US11954076B2 - Hierarchical storage management system, hierarchical storage control apparatus, hierarchical storage management method and program - Google Patents
Hierarchical storage management system, hierarchical storage control apparatus, hierarchical storage management method and program Download PDFInfo
- Publication number
- US11954076B2 US11954076B2 US17/629,462 US201917629462A US11954076B2 US 11954076 B2 US11954076 B2 US 11954076B2 US 201917629462 A US201917629462 A US 201917629462A US 11954076 B2 US11954076 B2 US 11954076B2
- Authority
- US
- United States
- Prior art keywords
- data
- data center
- power consumption
- stored data
- stored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007726 management method Methods 0.000 title claims description 37
- 238000004891 communication Methods 0.000 claims abstract description 60
- 238000012545 processing Methods 0.000 claims abstract description 18
- 230000005540 biological transmission Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 10
- 238000013500 data storage Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 abstract description 65
- 238000010586 diagram Methods 0.000 description 17
- 238000013523 data management Methods 0.000 description 12
- 230000005611 electricity Effects 0.000 description 7
- 238000010276 construction Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000013403 standard screening design Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241001074707 Eucalyptus polyanthemos Species 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- NRNCYVBFPDDJNE-UHFFFAOYSA-N pemoline Chemical compound O1C(N)=NC(=O)C1C1=CC=CC=C1 NRNCYVBFPDDJNE-UHFFFAOYSA-N 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/18—File system types
- G06F16/185—Hierarchical storage management [HSM] systems, e.g. file migration or policies thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Definitions
- the present invention relates to a technique for optimizing data storage and operation by arranging data stored in a plurality of data centers based on conditions determined by a business operator.
- a conventional hierarchical storage management system has large-capacity storage configured by using SSDs, HDDs, and magnetic tapes in accordance with the number of reference counts made to stored data and the access speed (write, read) of a storage medium. Data having the high number of reference counts is automatically stored in an SSD to achieve a higher access speed (Non Patent Literature 1).
- Non Patent Literature 2 there is a content distribution system that can shorten download time by providing a content cache server at the boundary between a user area and a public network and downloading a content from the cache server close to an accessing user.
- the present invention has been made with the foregoing in view, and it is an object to provide a technique capable of automatically selecting a storage medium that matches an operation policy of data from a plurality of storage media disposed in a plurality of data centers.
- a hierarchical storage management system including: a hierarchical storage that is provided in an individual data center and has at least one storage medium; and a hierarchical storage control apparatus that manages at least one hierarchical storage, wherein the hierarchical storage control apparatus includes a calculation unit that performs processing for obtaining, for individual data managed by the hierarchical storage control apparatus, a storage medium in a data center that satisfies an operation policy by calculating power consumption needed for storing the data, a cost needed for storing the data, and communication time for transferring the data from a data center to a reference source area and by comparing the calculated power consumption, cost, and communication time with the operation policy set for the data.
- a technique capable of automatically selecting a storage medium that matches an operation policy of data from a plurality of storage media disposed in a plurality of data centers.
- FIG. 1 illustrates a configuration of a hierarchical storage management system.
- FIG. 2 illustrates a configuration of a hierarchical storage.
- FIG. 3 illustrates a configuration a hierarchical side storage control apparatus.
- FIG. 4 is a diagram illustrating an example of a hardware configuration of the apparatus.
- FIG. 5 is diagram illustrating a structure of a data center information table.
- FIG. 6 is a diagram illustrating a structure of a storage medium information table.
- FIGS. 7 ( a ) to 7 ( c ) are diagrams illustrating structures of various tables.
- FIG. 8 is a diagram illustrating a structure of an operation policy table.
- FIG. 9 is a diagram illustrating a structure of a stored data management table.
- FIG. 10 is a flowchart illustrating calculation performed by a hierarchical storage control apparatus.
- FIG. 11 is a diagram illustrating a data center arrangement according to an embodiment.
- FIG. 12 illustrates a configuration of a hierarchical storage control system according to the embodiment.
- FIG. 13 is a diagram illustrating data center information table according to the embodiment.
- FIG. 14 is a diagram illustrating a storage medium information table according to the embodiment.
- FIGS. 15 ( a ) to 15 ( c ) are diagrams illustrating various tables according to the embodiment.
- FIG. 16 is a diagram illustrating an operation policy table according to the embodiment.
- FIG. 17 is a diagram illustrating a stored data management table according to the embodiment.
- FIG. 18 is a diagram illustrating a calculation example.
- FIG. 19 is a diagram illustrating a calculation example.
- FIG. 20 is a diagram illustrating a calculation example.
- FIG. 21 is a diagram illustrating a calculate result.
- the present embodiment describes a technique for automatically selecting, for individual data to be stored in a plurality of data centers, a storage medium that matches an operation policy of the data, by referring to the location conditions (construction cost, electricity charges), the data reference frequency and the communication speed of the network, and the type of the storage medium storing the data and the installation location of the storage medium.
- This technique reduces unnecessary power consumption and a cost and contributes to reductions of the power consumption (improvement in energy-saving properties) and the cost in a cloud-type data center and a virtualized NW as well as to improvement of QoS.
- the technique will be specifically described.
- FIG. 1 illustrates a configuration of a hierarchical storage management system according to the present embodiment.
- the hierarchical storage management system according to the present embodiment includes a hierarchical storage control apparatus 20 and a plurality of data centers 30 each connected to a network 10 .
- a user 50 is connected to the network 10 .
- the “user 50 ” is, for example, a client terminal used by a user.
- a hierarchical storage 40 is disposed in each of the data centers 30 .
- a data center operator or a CDN operator stores its own data or data of the user 50 in the hierarchical storage 40 disposed in any one of the data centers 30 .
- the hierarchical storage 40 in the plurality of data centers 30 and the hierarchical storage control apparatus 20 are connected via at least one network 10 so that large-scale storage can be provided.
- a storage medium of the hierarchical storage 40 in the data center 30 located near an urban area where the land price is high is configured mainly by a high-speed storage medium such as an SSD and stores data that has a high reference frequency and requires a short delay time.
- a storage medium of the hierarchical storage 40 in the data center 30 located in a suburban area where the land price is low is configured mainly by a plurality of storage media with a low speed such as a magnetic tape to achieve an ultra-high capacity and stores data that has a low reference frequency and allows delay.
- the data is downloaded from the hierarchical storage 40 in which the data is stored to the user 50 .
- FIG. 2 illustrates a configuration of the hierarchical storage 40 disposed in the data center 30 .
- the hierarchical storage 40 includes a storage unit 410 , constituted of a plurality of storage media 420 # 1 to 420 #n, and a management unit 430 .
- the individual storage medium 420 is, for example, an SSD (flash memory), an HDD (magnetic disk), an optical disk, a magnetic tape, or the like.
- the management unit 430 checks the input and output of data and detects a reference source area and the number of cumulative reference counts when stored data is referred to. The detected information is notified to the hierarchical storage control apparatus 20 and managed therein.
- FIG. 3 illustrates a configuration of the hierarchical storage control apparatus 20 .
- the hierarchical storage control apparatus 20 includes a calculation unit 210 , a storage unit 220 , and a timer 230 .
- the storage unit 220 stores a data center information table 2210 , a storage medium information table 2220 , a transmission line information table 2230 , a calculation interval table 2240 , an execution log table 2250 , an operation policy table 2260 , and a stored data management table 2270 .
- the timer 230 holds current date and time.
- the content of each table and the content of calculation performed by the calculation unit 210 will be described below.
- the functions of the hierarchical storage control apparatus 20 can be implemented, for example, by causing a computer to execute a program.
- the functions of the hierarchical storage control apparatus 20 can be implemented by executing a program corresponding to processing performed by the hierarchical storage control apparatus 20 by using hardware resources such as a CPU and a memory built in a computer.
- the above program can be recorded on a computer-readable recording medium (portable memory or the like) to be stored or distributed.
- the above program can be provided through a network such as the Internet or e-mail.
- FIG. 4 is a diagram illustrating an example of a hardware configuration of the above computer.
- the computer illustrated in FIG. 4 includes a drive device 1000 , an auxiliary storage device 1002 , a memory device 1003 , a CPU 1004 , an interface device 1005 , a display device 1006 , an input device 1007 , etc. connected to each other by a bus B.
- the program for implementing the processing by the computer is provided, for example, by a recording medium 1001 such as a CD-ROM, a memory card, or the like.
- a recording medium 1001 such as a CD-ROM, a memory card, or the like.
- the program is installed in the auxiliary storage device 1002 from the recording medium 1001 via the drive device 1000 .
- the program does not necessarily need to be installed from the recording medium 1001 and may be downloaded from another computer via the network.
- the auxiliary storage device 1002 stores the installed program and also stores necessary files, data, etc.
- the memory device 1003 reads and stores the program from the auxiliary storage device 1002 .
- the CPU 1004 implements the functions of the hierarchical storage control apparatus 20 in accordance with the program stored in the memory device 1003 .
- the interface device 1005 is used as an interface for connecting to a network and functions as input means and output means via the network.
- the display device 1006 displays a GUI (graphical user interface) or the like in accordance with the program.
- the input device 157 includes a keyboard, a mouse, buttons, a touch panel, or the like and is used to input various operation instructions.
- FIG. 5 illustrates a structure of the data center information table 2210 .
- the data center information table 2210 stores the unique number, name, and location (address or latitude/longitude) of a data center included in the present hierarchical storage management system, the unit price of the electricity charge of the power supplied to the data center, and the construction cost per rack.
- Each information item is input manually by an administrator or automatically when the hierarchical storage 40 is newly added to (or eliminated from) the present hierarchical storage management system or when any one of the information items is changed.
- FIG. 6 illustrates a structure of the storage medium information table 2220 .
- the storage medium information table 2220 stores the unique number assigned to the storage medium 420 by the hierarchical storage control apparatus 20 , reading time, capacity, power consumption during standby and during reading, lifetime, acquisition price, etc.
- Each information item is input manually by an administrator or automatically when the storage medium is newly added (or eliminated) or when any one of the information items is changed.
- FIG. 7 ( a ) illustrates a structure of the transmission line information table 2230 .
- the transmission line information table 2230 stores the unique number assigned by the present hierarchical storage management system to an individual transmission line connecting between the data centers 30 , the data center numbers of the data centers located at both ends of the transmission line, and the communication speed of the transmission line.
- Each information item is input manually by an administrator or automatically when a new transmission line is established or when any one of the information items is changed.
- the transmission line may be a dedicated line for the operator of the hierarchical storage management system or a public line.
- FIG. 7 ( b ) illustrates a structure of the calculation interval table 2240 .
- the calculation interval table 2240 stores intervals (for example, one year, one month) for the calculation determined by the data center operator or the administrator to be performed periodically.
- the calculation interval is updated when the administrator performs an input to the hierarchical storage management system.
- FIG. 7 ( c ) illustrates a structure of the execution log table 2250 . As illustrated in FIG. 7 ( c ) , the execution log table 2250 stores the calculation execution date and time in the past.
- FIG. 8 illustrates a structure of the operation policy table 2260 .
- the operation policy table 2260 stores the operation policy of the present hierarchical storage management system.
- the data center operator or the administrator determines the rank of the delay time, power consumption, and cost, and stores these information items in association with a corresponding policy number.
- FIG. 9 illustrates a structure of the stored data management table 2270 .
- the stored data management table 2270 manages all the data stored in the present hierarchical storage management system in cooperation with the management unit 430 of the hierarchical storage 40 in each of the data centers 30 .
- a record is added to the stored data management table 2270 to record the data number of the data, data size, number of the storage medium storing the data, the number of reference counts, most frequent reference source area, policy number freely set by the administrator, and the communication speed, power consumption, and cost obtained by the calculation, which will be described below, are recorded.
- the calculation unit 210 compares the latest calculation execution date and time in the execution log table 2250 with the date and time of the timer 230 , and when the calculation interval stored in the calculation interval table 2240 has elapsed, the calculation unit 210 starts a calculation. In addition, the calculation unit 210 stores the data and time when the calculation is started in the execution log table 2250 .
- the calculation unit 210 performs the following processing for each of all the data managed in the stored data management table 2270 : the calculation unit 210 calculates the annual power consumption needed for storing the data by using the following formula (1), calculates the annual cost needed for storing the data by using the following formula (2), and calculates the communication speed from the data center storing the data to the most frequent reference source area by using the following formula (3). Since time needed for reading and transmitting data is used as the communication speed in the present embodiment, the communication speed may be referred to as communication time instead. In addition, while the annual value is used in the present example, a value for a period other than one year may be used.
- PU year T read ⁇ F read ⁇ P read +(8760 ⁇ T read ⁇ F read ) ⁇ P idle formula (1)
- PU year annual data storage power consumption
- T read reading time
- F read reference frequency
- P read power consumption during reading
- P idle power consumption during standby
- C year PU year ⁇ Charge power +(Charge foorprint ⁇ Size data ) ⁇ Density storage +(Charge media ⁇ Size data ) ⁇ (Capacity media ⁇ Lifetime media ) formula (2)
- C year annual data storage cost PU year : data storage power consumption
- Charge power electricity charge
- Charge foorprint space cost Size data : data size
- Density storage storage medium recording density
- Charge media unit price of the storage medium
- Capacity media capacity of the storage medium
- Lifetime media lifetime of the storage medium
- T DL T read +T 1 formula (3)
- T EL data download time from the data center to the reference source
- T read reading time
- T 1 communication speed (communication time) of the NW
- the calculation unit 210 stores the annual power consumption, the annual cost, and the communication speed from the data center to the most frequent reference source area, which have been calculated in S 1 , in the stored data management table 2270 per data.
- the power consumption, the cost, and the communication speed are calculated for each of all the data, and subsequently, determination, etc. in S 3 , which will be described below, are performed.
- repetitive processing of “calculation, determination, change” (until the operation policy is satisfied) per data may be performed.
- the calculation unit 210 compares the resultant values (the annual power consumption, the annual storage cost, and the communication speed) calculated in S 1 with values set for the policy number corresponding to the data in the operation policy table 2260 per data and determines whether all the values satisfy the corresponding values of the operation policy. When all the values of all the data satisfy the corresponding values in the respective operation policies, the processing ends.
- the data center base and the storage medium corresponding to the data are changed.
- the data center base may not be changed, and only the storage medium may be changed.
- the change is not particularly limited.
- the change may be made by increasing (or decreasing) the data center number/storage medium number. After the change has been made, the calculation is performed on the assumption that the data is stored in a changed storage medium.
- the calculation unit 210 transfers the data to the storage medium of the data center at that time.
- the transfer of data from one data center to another data center can be implemented by instructing the management unit 430 of the hierarchical storage 40 in the relevant data center.
- FIG. 11 illustrates the locations of the data centers in the present example. As illustrated in FIG. 11 , four data centers (South Kanto, North Kanto, Joshinetsu, Hokkaido) are located in the eastern Japan area.
- FIG. 12 illustrates a configuration of the hierarchical storage management system of the present example.
- each data center is provided with the hierarchical storage 40 .
- a configuration of a storage medium in the individual hierarchical storage 40 is as illustrated in FIG. 11 .
- the hierarchical storage control apparatus 20 is provided in the South Kanto area. The hierarchical storage control apparatus 20 is connected to each data center via a public network.
- FIG. 13 illustrates the data center information table 2210 of the present example.
- the data center information table 2210 stores the name, location, unit price of the electricity charge, and construction cost per rack of each data center.
- the construction cost per rack is a value obtained by dividing the number of accommodated racks by the total construction cost.
- FIG. 14 illustrates the storage medium information table 2220 of the present example. As illustrated in FIG. 14 , the storage medium information table 2220 stores information about the storage accommodated in each data center.
- FIG. 15 ( a ) illustrates the transmission line information table 2230 of the present example.
- the transmission line number in the transmission line information table 2230 in FIG. 15 ( a ) corresponds to a number assigned to the individual transmission line in FIG. 12 .
- the South Kanto and Joshinetsu are connected by a dedicated line, and the South Kanto and Hokkaido are also connected by a dedicated line.
- the South Kanto and the North Kanto are connected via a public network, instead of a dedicated line.
- the data centers may be directly connected to one another by a dedicated line or may be connected via a public network.
- FIG. 15 ( b ) illustrates the calculation interval table 2240 of the present example.
- the hierarchical storage control apparatus 20 performs the calculation and rearranges the stored data at intervals of one month.
- the calculation interval stored in the calculation interval table 2240 is set to one month.
- FIG. 15 ( c ) illustrates the execution log table 2250 of the present example.
- the execution log table 2250 stores the calculation time in the past. In the present example, the calculation is performed on the first of every month.
- FIG. 16 illustrates the operation policy table 2260 of the present example.
- the business operator determines a communication speed (communication time) needed for downloading the data, power consumption needed for storing the data, and a cost based on the construction cost, the acquisition price of the storage, the electricity charge, etc. and assigns an operation policy number to each operation policy in the operation policy table 2260 .
- data having a data size of 300 GB is stored in the SSD “21” of the North Kanto data center as data number 1
- data of 1 TB is stored in the HDD “11” of the South Kanto data center as data number 2
- data of 500 MB is stored in the magnetic tape “71” of Hokkaido data center as data number 3.
- the users who have uploaded the above data have set policy numbers 5, 4, and 1 to the data number 1, 2, and 3, respectively.
- the number of reference counts and the most frequent reference source areas at the time when the first calculation is performed are as illustrated in FIG. 17 .
- the calculation described with reference to the flowchart in FIG. 10 starts on the first day of the following month of the data storage.
- the calculation performed for the data of the data number “2” will be described as an example.
- the calculation unit 210 calculates the annual power consumption needed for storing the data of the data number “2” by using the formula (1).
- FIG. 18 illustrates the content of the calculation.
- F read (annual reference frequency) is 20 times
- P read power consumption of a single reading of 60 T
- the total capacity of the storage medium is 60 T. Therefore, T read ⁇ F read ⁇ P read (annual power consumption needed for reading) is ((1 T[B]/200 M[B/s])/3600) ⁇ 20 ⁇ 10/60, as illustrated in FIG. 18 .
- calculation unit 210 calculates the annual cost needed for storing the data of the data number “2” by using the formula (2).
- FIG. 19 illustrates the content of the calculation in detail.
- the calculation unit 210 calculates the communication speed (communication time) from the data center storing the data to the most frequent reference source area by using the formula (3).
- FIG. 20 illustrates the details.
- T read reading time
- T 1 communication time of the NW
- the calculation unit 210 stores the annual power consumption, the annual cost, and the communication speed from the corresponding data center to the most frequent reference source area, which have been calculated as described above, in the stored data management table 2270 .
- FIG. 21 illustrates the portion of the data number 2 in the stored data management table 2270 after the above calculation results have been stored.
- the calculation unit 210 acquires the communication speed, the power consumption, and the cost corresponding to the policy number “4” set for the data of the data number 2 from the operation policy table 2260 .
- the calculation unit 210 compares these acquired values with the communication speed, the power consumption, and the cost calculated above.
- the calculation unit 210 determines that the storage medium HDD “11” currently storing the data does not satisfy the operation policy. Thus, the calculation unit 210 changes the storage medium and performs the calculation, and the calculation is continued until the values are within the range of the policy number “4”.
- the data center and the type of storage medium can be automatically selected for the data to be stored in accordance with the communication speed between the data centers and the power consumption and the cost needed for storing the data set in advance by the business operator.
- the power consumption and the cost can be reduced, and this leads to reductions of the electricity charge and environmental load as well as an improvement in QoS.
- the present description discloses at least the hierarchical storage management system, the hierarchical storage control apparatus, the hierarchical storage management method, and the program in the following items.
- a hierarchical storage management system including: a hierarchical storage that is provided in an individual data center and has at least one storage medium; and a hierarchical storage control apparatus that manages at least one hierarchical storage, wherein the hierarchical storage control apparatus includes a calculation unit that performs processing for obtaining, for individual data managed by the hierarchical storage control apparatus, a storage medium in a data center that satisfies an operation policy by calculating power consumption needed for storing the data, a cost needed for storing the data, and communication time for transferring the data from a data center to a reference source area and by comparing the calculated power consumption, cost, and communication time with the operation policy set for the data.
- the hierarchical storage management system wherein, when the calculation unit determines that the calculated power consumption, cost, and communication time do not satisfy the operation policy set for the data, the calculation unit changes a storage medium storing the data and performs the processing on an assumption that the data is stored in a changed storage medium.
- the hierarchical storage management system according to item 1 or 2, wherein the calculation unit calculates power consumption needed for storing the data by calculating a sum of power consumption for data reading from the storage medium storing the data and power consumption during standby,
- a hierarchical storage management method used in a hierarchical storage management system including: a hierarchical storage that is provided in an individual data center and has at least one storage medium; and a hierarchical storage control apparatus that manages at least one hierarchical storage,
- the hierarchical storage control apparatus performs processing for obtaining, for individual data managed by the hierarchical storage control apparatus, a storage medium in a data center that satisfies an operation policy by calculating power consumption needed for storing the data, a cost needed for storing the data, and communication time for transferring the data from a data center to a reference source area and by comparing the calculated power consumption, cost, and communication time with the operation policy set for the data.
- a hierarchical storage control apparatus used in a hierarchical storage management system including: a hierarchical storage that is provided in an individual data center and has at least one storage medium; and a hierarchical storage control apparatus that manages at least one hierarchical storage,
- the hierarchical storage control apparatus includes a calculation unit that performs processing for obtaining, for individual data managed by the hierarchical storage control apparatus, a storage medium in a data center that satisfies an operation policy by calculating power consumption needed for storing the data, a cost needed for storing the data, and communication time for transferring the data from a data center to a reference source area and by comparing the calculated power consumption, cost, and communication time with the operation policy set for the data.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
PU year =T read ×F read ×P read+(8760−T read ×F read)×P idle formula (1)
PUyear: annual data storage power consumption
Tread: reading time
Fread: reference frequency
Pread: power consumption during reading
Pidle: power consumption during standby
C year =PU year×Chargepower+(Chargefoorprint×Sizedata)÷Densitystorage+(Chargemedia×Sizedata)÷(Capacitymedia×Lifetimemedia) formula (2)
Cyear: annual data storage cost
PUyear: data storage power consumption
Chargepower: electricity charge
Chargefoorprint: space cost
Sizedata: data size
Densitystorage: storage medium recording density
Chargemedia: unit price of the storage medium
Capacitymedia: capacity of the storage medium
Lifetimemedia: lifetime of the storage medium
T DL =T read +T 1 formula (3)
TEL: data download time from the data center to the reference source
Tread: reading time
T1: communication speed (communication time) of the NW
-
- 10 Network
- 20 Hierarchical storage control apparatus
- 30 Data center
- 40 Hierarchical storage
- 50 User
- 210 Calculation unit
- 220 Storage unit
- 230 Timer
- 420 Storage medium
- 410 Storage unit
- 430 Management unit
- 2210 Data center information table
- 2220 Storage medium information table
- 2230 Transmission line information table
- 2240 Calculation interval table
- 2250 Execution log table
- 2260 Operation policy table
- 2270 Stored data management table
- 1000 Drive device
- 1001 Recording medium
- 1002 Auxiliary storage device
- 1003 Memory device
- 1004 CPU
- 1005 Interface device
- 1006 Display device
- 1007 Input device
Claims (9)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/030082 WO2021019746A1 (en) | 2019-07-31 | 2019-07-31 | Hierarchical storage management system, hierarchical storage control device, hierarchical storage management method, and program |
Publications (2)
Publication Number | Publication Date |
---|---|
US20220222220A1 US20220222220A1 (en) | 2022-07-14 |
US11954076B2 true US11954076B2 (en) | 2024-04-09 |
Family
ID=74229478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/629,462 Active US11954076B2 (en) | 2019-07-31 | 2019-07-31 | Hierarchical storage management system, hierarchical storage control apparatus, hierarchical storage management method and program |
Country Status (3)
Country | Link |
---|---|
US (1) | US11954076B2 (en) |
JP (1) | JP7176639B2 (en) |
WO (1) | WO2021019746A1 (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6330572B1 (en) * | 1998-07-15 | 2001-12-11 | Imation Corp. | Hierarchical data storage management |
US20020008250A1 (en) * | 2000-02-02 | 2002-01-24 | Esin Terzioglu | Memory module with hierarchical functionality |
US20050033757A1 (en) * | 2001-08-31 | 2005-02-10 | Arkivio, Inc. | Techniques for performing policy automated operations |
US20050055519A1 (en) * | 2003-09-08 | 2005-03-10 | Stuart Alan L. | Method, system, and program for implementing retention policies to archive records |
US20050246386A1 (en) * | 2004-02-20 | 2005-11-03 | George Sullivan | Hierarchical storage management |
US20060069886A1 (en) * | 2004-09-28 | 2006-03-30 | Akhil Tulyani | Managing disk storage media |
US20070136397A1 (en) * | 2005-12-09 | 2007-06-14 | Interdigital Technology Corporation | Information life-cycle management architecture for a device with infinite storage capacity |
US20070179990A1 (en) * | 2006-01-31 | 2007-08-02 | Eyal Zimran | Primary stub file retention and secondary retention coordination in a hierarchical storage system |
US20070250838A1 (en) * | 2006-04-24 | 2007-10-25 | Belady Christian L | Computer workload redistribution |
US20090144393A1 (en) * | 2007-11-29 | 2009-06-04 | Yutaka Kudo | Method and apparatus for locating candidate data centers for application migration |
US20110040937A1 (en) * | 2009-08-11 | 2011-02-17 | International Business Machines Corporation | Hierarchical storage management for database systems |
US20140298349A1 (en) * | 2008-04-21 | 2014-10-02 | Adaptive Computing Enterprises, Inc. | System and Method for Managing Energy Consumption in a Compute Environment |
US20200026784A1 (en) * | 2018-07-18 | 2020-01-23 | International Business Machines Corporation | Preventing inefficient recalls in a hierarchical storage management (hsm) system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012093992A (en) * | 2010-10-27 | 2012-05-17 | Ejworks Corp | Data center controlling system, data center controlling apparatus and program |
JP2013016111A (en) * | 2011-07-06 | 2013-01-24 | Panasonic Corp | Data center system, operation evaluation device, and program of operation evaluation device |
-
2019
- 2019-07-31 JP JP2021536560A patent/JP7176639B2/en active Active
- 2019-07-31 WO PCT/JP2019/030082 patent/WO2021019746A1/en active Application Filing
- 2019-07-31 US US17/629,462 patent/US11954076B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6330572B1 (en) * | 1998-07-15 | 2001-12-11 | Imation Corp. | Hierarchical data storage management |
US20020008250A1 (en) * | 2000-02-02 | 2002-01-24 | Esin Terzioglu | Memory module with hierarchical functionality |
US20050033757A1 (en) * | 2001-08-31 | 2005-02-10 | Arkivio, Inc. | Techniques for performing policy automated operations |
US20050055519A1 (en) * | 2003-09-08 | 2005-03-10 | Stuart Alan L. | Method, system, and program for implementing retention policies to archive records |
US20050246386A1 (en) * | 2004-02-20 | 2005-11-03 | George Sullivan | Hierarchical storage management |
US20060069886A1 (en) * | 2004-09-28 | 2006-03-30 | Akhil Tulyani | Managing disk storage media |
US20070136397A1 (en) * | 2005-12-09 | 2007-06-14 | Interdigital Technology Corporation | Information life-cycle management architecture for a device with infinite storage capacity |
US20070179990A1 (en) * | 2006-01-31 | 2007-08-02 | Eyal Zimran | Primary stub file retention and secondary retention coordination in a hierarchical storage system |
US20070250838A1 (en) * | 2006-04-24 | 2007-10-25 | Belady Christian L | Computer workload redistribution |
US20090144393A1 (en) * | 2007-11-29 | 2009-06-04 | Yutaka Kudo | Method and apparatus for locating candidate data centers for application migration |
US20100325273A1 (en) * | 2007-11-29 | 2010-12-23 | Hitachi, Ltd. | Method and apparatus for locating candidate data centers for application migration |
US20140298349A1 (en) * | 2008-04-21 | 2014-10-02 | Adaptive Computing Enterprises, Inc. | System and Method for Managing Energy Consumption in a Compute Environment |
US20110040937A1 (en) * | 2009-08-11 | 2011-02-17 | International Business Machines Corporation | Hierarchical storage management for database systems |
US20200026784A1 (en) * | 2018-07-18 | 2020-01-23 | International Business Machines Corporation | Preventing inefficient recalls in a hierarchical storage management (hsm) system |
Non-Patent Citations (3)
Title |
---|
[No Author Listed] [online], "Part 1 Mechanism of CDN (What kind of technology can CDN do?)," Cash shop blog CDN / WEB high-speed blog, May 18, 2015, retrieved from URL <https://blog.redbox.ne.jp/what-is-cdn.html>, 29 pages (with English Translation). |
Katsurashima, "Systematic understanding of storage virtualization (4): Understanding automatic storage tiering (1/3)," ITmedia Inc., Jun. 27, 2011, retrieved from URL <https://www.atmarkit.co.jp/ait/articles/1106/27/news109.html>, 7 pages (with English Translation). |
Miki et al., "Basic knowledge of storage in the "offensive IT" era, 1st What is Software Defined Storage?" ITmedia Inc., Sep. 29, 2014, retrieved from URL <https://atmarkit.itmedia.co.jp/ait/articles/1409/29/news130.html>, 9 pages (with English Translation). |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021019746A1 (en) | 2021-02-04 |
JP7176639B2 (en) | 2022-11-22 |
US20220222220A1 (en) | 2022-07-14 |
WO2021019746A1 (en) | 2021-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8578096B2 (en) | Policy for storing data objects in a multi-tier storage system | |
US8549229B2 (en) | Systems and methods for managing an upload of files in a shared cache storage system | |
US9891830B2 (en) | Tier based data file management | |
US8756199B2 (en) | File level hierarchical storage management system, method, and apparatus | |
US9965207B2 (en) | Maintenance of cloned computer data | |
CN105637470B (en) | Method and computing device for dirty data management | |
US20100153474A1 (en) | Discardable files | |
CN101258497A (en) | A method for centralized policy based disk-space preallocation in a distributed file system | |
US11126506B2 (en) | Systems and methods for predictive data protection | |
JP7176209B2 (en) | Information processing equipment | |
US9804863B2 (en) | Efficient sharing of artifacts between collaboration applications | |
US10560513B2 (en) | Small disk support for large cloud-based storage systems | |
US20120296871A1 (en) | File managing apparatus for processing an online storage service | |
CN109947373A (en) | Data processing method and device | |
CN115469813A (en) | Data processing method and device, storage medium and electronic device | |
US11531468B2 (en) | System and method for managing storage space | |
CN106156038B (en) | Date storage method and device | |
CN101483668A (en) | Network storage and access method, device and system for hot spot data | |
US11954076B2 (en) | Hierarchical storage management system, hierarchical storage control apparatus, hierarchical storage management method and program | |
JP2021513137A (en) | Data migration in a tiered storage management system | |
JP2019125322A (en) | Storage management device, method for managing storage, and program | |
US20210286772A1 (en) | Tape unmounting protocol | |
CN115185451A (en) | Shared storage dynamic user quota system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IINO, TOMONORI;SAKURAI, ATSUSHI;TANAKA, YURIKO;SIGNING DATES FROM 20211014 TO 20211020;REEL/FRAME:060276/0109 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |