the network node sends, at step S 404 , a beacon request message to the coordinator C 1 of the first network in order to know whether this coordinator C 1 is in a permit-to-join (or allow-to-join) state, and receives in response, at step S 405 , a beacon message from the coordinator C 1 in the permit-to-join (or allow-to-join) state.
  • the network node NN automatically starts a join procedure by sending a join request message to the coordinator C 1 of the first network, which in turn sends a join response message to the network node NN.
  • the network node NN Upon receipt of the join response message, the network node NN successfully joins the first network by connecting to the coordinator C 1 of the first network, and changes its state from FNS to CS.
  • FIG. 5 shows a signaling diagram illustrating the step for a network node NN to leave the first network, according to an embodiment of the present invention.
  • the coordinator C 1 of the first network sends the “Leave-Req” command to the unexpected network node NN.
  • the coordinator C 1 of the first network may have found the unexpected network node NN either manually, for example, by requesting each node of its first network to blink or automatically, for example, by means of an application running on a mobile user terminal such as a mobile phone, smartphone, tablet, laptop or the like.
  • the network node NN starts, at step S 502 , a timer having a predetermined time duration, and changes, at step S 503 , its state from CS to PFNS.
  • the network node NN By working in the PFNS state once the network node NN has left the first network, the network node NN will be unresponsive with respect to the first network, i.e., the network that it was required to leave, in terms, for example, of message, command, frame, request or the like transmitted by the first network to the network node NN.
  • the network node NN will not reboot or reset to the FNS state from the PFNS state in order to allow the second network to have time enough to form and open and the network node NN to join the second network as formed.
  • the network node NN Upon expiry of the timer, the network node NN will enter the FNS state from the PFNS state.
  • FIG. 6 shows a signaling diagram illustrating the step for a network node NN to join the second network, according to an embodiment of the present invention.
  • the coordinator C 2 of the second network sends a dedicated message to join the second network, which may be a new message or an enhanced existing message (e.g., an enhanced beacon message, in which the protocol ID of network (NWK) layer information may be set to a value “1” instead of “0” for a “normal” protocol ID as it is disclosed in the ZigBee specification about the NWK layer information field in the beacon payload), and which can only be responded by a network node entered the not-commissioned state (i.e., the PFNS state) after leaving another network.
  • an enhanced existing message e.g., an enhanced beacon message, in which the protocol ID of network (NWK) layer information may be set to a value “1” instead of “0” for a “normal” protocol ID as it is disclosed in the ZigBee specification about the NWK layer information field in the beacon payload
  • the network node NN entered the PFNS state after leaving the first network receives the dedicated message from the coordinator C 2 of the second network, which is other than the first network, and then reboots or resets, at step S 602 , to enter the FNS state from the PFNS state.
  • the network node NN entered the PFNS state after leaving the first network will reboot or reset, at step S 602 , to enter the FNS state from the PFNS state upon expiry of the predetermined time duration of the timer, which was triggered by the network node NN upon receipt of the “Leave-Req” command from the coordinator C 1 of the first network.
  • the network node NN entered the FNS state will join, through a next commissioning step of auto-join, the second network as expected and will enter the CS state.
  • the dedicated message to join the second network may, in an alternative exemplary embodiment, be sent by the coordinator C 1 of the first network to the network node NN that is in the PFNS state after leaving the first network.
  • the timer and the dedicated message may be used together.
  • the network node NN has rebooted or reset to the FNS state upon receipt of the dedicated message and then enters the CS state before expiry of the predetermined time duration of the timer
  • the network node NN which is already in the CS state when the timer has expired, remains in the CS state. That is to say, the node NN will enter FNS state if it's in PFNS state when the timer expires.
  • the node NN will remain in the state which is not PFNS if it's in a state which is not PFNS state when the timer expires.
  • FIG. 7 shows a schematic architecture of a lighting system 700 within an open office, according to an embodiment of the present invention.
  • the lighting system 700 comprises two zones ZI, ZII and one power switch 701 .
  • Each zone ZI, ZII comprises one or more luminaire devices as ZigBee nodes, which are numbered from L 1 to L 200 for the zone I and from L 1 ′ to L 200 ′ for the zone II and are adapted to emit illumination.
  • Each luminaire device L 1 -L 200 , L 1 ′-L 200 ′ may comprise at least one respective lamp such as a light emitting diode (LED) based lamp, gas-discharge lamp or filament bulb, plus any associated support, casing or other such housing.
  • LED light emitting diode
  • Each luminaire devices L 1 -L 200 , L 1 ′-L 200 ′ may also take any suitable form such as a ceiling or wall mounted luminaire, a free-standing luminaire, a wall washer and a chandelier, or a less conventional form such as an embedded lighting built into an item of furniture, a building material (e.g., glass, concrete) and any other surface.
  • the single power switch 701 is adapted to physically turn on and turn off the entirety of these luminaire devices L 1 -L 200 , L 1 ′-L 200 ′ at once.
  • Each zone ZI, ZII respectively comprises one gateway GWI, GWII, which may be employed as a ZigBee coordinator or a ZigBee transceiver to communicate with the luminaire devices L 1 -L 200 , L 1 ′-L 200 ′. Furthermore, each gateway GWI, GWII may be controlled by a manufacturer- or third-party application such as a mobile app running on a mobile user terminal 702 such as a mobile phone, smartphone, tablet, laptop or the like.
  • a manufacturer- or third-party application such as a mobile app running on a mobile user terminal 702 such as a mobile phone, smartphone, tablet, laptop or the like.
  • the mobile user terminal 702 may communicate with the gateways GWI and GWII via a local short-range radio access technology (e.g., Wi-Fi, Bluetooth, ZigBee and so on), and use the mobile app to send commands via the Internet to each gateway GWI, GWII, which translates the commands into ZigBee command frames and transmits them to the luminaire devices L 1 -L 200 , L 1 ′-L 200 ′.
  • a local short-range radio access technology e.g., Wi-Fi, Bluetooth, ZigBee and so on
  • the luminaire devices L 1 -L 200 are expected to connect to the gateway GWI in the zone ZI
  • the luminaire devices L 1 ′-L 200 ′ are expected to connect to the gateway GWII in the zone ZII.
  • the luminaire device L 1 ′ unexpectedly joins the network created by the gateway GWI.
  • FIGS. 8 A and 8 B show a signaling diagram illustrating the complete procedure for the luminaire device L 1 ′ (i.e., the luminaire device being unexpectedly connected to the gateway GWI) to leave the network created by the gateway GWI and join the network created by the gateway GWII, according to an embodiment of the present invention.
  • an enhanced permit-join request e.g., a dedicated message to join the second network
  • the gateway GWII e.g., the coordinator C 2
  • the luminaire device L 1 ′ e.g., the network node NN
  • step S 801 all luminaire devices L 1 -L 200 , L 1 ′-L 200 ′ are turned on at once by means of the power switch 701 and all of them enter the FNS state.
  • step S 802 the gateway GWI is individually turned on, while the gateway GWII remains turned off.
  • step S 803 the gateway GWI connects to the mobile app via the mobile user terminal 702 and, at step S 804 , the mobile app triggers the gateway GWI to form its own network (e.g. the first network).
  • the gateway GWI starts a luminaire device discovery during a predetermined time duration (e.g., 30 minutes) by sending to all luminaire devices L 1 -L 200 , L 1 ′-L 200 ′ a respective enhanced permit-join request, as a dedicated message to join its own network (i.e., the first network), during a limited time duration (e.g., 1 minute) at step S 804 A, and then, a respective normal permit-join request, as a respective normal message to join its own network (i.e., the first network), during the remaining time duration (i.e., 29 minutes) at step S 80413 .
  • a predetermined time duration e.g. 30 minutes
  • the luminaire devices entered the PFNS state i.e., the not-commissioned state
  • the luminaire devices entered the PFNS state will be responsive to the enhanced permit-join request by changing their state from PFNS to FNS.
  • all luminaire devices L 1 -L 200 , L 1 ′-L 200 ′ are assumed to be in the FNS state.
  • the expected luminaire devices L 1 -L 200 and the unexpected luminaire device L 1 ′ connect, at step S 804 C, to the gateway GWI in the zone ZI and enter the CS state from the FNS state.
  • the mobile user terminal 702 instructs, at step S 805 , the powered-on gateway GWI to identify the possible unexpected luminaire devices by making all connected luminaire devices L 1 -L 200 , L 1 ′ blink one by one.
  • the mobile user terminal 702 instructs, at step S 806 , the powered-on gateway GWI to remove this unexpected luminaire device L 1 ′.
  • the unexpected luminaire device L 1 ′ changes its state from CS to PFNS. If needed, the steps S 805 to S 806 may be performed again to ensure that all unexpected luminaire devices are well identified.
  • the gateway GWII is, at step S 807 , turned on.
  • the gateway GWII connects to the mobile app via the mobile user terminal 702 and, at step S 809 , the mobile app triggers the gateway GWII to form its own network (e.g., the second network).
  • the gateway GWII starts a luminaire device discovery during a predetermined time duration (e.g., 30 minutes) by sending to the non-connected luminaire devices L 1 ′-L 200 ′ a respective enhanced permit-join request, as a dedicated message to join its own network (i.e., the second network) during a limited time duration (e.g., 1 minute) at step S 809 A, and a respective normal permit-join request, as a normal message to join its own network (i.e., the second network), during the remaining time duration (i.e., 29 minutes) at step S 809 B.
  • a predetermined time duration e.g. 30 minutes
  • the luminaire device L 1 ′ entered the PFNS state i.e., the not-commissioned state
  • the luminaire devices in the FNS state will be responsive to the normal permit-join requests.
  • the luminaire devices L 1 ′ and L 2 ′-L 200 ′ are all in the FNS state at this stage.
  • the expected luminaire devices L 1 ′-L 200 ′ which are all in the FNS state, connect, at step S 809 C, to the gateway GWII in the zone ZII and enter the CS state from the FNS state. Then, the gateway GWII reports, at step S 809 D, the list of the connected luminaire devices L 1 ′-L 200 ′ to the mobile user terminal 702 .
  • the above complete procedure of FIGS. 8 A and 8 B has enabled the luminaire device L 1 ′, which was unexpectedly connected to a “wrong” network formed by the gateway GWI, to expectedly connect to a “right” network formed by the gateway GWII, while preventing it from connecting again to the gateway GWI.
  • FIGS. 9 A and 9 B show an alternative signaling diagram illustrating the complete procedure for the luminaire device L′ 1 (i.e., the luminaire device being unexpectedly connected to the gateway GWI) to leave the network created by the gateway GWI and join the network created by the gateway GWII, according to an embodiment of the present invention.
  • an enhanced permit-join request e.g., a dedicated message to join the second network
  • the gateway GWI e.g., the coordinator C 1
  • the luminaire device L 1 ′ e.g., the network node NN
  • step S 901 all luminaire devices L 1 -L 200 , L 1 ′-L 200 ′ are turned on at once by means of the power switch 701 and all of them enter the FNS state.
  • step S 902 the gateway GWI is individually turned on, while the gateway GWII remains turned off.
  • step S 903 the gateway GWI connects to the mobile app via the mobile user terminal 702 and, at step S 904 , the mobile app triggers the gateway GWI to form its own network (e.g., the first network).
  • the gateway GWI starts a luminaire device discovery during a predetermined time duration (e.g., 30 minutes) by sending to all luminaire devices L 1 -L 200 , L 1 ′-L 200 ′ a respective enhanced permit-join request, as a dedicated message to join its own network (i.e., the first network), during a limited time duration (e.g., 1 minute) at step S 904 A, and then, a respective normal permit-join request, as a normal message to join its own network (i.e., the first network), during the remaining time duration (i.e., 29 minutes) at step S 90413 .
  • a predetermined time duration e.g. 30 minutes
  • the luminaire devices entered the PFNS state i.e., the not-commissioned state
  • the luminaire devices entered the PFNS state will be responsive to the enhanced permit-join request by changing their state from PFNS to FNS.
  • all luminaire devices L 1 -L 200 , L 1 ′-L 200 ′ are assumed to be in the FNS state.
  • the expected luminaire devices L 1 -L 200 and the unexpected luminaire device L 1 ′ connect, at step S 904 C, to the gateway GWI in the zone ZI and enter the CS state from the FNS state.
  • the gateway GWI reports, at step S 904 D, the list of the connected luminaire devices L 1 -L 200 , L 1 ′ to the mobile user terminal 702 .
  • the mobile user terminal 702 instructs, at step S 905 , the powered-on gateway GWI to identify the possible unexpected luminaire devices by making all connected luminaire devices L 1 -L 200 , L 1 ′ blink one by one.
  • the mobile user terminal 702 instructs, at step S 906 , the powered-on gateway GWI to remove this unexpected luminaire device L 1 ′.
  • the unexpected luminaire device L 1 ′ changes its state from CS to PFNS. If needed, the steps S 905 to S 906 may be performed again to ensure that all unexpected luminaire devices are well identified.
  • the mobile user terminal 702 instructs the powered-on gateway GWI to close its own network previously formed by itself, thereby preventing any luminaire device and in particular the luminaire device L 1 ′ from joining the network formed by the gateway GWI.
  • the gateway GWI informs, at step S 908 , the unexpected luminaire device L 1 ′ about this network closure.
  • the gateway GWI sends an enhanced permit-join request, as a dedicated message to join network.
  • the network is an available open network, that is here specifically the network to be formed by the gateway GWII (i.e., the second network), to the unexpected luminaire device L 1 ′ during a limited time duration (e.g., 1 minute).
  • the luminaire device L 1 ′ entered the PFNS state reboots or reset to enter the FNS state.
  • the gateway GWII is turned on and connects, at step S 911 , to the mobile app via the mobile user terminal 702 .
  • the mobile app triggers the gateway GWII to form its own network (e.g., the second network).
  • the gateway GWII starts a luminaire device discovery during a predetermined time duration (e.g., 30 minutes) by sending, at step S 912 A, a respective normal permit-join request, as a normal message to join its own network (i.e., the second network), to the non-connected luminaire devices L 1 ′-L 200 ′, knowing that only the luminaire devices that are in the FNS state will be responsive to the normal permit-join requests.
  • the expected luminaire devices L 1 ′-L 200 ′ which are all, at this stage, in the FNS state, connect, at step S 912 B, to the gateway GWII in the zone ZII and enter the CS state from the FNS state.
  • the gateway GWII reports, at step S 912 C, the list of the connected luminaire devices L 1 ′-L 200 ′ to the mobile user terminal 702 .
  • the above complete procedure of FIGS. 9 A and 9 B has enabled the luminaire device L 1 ′, which was unexpectedly connected to a “wrong” network formed by the gateway GWI, to expectedly connect to a “right” network formed by the gateway GWII, while preventing it from connecting again to the gateway GWI.
  • each enhanced permit-join request may, for example, have a time duration of three seconds, consist of three continuous normal permit-join requests having each a time duration of one second and be detected by a luminaire device by means of its timer.
  • a network node NN which is expected to join a second network, joins a first network and enters a second state (CS) from a first state (FNS) once it has joined the first network. Once it has received from the first network a message to leave it, it enters a third state (PFNS) from the second state (CS). The network node NN entered the third state (PFNS) then becomes responsive with respect to the first network and/or the second network by receiving a dedicated message to join network or is unresponsive with respect to the first network.
  • the network node NN enters the first state (FNS) from the third state (PFNS) once the network node NN has received the dedicated message from a coordinator (C 1 ) of the first network after closing the first network and/or from a coordinator (C 2 ) of the second network, or upon expiry of a timer which has started once the network node NN has received the message to leave the first network.
  • the network node NN will then join the second network as expected by entering the second state (CS) from the first state (FNS).
  • CS second state
  • PFNS provision of a specific state (PFNS) will allow a network node NN identified as having joined an unexpected network (first network) to join an expected network (second network) while avoiding to join again the unexpected network (first network).
  • a single unit or device may fulfill the functions of several items recited in the claims.
  • the mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
  • the described operations of the components of the network system can be implemented as program code means of a computer program and/or as dedicated hardware.
  • the computer program may be stored and/or distributed on a suitable medium, such as an optical storage medium or a solid-state medium, supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
US17/255,465 2018-06-26 2019-06-18 Optimize commissioning in ZigBee network Active 2040-03-11 US11956648B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN2018092850 2018-06-26
CNPCT/CN2018/092850 2018-06-26
WOPCT/CN2018/092850 2018-06-28
EP18191272 2018-08-28
EP18191272.6 2018-08-28
EP18191272 2018-08-28
PCT/EP2019/066040 WO2020002048A1 (fr) 2018-06-26 2019-06-18 Optimisation de mise en service dans un réseau zigbee

Publications (2)

Publication Number Publication Date
US20210274363A1 US20210274363A1 (en) 2021-09-02
US11956648B2 true US11956648B2 (en) 2024-04-09

Family

ID=67001775

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/255,465 Active 2040-03-11 US11956648B2 (en) 2018-06-26 2019-06-18 Optimize commissioning in ZigBee network

Country Status (5)

Country Link
US (1) US11956648B2 (fr)
EP (1) EP3815406A1 (fr)
JP (1) JP6934579B2 (fr)
CN (1) CN112292874B (fr)
WO (1) WO2020002048A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11751030B2 (en) * 2019-11-04 2023-09-05 Signify Holding B.V. Trigger-based commissioning system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040053622A1 (en) 2002-07-10 2004-03-18 Kabushiki Kaisha Toshiba Wireless communication scheme with communication quality guarantee and copyright protection
US20100150063A1 (en) 2008-12-15 2010-06-17 Industrial Technology Research Institute Method and system for a node to join a wireless ad-hoc network
WO2012044328A1 (fr) 2010-10-01 2012-04-05 Research In Motion Limited Procédé et dispositif pour éviter un brouillage de coexistence dans un dispositif
WO2015016655A1 (fr) 2013-08-01 2015-02-05 Samsung Electronics Co., Ltd. Procédé et appareil pour établir une communication entre des terminaux
US9082077B2 (en) 2009-03-25 2015-07-14 Waldeck Technology, Llc Mobile private assisted location tracking
WO2015121781A1 (fr) 2014-02-11 2015-08-20 Koninklijke Philips N.V. Réinitialisation d'un appareil vers un nouvel état d'usine
WO2017063884A1 (fr) 2015-10-12 2017-04-20 Philips Lighting Holding B.V. Mise en service d'un dispositif prenant en charge une communication sans fil
US20170171950A1 (en) 2014-08-11 2017-06-15 RAB Lighting Inc. Wireless lighting control systems and methods
US20180035519A1 (en) * 2016-07-20 2018-02-01 Abl Ip Holding Llc Protocol for lighting control via a wireless network
US10182329B1 (en) * 2017-08-30 2019-01-15 Amazon Technologies, Inc. Quarantine network for wireless devices
US20190020413A1 (en) * 2017-07-11 2019-01-17 Lg Electronics Inc. Device implementing visible light communications and wireless network communications in dual mode and method of implementing thereof
US20190200245A1 (en) * 2017-12-27 2019-06-27 Phazr, Inc. Systems and Methods for Determining Preferred Location and Orientation of Wireless Broadband Router
EP2887740B1 (fr) 2012-07-18 2020-09-02 LG Electronics Inc. Procédé de signalisation dans un système de communication sans fil et appareil pour la mise en uvre de ce procédé
US20200336929A1 (en) * 2017-12-26 2020-10-22 Sengled Co., Ltd. Method and apparatus for monitoring zigbee node network status

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2478668B1 (fr) * 2009-09-11 2018-11-14 Philips Lighting Holding B.V. Attribution de noeud mobile à un routeur dans un réseau wpan
KR101307826B1 (ko) * 2011-11-28 2013-09-12 에스케이텔레콤 주식회사 이기종 네트워크 기반 데이터 전송 서비스를 지원하는 장치
CN103209467B (zh) * 2012-01-11 2016-03-30 华为技术有限公司 接入多个ZigBee网络的方法和装置
WO2014032717A1 (fr) * 2012-08-30 2014-03-06 Nokia Siemens Networks Oy Commande assistée d'un réseau de communication mobile d'une connectivité wlan
CN103974307A (zh) * 2013-01-31 2014-08-06 上海贝尔股份有限公司 在物联网中用于管理ZigBee网络的方法
RU2669588C2 (ru) * 2013-06-17 2018-10-12 Филипс Лайтинг Холдинг Б.В. Способ конфигурирования узла и узел, сконфигурированный таким способом
CN105100010B (zh) * 2014-05-14 2019-06-04 青岛海尔智能家电科技有限公司 一种用于接入网络的方法和各相应设备
CN105162728B (zh) * 2015-07-31 2018-07-31 小米科技有限责任公司 网络接入方法、设备及系统
MX2018002463A (es) * 2015-09-04 2018-06-15 Philips Lighting Holding Bv Lamparas habilitadas para la comunicacion inalambrica.
CN105517103A (zh) * 2015-12-03 2016-04-20 小米科技有限责任公司 基于智能终端设备的网络接入的方法和装置
CN105960027A (zh) * 2016-05-05 2016-09-21 四川九洲电器集团有限责任公司 一种ZigBee网络组网方法及ZigBee协调器
CN107454646A (zh) * 2016-05-31 2017-12-08 华为技术有限公司 一种网络接入方法及装置
US10601516B2 (en) * 2016-06-27 2020-03-24 Signify Holding B.V. Emitting coded light from a multi-lamp luminaire

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040053622A1 (en) 2002-07-10 2004-03-18 Kabushiki Kaisha Toshiba Wireless communication scheme with communication quality guarantee and copyright protection
US20100150063A1 (en) 2008-12-15 2010-06-17 Industrial Technology Research Institute Method and system for a node to join a wireless ad-hoc network
US9082077B2 (en) 2009-03-25 2015-07-14 Waldeck Technology, Llc Mobile private assisted location tracking
WO2012044328A1 (fr) 2010-10-01 2012-04-05 Research In Motion Limited Procédé et dispositif pour éviter un brouillage de coexistence dans un dispositif
EP2887740B1 (fr) 2012-07-18 2020-09-02 LG Electronics Inc. Procédé de signalisation dans un système de communication sans fil et appareil pour la mise en uvre de ce procédé
WO2015016655A1 (fr) 2013-08-01 2015-02-05 Samsung Electronics Co., Ltd. Procédé et appareil pour établir une communication entre des terminaux
US20160360596A1 (en) * 2014-02-11 2016-12-08 Philips Lighting Holding B.V. Resetting of an apparatus to a factory new state
WO2015121781A1 (fr) 2014-02-11 2015-08-20 Koninklijke Philips N.V. Réinitialisation d'un appareil vers un nouvel état d'usine
US20170171950A1 (en) 2014-08-11 2017-06-15 RAB Lighting Inc. Wireless lighting control systems and methods
WO2017063884A1 (fr) 2015-10-12 2017-04-20 Philips Lighting Holding B.V. Mise en service d'un dispositif prenant en charge une communication sans fil
US20180035519A1 (en) * 2016-07-20 2018-02-01 Abl Ip Holding Llc Protocol for lighting control via a wireless network
US20190020413A1 (en) * 2017-07-11 2019-01-17 Lg Electronics Inc. Device implementing visible light communications and wireless network communications in dual mode and method of implementing thereof
US10182329B1 (en) * 2017-08-30 2019-01-15 Amazon Technologies, Inc. Quarantine network for wireless devices
US20200336929A1 (en) * 2017-12-26 2020-10-22 Sengled Co., Ltd. Method and apparatus for monitoring zigbee node network status
US20190200245A1 (en) * 2017-12-27 2019-06-27 Phazr, Inc. Systems and Methods for Determining Preferred Location and Orientation of Wireless Broadband Router

Also Published As

Publication number Publication date
WO2020002048A1 (fr) 2020-01-02
EP3815406A1 (fr) 2021-05-05
JP2021522758A (ja) 2021-08-30
CN112292874B (zh) 2024-04-16
CN112292874A (zh) 2021-01-29
US20210274363A1 (en) 2021-09-02
JP6934579B2 (ja) 2021-09-15

Similar Documents

Publication Publication Date Title
JP6764495B2 (ja) ノードを設定するための方法、及び設定されるノード
US11191125B2 (en) Commissioning in multi-hop networks by using a single-hop connection
US10116501B2 (en) Method and apparatus for inter-profile commissioning in a network
US11496932B2 (en) Beacon-based handover option for commissioning and control of wireless network devices
US10652803B2 (en) Commissioning of lighting devices
US10489055B2 (en) Z-wave controller shift in thermostats
US11956648B2 (en) Optimize commissioning in ZigBee network
JP7405753B2 (ja) 制御された参加モードを有するコミッショニング方法及び装置
CA2922446A1 (fr) Proximite active fondee sur la mise en service d'un reseau sans fil
CN111742610B (en) Debugging method and lamp equipment using controlled joining mode
US20230232231A1 (en) Configuring wireless network using ephemeral gateway
US20210243079A1 (en) Bi-directional commissioning for low-power wireless network devices

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SIGNIFY HOLDING B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:PHILIPS LIGHTING HOLDING B.V.;REEL/FRAME:056445/0306

Effective date: 20190201

Owner name: PHILIPS LIGHTING HOLDING B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, ZHI ZONG ZZ;CHEN, DUN FA DF;QUE, HOWARD;SIGNING DATES FROM 20190613 TO 20190618;REEL/FRAME:056402/0050

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STCF Information on status: patent grant

Free format text: PATENTED CASE