US11856011B1 - Multi-vector malware detection data sharing system for improved detection - Google Patents

Multi-vector malware detection data sharing system for improved detection Download PDF

Info

Publication number
US11856011B1
US11856011B1 US18/097,091 US202318097091A US11856011B1 US 11856011 B1 US11856011 B1 US 11856011B1 US 202318097091 A US202318097091 A US 202318097091A US 11856011 B1 US11856011 B1 US 11856011B1
Authority
US
United States
Prior art keywords
context information
cybersecurity
malware analysis
network
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US18/097,091
Inventor
Sai Vashisht
Sumer Deshpande
Sushant Paithane
Rajeev Menon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musarubra US LLC
Original Assignee
Musarubra US LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musarubra US LLC filed Critical Musarubra US LLC
Priority to US18/097,091 priority Critical patent/US11856011B1/en
Assigned to MANDIANT, INC. reassignment MANDIANT, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FIREEYE, INC.
Assigned to FIREEYE SECURITY HOLDINGS US LLC reassignment FIREEYE SECURITY HOLDINGS US LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MANDIANT, INC.
Assigned to MUSARUBRA US LLC reassignment MUSARUBRA US LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: FIREEYE SECURITY HOLDINGS US LLC
Application granted granted Critical
Publication of US11856011B1 publication Critical patent/US11856011B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/145Countermeasures against malicious traffic the attack involving the propagation of malware through the network, e.g. viruses, trojans or worms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/562Static detection
    • G06F21/564Static detection by virus signature recognition

Definitions

  • Embodiments of the disclosure relate to the field of cybersecurity. More specifically, one embodiment of the disclosure relates to a system and method for improved detection of cyberattacks through the sharing of data between cybersecurity systems operating within an enterprise network.
  • Network devices provide useful and necessary services that assist individuals in business and in their everyday lives.
  • cyberattacks are being conducted on all types of network devices.
  • these cyberattacks are orchestrated in an attempt to gain access to content stored on one or more network devices (e.g., endpoints, cybersecurity systems, etc.).
  • Such access is for illicit (i.e., unauthorized) purposes, such as spying or other malicious or nefarious activities.
  • cybersecurity systems may be deployed at a local network or on an endpoint in efforts to detect a cyberattack caused by a malicious object.
  • One type of cybersecurity system includes a network appliance, which performs a two-phase approach for detecting malware contained in network traffic.
  • This two-phase approach includes a static phase and a dynamic phase.
  • static phase network traffic is examined (without execution), for example, for signature-based matches against a library of known malware, and/or for communication-based protocol anomalies or other characteristics upon which a cybersecurity classification may be based.
  • dynamic phase a virtual machine deployed within the cybersecurity system executes objects obtained from the network traffic and monitors the behaviors of each object during execution where information regarding each monitored behavior may also be referred to as an “event” and may be used in cybersecurity classification of the object.
  • a cybersecurity agent within an endpoint to be protected.
  • the agent is responsible for monitoring and locally storing selected behaviors.
  • a behavior includes a task or activity that is conducted by a software component running on the endpoint and, in some situations, the activity may be undesired or unexpected indicating a cyberattack is being attempted, such as a file being written to disk, a process being executed or created, or an attempted network connection.
  • cybersecurity detection platforms may perform malware detection by analyzing objects according to a particular focus of each cybersecurity system.
  • a first cybersecurity system operating as a first line of defense
  • a second cybersecurity system operating as a second line of defense, may be an agent running as a daemon process on an endpoint to which an email may be directed, where the agent analyzes the activities resulting from processing of the email by an email application running on the endpoint in real-time.
  • each cybersecurity system may include various logic components and apply different rule sets.
  • analysis of the same object e.g., the incoming email
  • the first and second cybersecurity systems may result in different outcomes, i.e., verdicts of maliciousness, which may be a determination of a classification of malicious, suspicious, benign or indeterminate.
  • verdicts of maliciousness may be a determination of a classification of malicious, suspicious, benign or indeterminate.
  • the first and second cybersecurity systems typically operate within separate “silos.”
  • FIG. 1 is an exemplary block diagram of an embodiment of data sharing within a malware analysis data sharing system
  • FIG. 2 is an exemplary block diagram of an embodiment of data sharing within a malware analysis data sharing system including a management system;
  • FIG. 3 is a flowchart illustrating an exemplary method of sharing context information generated during malware analysis between cybersecurity systems of a malware analysis data sharing system operating within an enterprise network;
  • FIG. 4 is a second, detailed exemplary block diagram of an embodiment of data sharing within a malware analysis data sharing system including a management system;
  • FIG. 5 is a flowchart illustrating a method of generating context information by an email cybersecurity system and actively sharing the context information to a second cybersecurity system within an enterprise network;
  • FIG. 6 is a flowchart illustrating a method of determining origination by an agent according to the context information of FIG. 5 and performing a malware analysis in light thereof;
  • FIG. 7 is a flowchart illustrating a method of determining origination by a network cybersecurity system according to the context information of FIG. 6 and performing a malware analysis in light thereof;
  • FIG. 8 is an exemplary embodiment of a logical representation of an appliance cybersecurity system.
  • FIG. 9 is an exemplary embodiment of a logical representation of an endpoint including an agent cybersecurity system.
  • objects in transit in network traffic or contained in emails may be analyzed by multiple cybersecurity systems as the objects enter and traverse an enterprise network.
  • Contextual data from previously performed analyses are shared among the cybersecurity systems so as to enhance the analysis and classification of the objects in later analyses. Absent such sharing, some analyses may fail to account for the vector, e.g., manner, by which the object entered the network (“the origination of the object”) and the results of prior analyses of the object.
  • the origination of the object the object entered the network
  • later analyses of the object may more efficiently utilize system resources, and more effectively detect cyberattacks by reducing false negative (FN) and/or false positive (FP) classifications.
  • FN false negative
  • FP false positive
  • these embodiments can provide more information regarding attack life cycles, including the kill chain of cyberattacks so as to enhance remediation efforts.
  • one embodiment of the disclosure relates to a malware analysis data sharing system that is designed to facilitate the sharing of contextual data between a first cybersecurity system and a second cybersecurity system in order to improve malware analyses performed by the second cybersecurity system.
  • the malware analysis data sharing system includes a plurality of cybersecurity systems (e.g., cybersecurity appliances and/or agents) deployed within or coupled to an enterprise network.
  • Each cybersecurity system is configured to conduct analyses of objects to determine whether any of the objects may be associated with malware.
  • a first cybersecurity system performs a first malware analysis on the object and generates contextual data (generally referred to as “context information”) following, or concurrent with, the analysis.
  • context information may refer to information detailing the performance of a malware analysis, which may include a result of the analysis, often referred to as a score or verdict, one or more identifiers (e.g., hashes) of analyzed objects, identifiers of processes running objects of interest, one or more rules implicated during the analysis, and/or origination information of the one or more analyzed objects.
  • this context information may be provided in different formats such as the actual contextual data, a representation of the actual contextual data as a plurality of bits or pointers each representing a portion of the context information in lieu of the actual contextual data itself, or a combination thereof.
  • the first cybersecurity system modifies the object to include a representation of the context information.
  • the modification of the object with a representation of the context information facilitates and automates the sharing of the context information with a second cybersecurity system.
  • modification of an object to include a representation of the context information may be referred to as “active sharing.”
  • the first cybersecurity system may modify the header of an email object to include the context information.
  • the first cybersecurity system may perform a first malware analysis that differs from a second malware analysis performed by the second cybersecurity system.
  • the first cybersecurity system may be a network appliance that performs an analysis of objects received via email including emails, attachments, embedded objects, URLs, etc.
  • the second cybersecurity system may be a software agent processing on an endpoint within the enterprise network configured to monitor activities at the endpoint.
  • analyses performed by the first and second cybersecurity systems may differ in rules or logic applied as well as behaviors monitored, the cybersecurity systems may not gather the same information during their analyses.
  • the first cybersecurity system can greatly improve and assist with the malware analysis performed by the second cybersecurity system.
  • the second cybersecurity system e.g., an agent installed on an endpoint, may improve its analysis by either (i) determining the origination of the object, and prioritizing the analysis of the object to increase the scrutiny of the analysis, such as by activating certain monitors, adjusting thresholds for determining maliciousness, applying a modified rule set during its analysis for example, or (ii) maintaining a more detailed event log and performing a more detailed preliminary detection, if the agent is so-equipped.
  • one or more thresholds may be used by the cybersecurity systems to determine levels of maliciousness (e.g., suspicious or malicious) based on comparing scores associated with the activities, behaviors or characteristics observed and other context information, and may be modified based on the context information.
  • levels of maliciousness e.g., suspicious or malicious
  • the logic components of the agent that assist in and perform the prioritizing are discussed in further detail with respect to FIG. 9 .
  • cybersecurity systems implemented as appliances may perform an analysis including (i) static and/or dynamic analyses, as described above, (ii) monitoring for selected events or combinations of events conducted by the object (or the application in which the object is processed, and/or the virtual machine during such processing), (iii) detecting occurrences of any of these monitored events or combinations of events, and (iv) classifying the observed events with respect to maliciousness.
  • a network appliance monitors traffic entering and, sometimes, exiting, a trusted area of a protected network (e.g., at least a portion of an enterprise network), and, thus is disposed to monitor the traffic at the periphery of the network.
  • an email appliance is situated behind the exchange server and configured to monitor email traffic entering, and at times, exiting the network. The logic components of the appliances that assist in and perform the prioritizing are discussed in further detail with respect to FIG. 8 .
  • the cybersecurity systems may also perform a correlation or classification phase based on its own malware analysis and, in the case of the second cybersecurity system, the context information provided by the first cybersecurity system, to determine whether the object is malicious, benign or indeterminate (i.e., neither malicious nor benign), which may be represented by a score. Additionally, the second cybersecurity system may generate and issue a report, directly or indirectly via another cybersecurity system, to one or more endpoints, an administrator of the enterprise network and/or a cybersecurity specialist such that the report is based on its malware analysis, and optionally, the context information provided by the first cybersecurity system.
  • the malware analysis data sharing system may also facilitate a remediation process when an object is determined to be malicious.
  • the second cybersecurity system or another logic component within the enterprise system, may determine the origination of a malicious object and employ retroactive detection logic to facilitate remediation of any infected devices (e.g., endpoints and/or network appliances).
  • the retroactive detection logic may utilize the context information to trace the path through which the malicious object traveled within the enterprise network. By determining the path through which the malicious object traveled, the retroactive detection logic can initiate remediation efforts on any affected network device (e.g., quarantine the device on the network and/or the object within the device).
  • the retroactive detection logic may flag any rules during past analyses that failed to lead to classifying the object as malicious and transmit the flagged rule(s), directly or indirectly, to an administrator and/or cybersecurity specialist for review and/or updating to improve efficacy in future detections by the updated rule set. Alternatively, this can be performed automatically.
  • the agent may prevent the user from opening an attachment or activating a URL, if applicable.
  • a network cybersecurity system determines an outbound network request or an inbound response is associated with malware or a cyberattack, the network cybersecurity system can prevent the network request from being transmitted and/or prevent the inbound response from reaching the corresponding endpoint.
  • any cybersecurity system may, upon determining an object is malicious, transmit a notification to a threat management system, which notifies other cybersecurity systems and endpoints that received the same object, e.g., an email.
  • the first cybersecurity system may provide the context information based on the analysis of one or more objects to a non-transitory storage location communicatively coupled to the enterprise network, often referred to as a “cybersecurity intelligence hub.”
  • the context information may be provided to a management system, e.g., a logic component generally configured to correlate data received from multiple cybersecurity systems. Receipt of context information from multiple cybersecurity systems enables the management system to (i) determine whether the same malware appears to be present at different cybersecurity systems (i.e., evidence of a malware attack) and (ii) consolidate at least a portion of the data in order to provide a holistic view of the malware attack.
  • a management system is described in more detail in U.S. Pat. No. 9,311,479, titled, “Correlation and Consolidation of Analytic Data For Holistic View of A Malware Attack” by Manni et al., filed Apr. 12, 2016, the entire contents of which are hereby incorporated by reference.
  • the first cybersecurity system may provide the one or more analyzed objects to the second cybersecurity system without the context information.
  • the second cybersecurity system may then retrieve the context information from the cybersecurity intelligence hub and perform its malware analysis in accordance with the context information.
  • the use of the cybersecurity intelligence hub for storage and retrieval of context information may be referred to as “passive sharing.”
  • a combination of active sharing and passive sharing are utilized to share context information generated by a first cybersecurity system with a second cybersecurity system.
  • a first cybersecurity system performs a first malware analysis on one or more objects of an incoming message, e.g., an email, and generates first context information that is provided, via active or passive sharing, to a second cybersecurity system, and optionally, a cybersecurity intelligence hub.
  • the cybersecurity intelligence hub is configured to perform monitoring on a global scale, while reducing the overall network throughput requirements and mitigating repetitive analytics on identical objects. This allows for better platform scalability without adversely affecting the currency or relevancy of stored metadata within the cybersecurity intelligence hub.
  • the cybersecurity intelligence hub may operate as (i) a central facility connected via a network to receive context information from the cybersecurity systems; (ii) an intelligence analytics resource to analyze the received context information, including results from an analysis of context information or object received from disparate sources, and store the analysis results with (or cross-referenced with) the received context information; and/or (iii) a central facility serving as a distribution hub connected via a network to distribute the stored context information to the consumers.
  • the second cybersecurity system then performs a second malware analysis, in some embodiments, at least in part in accordance with the first context information, and generates a second context information corresponding to the second malware analysis.
  • the second context information may then be provided, via active or passive sharing, to the cybersecurity intelligence hub and a third cybersecurity system, which may perform a third malware analysis in accordance with at least the second context information such as analyzing context information of an outgoing message, e.g., outbound network request, and updating the header of the outgoing message to reflect both its origination and any an operation that triggered the outgoing message.
  • the third cybersecurity system may also retrieve the first context information from the cybersecurity intelligence hub and perform the third malware analysis in light of both the first and second context information.
  • a cybersecurity system may be deployed as an agent on an endpoint to analyze an object stored on a removable storage device, such as for example a USB device.
  • the agent may utilize the origination of the object to determine a specific rule set for analysis of the object, and remediation, if necessary. For example, if the object retrieved from a USB device launches a script, such activity may be deemed at least suspicious based on the object's origination.
  • logic may be representative of hardware, firmware or software that is configured to perform one or more functions.
  • logic may include circuitry having data processing and/or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor, one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC”, etc.), a semiconductor memory, or combinatorial elements.
  • a hardware processor e.g., microprocessor, one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC”, etc.
  • ASIC application specific integrated circuit
  • the logic may include software such as one or more processes, one or more instances, Application Programming Interface(s) (API), subroutine(s), function(s), applet(s), servlet(s), routine(s), source code, object code, shared library/dynamic link library (d11), or even one or more instructions.
  • This software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals).
  • non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device.
  • volatile memory e.g., any type of random access memory “RAM”
  • persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device.
  • the logic may be stored in persistent storage.
  • a “communication” generally refers to related data that is received, transmitted, or exchanged within a communication session.
  • the data may include a plurality of packets, where a “packet” broadly refers to a series of bits or bytes having a prescribed format.
  • the data may include a collection of data that may take the form of an individual or a number of packets carrying related payloads, e.g., a single webpage received over a network.
  • agent generally refers to a module of software installed on a target system (e.g., an endpoint, or other network device) that monitors processing activities and interacts with the target system. Agents gather information about multiple aspects of the target system. Additionally, agents, in some embodiments and responsive to the activities in accordance to monitoring rules followed by the agent, store the monitored activities as events in an event log and permit remote retrieval, on a push or pull basis, of the contents of the event log.
  • the agent may be configured to either communicate (via the endpoint in which it is installed) over a computer network, or to read and write all relevant configuration information and acquired data to a computer storage medium, such as a hard drive or removable read/write media (USB drive, etc.).
  • the agent is built in a modular fashion.
  • the ability to gather a particular piece of data from a target system is implemented as separate modules of software and loaded by the agent. This allows for easy adaptation of the agent to different environments that have specific requirements for data collection.
  • malware may be broadly construed as any code, communication or activity that initiates or furthers a cyberattack. Malware may prompt or cause unauthorized, anomalous, unintended and/or unwanted behaviors, or in some situations, more specifically, operations. constituting a security compromise of information infrastructure (herein, the term “operation” may be considered one example of a behavior).
  • malware may correspond to a type of malicious computer code that, as an illustrative example, executes an exploit to take advantage of a vulnerability in a network, network device or software, for example, to gain unauthorized access, harm or co-opt operation of a network device or misappropriate, modify or delete data.
  • malware may correspond to information (e.g., executable code, script(s), data, command(s), etc.) that is designed to cause a network device to experience anomalous (unexpected or undesirable) behaviors.
  • the anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device executing application software in an atypical manner; (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context.
  • the term “object” generally relates to content (or a reference to access such content) having a logical structure or organization that enables it to be classified for purposes of analysis for malware.
  • the content may include an executable (e.g., an application, program, code segment, a script, dynamic link library “d11” or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.), a non-executable (e.g., a storage file; any document such as a Portable Document Format “PDF” document; a word processing document such as Word® document; an electronic mail “email” message, web page, etc.), or simply a collection of related data.
  • an executable e.g., an application, program, code segment, a script, dynamic link library “d11” or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.
  • a non-executable e.g., a storage
  • an object may refer to an instance of an executable that is executing (“a process”).
  • an object may be a URL or list of URLs.
  • the object may be retrieved from information in transit (e.g., one or more packets, one or more flows each being a plurality of related packets, etc.) or information at rest (e.g., data bytes from a storage medium).
  • network device may be construed as any electronic computing system with the capability of processing data and connecting to a network.
  • a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks.
  • Examples of a network device may include, but are not limited or restricted to, an endpoint (e.g., a laptop, a mobile phone, a tablet, a computer, etc.), a standalone appliance, a server, a router or other intermediary communication device, a firewall, etc.
  • the description that follows will often describe the agent and its operation in terms of being located on an endpoint rather than the more general case of a network device. Moreover, the description may describe communication as being between an agent and one or more external devices or components thereof though it will be understood that such communication is effected via the network device in which the agent is installed.
  • rules generally refers to software or data that is used in detection of malware or cyberattacks.
  • each rule is configured to specify a conditional logic statement or programmatic entity used in a cybersecurity system during operation in detecting and classifying cyberattacks.
  • Rules may be received and maintained by the cybersecurity system in files, libraries, directories, or other modular programmatic structures, or may be integrated into logic running within the cybersecurity systems for example such as in their operating software.
  • the cybersecurity rules may be individually modified or a set of rules may be selected and/or modified (changed, added, subtracted, etc.) for use in the cybersecurity engine during runtime to adjust operability of the cyber-security system and influence cybersecurity verdicts.
  • rules may be logic for use in detecting a cyberattack, each capable of being represented as a logical expression for example, an “if this, then that” conditional statement where “this” represents a condition and “that” represents the conclusion (e.g., malicious or not malicious, etc.).
  • a condition may encompass, for example, a signature, heuristic, pattern, string or value.
  • the conclusion is applied when the condition is met, for example, by one or more observed characteristics, behaviors or activities.
  • each rule may also represent only the “if this” portion of the conditional statement, with the balance of the logical expression (“then that”), implemented by the operating software of the cybersecurity engine that consumes the rule.
  • the term “implicated rules,” as used herein, refers to the one or more specific rules applied in reaching a verdict, reflecting observed characteristics, behaviors and activities and the conclusions drawn from them based on the logical expressions.
  • a rule may provide configuration information containing parameter values for configuring the operating software of the cybersecurity system, such as, for example, threshold values used in detection (e.g., specifying the threshold for suspiciousness and maliciousness).
  • threshold values used in detection e.g., specifying the threshold for suspiciousness and maliciousness.
  • Different types of analyses may be configured to utilize different types of rules. For instance, signature-based rules are used in determining whether a hash (or other signature of an event) matches a stored library of signatures (e.g., exploit, vulnerability or fingerprint-type signatures).
  • protocol anomaly rules determine whether an event matches a stored library of protocol-specific requirements and/or anomalies (e.g., communication header anomalies with respect to HTTP) while execution anomaly rules determine whether, during execution of an object, observed activities and behaviors are expected or anomalous.
  • Classification rules determine verdicts, for example, based on weightings or scores for observed characteristics, activities and behaviors.
  • cybersecurity rules sets include prioritization rule sets and remediation rule sets, as described below.
  • rules may be stored in a rules store (e.g., a repository) in persistent memory of a cybersecurity system and are typically updated frequently (periodically or aperiodically) in light of the prevailing threat landscape.
  • the rule updates may be distributed to the cybersecurity systems in security content files or libraries, originating from, for example, a manufacturer or other source charged with assuring the security content used by the cybersecurity systems are current.
  • Such rule updates are in contrast to rule set selection (where plural alternative rule sets may be maintained by the cybersecurity system), or rule modification by the cybersecurity system, based on the contextual information of a prior analysis, as described herein with regard to embodiments of the invention.
  • the malware analysis data sharing system 100 includes a first cybersecurity system 102 communicatively coupled to a second cybersecurity system 104 .
  • the first cybersecurity system 102 is shown to receive the object 106 , e.g., via an origination vector such as, for example, email.
  • the first cybersecurity system 102 performs a first malware analysis and generates context information 108 based on the first malware analysis.
  • the context information 108 may be information detailing the performance of the first malware analysis and include a verdict of the analysis (suspicious, malicious, benign or indeterminate), an identifier (e.g., hash) of the analyzed object (object 106 ), one or more rules implicated during the analysis, and origination information (i.e., information indicating the vector by which the analyzed object 106 into the enterprise network as represented by determined categories (e.g., email, network traffic such as webpage traffic, removable storage device such as a USB device, etc.)).
  • origination information i.e., information indicating the vector by which the analyzed object 106 into the enterprise network as represented by determined categories (e.g., email, network traffic such as webpage traffic, removable storage device such as a USB device, etc.)
  • the context information 108 may include hashes of the additional objects, rules implicated in analysis thereof, and a verdict of the analysis of each of the additional objects.
  • the second cybersecurity system 104 receives the object 106 and the context information 108 .
  • the first cybersecurity system 102 provides the context information 108 to the first cybersecurity system 104 via active sharing.
  • active sharing refers to the modification of the object 106 to include the context information 108 .
  • the first cybersecurity system 102 may modify the object 106 to include a “X-header” that stores a plurality of bits representing the context information 108 .
  • a X-header may generally be understood as an additional header of an email added during transmission, which contains customizable information.
  • the first cybersecurity system 102 may modify the object 106 to include HTTP header information representing the context information 108 .
  • the second cybersecurity system 104 upon receiving the modified object 106 with the context information 108 , performs a second malware analysis on the object 106 in light of the context information 108 .
  • the second cybersecurity system 104 may determine the origination of the object 106 from the context information 108 .
  • the origination refers to “email”.
  • the second cybersecurity system 104 may prioritize, e.g., modify or tailor, its malware analysis of the object 106 .
  • the second cybersecurity system 104 may typically employ logic that utilizes a set of predetermined rules (or models, as discussed below) in its malware analysis and/or classification phase.
  • the second cybersecurity system 104 may employ the logic utilizing a modified set of rules (or models).
  • the second cybersecurity system 104 may utilize the context information 108 to tailor a malware analysis and/or classification phase to the object 106 , taking into account the origination of the object 106 and one or more rules (or models) implicated in the malware analysis performed by the first cybersecurity system 102 (i.e., rules triggered during analysis that factored in the determination of the verdict).
  • the tailored malware analysis and classification phase leads to fewer false positives and false negatives, thereby providing an improved malware detection process.
  • the rules used in the cybersecurity system 102 and 104 may be categorized as follows: (1) detection rules, (2) correlation rules, and (3) remediation rules. Detection rules are used to determine whether an alert or other report of one or more cybersecurity events should be generated and issued when the condition or conditions within a rule matches observed characteristics, activities, and behaviors.
  • detection rules differentiates between normal internet activities and malicious activities indicative of an intrusion into a protected network. Information regarding these activities, when detected, constitute events stored in an event log, and it is these events to which the rules are applied.
  • the detection rules generally “model” the many events that cybersecurity systems may capture.
  • Correlation rules are used to compare one or more events (e.g., patterns or sequences) with patterns of known malicious or non-malicious activities to classify the observed activities, e.g., as malicious, benign, or indeterminate, and thus ascertain whether a cyberattack occurred or is occurring.
  • Remediation rules are used to determine what remedial measures, if any, should be activated to prevent, block or mitigate a cyberattack, which measures may automatically be deployed or and which only upon approval from a network or security administrator.
  • one or more of the cybersecurity systems 102 and 104 may be deployed as an appliance that is communicatively coupled to receive and analyze incoming messages.
  • the cybersecurity system 102 includes logic being physical components that analyze incoming message for malware, such as a processor and memory including one or more virtual machines, software (e.g., OS(es), application(s), plug-in(s), etc.) to instantiate each of the virtual machines, and monitoring logic to monitor for certain behaviors conducted by an object running in a virtual machine (VM).
  • FIG. 8 provides additional detail with respect to the appliance architecture and logic components stored thereon.
  • one or more of the cybersecurity systems 102 and 104 may be deployed as a virtual device, namely a software (daemon) agent to detect cyberattacks, which may operate in the foreground (or background as the daemon) of a network device (e.g., an endpoint).
  • An agent cybersecurity system installed on an endpoint may monitor activities processing on the endpoint looking for indicators of compromise (IoCs), which may be discovered by the agent cybersecurity system during monitoring of operations performed by the endpoint.
  • IoCs indicators of compromise
  • Each of the cybersecurity systems 102 and 104 may be deployed on-premises (e.g., as an edge network device for the local network, as a network device within the local network, etc.) to detect and analyze incoming objects propagating into or through the local network for malware, etc., or deployed proximate to an exchange server to monitor email traffic attempting to enter the local network or being sent to a protected network device.
  • each of the cybersecurity systems 102 and 104 may be deployed as a cloud-based solution in which the incoming objects (or a representation thereof) are captured at the local network and submitted to at least one of the cloud-based cybersecurity systems 102 and 104 (e.g., or a copy of the incoming objects may be submitted). Additionally, at least one of the cybersecurity systems 102 and 104 (e.g., cybersecurity system 104 ) may be deployed at an endpoint as a software agent operating in the background to analyze and monitor for certain behaviors by the object.
  • the cybersecurity systems 102 and 104 may be deployed as systems within a public or private cloud service or systems deployed and communicatively coupled over a public network (e.g., internet). In such systems, customers may subscribe to cybersecurity services, and pay according to the services received. In such cloud-based deployments, based on the context information 108 from the first cybersecurity system 102 (e.g., origination), the second cybersecurity system 104 may modify its malware analysis to accommodate different quality of service (QoS) levels based on subscription tier or other subscription-related factors associated with the customer of a cybersecurity service, the service being provided, at least in part, by the first cybersecurity system 102 .
  • QoS quality of service
  • the second cybersecurity system 104 may support a different (quicker) response time or a different set of predetermined rules in its malware analysis (i.e., more comprehensive analysis) based on the context information 108 provided and based as well on the subscription factors for the customer involved (e.g., the customer to whom the email or webpage, as the case may be, was directed).
  • the rules may be modified, e.g., customized, pursuant to a request by or in light of the threat landscape confronting the customer.
  • one or more thresholds used by the cybersecurity systems to determine levels of maliciousness (e.g., suspicious or malicious) based on comparing scores associated with the behaviors and characteristics observed and other context information may be modified on a per-customer basis.
  • the malware analysis data sharing system 200 deployed within an enterprise network, includes or is coupled to, a first cybersecurity system 202 , a second cybersecurity system 204 , a management system (MS) 208 and a third cybersecurity system 210 . Additionally, a cybersecurity intelligence hub 206 is communicatively coupled to the malware analysis data sharing system 200 .
  • the first cybersecurity system 202 receives an object 216 .
  • the receipt of the object 216 by the first cybersecurity system 202 will be referred to as the point at which the object 216 entered the enterprise network.
  • the first cybersecurity system 202 performs a malware analysis on the object 216 .
  • the malware analysis may include a static and/or dynamic analysis, monitoring of processing of the object 216 and detection of malicious or nefarious behaviors that indicate the object 216 is likely associated with malware.
  • the first cybersecurity system 202 generates first context information 218 .
  • the first context information 218 may include, but is not limited or restricted to, the type of malware analysis performed, a verdict determined as a result of the first malware analysis, one or more rules implicated during the first malware analysis, characteristics and behaviors observed through static and dynamic analyses, origination information, and/or an identifier (e.g., a hash value) of the object 216 . Additionally, the first context information 218 may include any additional objects attached to or embedded in the object 216 , as well as rules implicated in analysis of the additional objects, and/or a verdict of the analysis of each of the additional objects.
  • the first cybersecurity system 202 determines a verdict as a result of the first malware analysis (suspicious, malicious, benign or indeterminate) or a score reflecting the maliciousness of the object.
  • the first cybersecurity system 202 may generate and issue a report to the management system 208 and/or the second and third cybersecurity systems 204 and 210 .
  • the report may include a visual representation of the first context information 218 (e.g., one or more display screens, printed report, etc.).
  • the first cybersecurity system 202 provides at least the first context information 218 to the second cybersecurity system 204 through either active sharing and/or passive sharing, as will be discussed below. Additionally, the first cybersecurity system 202 may optionally provide the context information to the management system 208 for aggregation and correlation with context information 218 or other data received from other cybersecurity systems. Although not illustrated in FIG. 2 , the first cybersecurity system 202 may transmit the object 216 to the second cybersecurity system 204 or another network device. As an illustrative example, where the first cybersecurity system 202 is an email appliance, it may be deployed in-line and block malicious emails. The emails that are suspicious, indeterminate or benign, may continue to an exchange server which transmits the emails to the endpoint destination which may have an endpoint agent.
  • the first cybersecurity system 202 may actively share the first context information 218 with the second cybersecurity system 204 .
  • the active sharing may include modification of the object 216 to include at least a representation of the first context information 218 .
  • the object 216 may be modified by altering the header of the object 216 to include the first context information 218 , represented by a vector comprising a plurality of bits for example. The plurality of bits may enable the second cybersecurity system 204 to determine the content of the context information 218 .
  • altering of the header of the object 216 may include the addition of a X-header where the object is an email.
  • modification of the object 216 to include the context information 218 is not limited to addition of a X-header or even generally modification of the header of the object 216 .
  • the context information 218 may be encoded when provided to the second cybersecurity system 204 .
  • the encoding of the context information provides resource-saving advantages by compressing the data and also obscures the information so as not to be easily intercepted by malware, malware writers and/or alternative cybersecurity systems. Malware may use the header information to evade detection.
  • the first cybersecurity system 202 Upon modifying the object 216 to include the first context information 218 , the first cybersecurity system 202 transmits the modified object 216 to the second cybersecurity system 204 . Thus, by receiving the modified object 216 , the second cybersecurity system 204 receives the first context information 218 .
  • the second cybersecurity system 204 may obtain the first context information 218 via passive sharing techniques.
  • the first cybersecurity system 202 may passively share the first context information 218 with the second cybersecurity system 204 by uploading the first context information 218 to the cybersecurity intelligence hub 206 and transmitting the object 216 , in an unmodified state, to the second cybersecurity system 204 .
  • the second cybersecurity system 204 may then retrieve the first context information 218 from the cybersecurity intelligence hub 206 .
  • the second cybersecurity system 204 may compute a hash of the object 216 and query the cybersecurity intelligence hub 206 for context information that includes the hash of the object 216 or may be referenced by content within the hash of the object 216 .
  • the query to the cybersecurity intelligence hub 206 may include an identifier of the first cybersecurity system 202 .
  • the context information 216 may be stored in the cybersecurity intelligence hub 206 with the identifier indicating that the context information 216 was uploaded by the first cybersecurity system 202 .
  • the header is only modified to provide information serving as an index into entries in the cybersecurity intelligence hub 206 where the context information 216 can be located.
  • the object 216 and the first context information 218 may be uploaded to the cybersecurity intelligence hub 206 and a communication message transmitted to the second cybersecurity system 204 indicating that the object 216 and the context information 218 are available on the cybersecurity intelligence hub 206 for retrieval by the second cybersecurity system 204 .
  • the malware analysis data sharing system 200 may include, or have access to, a rule (or model) database configured to store rules (or models) used in the malware analyses applied by the cybersecurity systems within the malware analysis data sharing system 200 , e.g., the cybersecurity systems 202 , 204 and/or 210 .
  • Each of the cybersecurity systems 202 , 204 and/or 210 may be communicatively coupled to the database.
  • the context information shared between cybersecurity systems e.g., the context information 218 , may include one or more rules, models, or a representation thereof, implicated during the malware analysis corresponding to the context information.
  • the cybersecurity system that receives the context information may query the database to determine the rules (or models) represented by the representation of the implicated rules within the context information 128 .
  • FIG. 2 illustrates that the object 216 is received by the first cybersecurity system 202 , the object 216 may be received by an endpoint, for example when the first cybersecurity system 202 is deployed out-of-band.
  • the second cybersecurity system 204 Upon obtaining the context information 218 , the second cybersecurity system 204 performs one or more operations to determine the origination of the object 216 , e.g., the vector by which the object 216 entered the enterprise network, which, in this embodiment, is via the first cybersecurity system 202 . Determination of the origination of the object 216 is advantageous for the second cybersecurity system 204 as the origination may be used to prioritize or adjust analysis of the object 216 performed by the second cybersecurity system 204 .
  • a cybersecurity system may prioritize its analysis of an object by modifying its analysis to utilize an amended rule set, activate certain monitors of a cybersecurity system, and analyze the object according to the prioritized analysis based at least in part on received context information.
  • the prioritization of the analysis of an object may be determined, at least in part, by object type and origination according to a set of predetermined prioritization rules.
  • the prioritization rules which may be stored in a rules store, or stored with or communicatively coupled to the cybersecurity system, may set forth logic (e.g., a decision tree) that indicates the modified rule set to be used in analysis of the object 216 based on object type and origination (other factors may be considered as well, such as the verdict or score determined by the first cybersecurity system 202 and/or one or more rules implicated during the first malware analysis).
  • logic e.g., a decision tree
  • the second cybersecurity system 204 parses the context information 218 , which includes origination information of the object 216 and associated objects analyzed by the first cybersecurity system 202 along with a hash of each object.
  • the second cybersecurity system 204 may prioritize the malware analysis of the object 216 as discussed above. Additionally, in some embodiments, the second cybersecurity system 204 may cause a query, which includes a hash of the object, to be transmitted to the cybersecurity intelligence hub 206 , which may correlate the hash with stored hashes in order to rapidly reach a conclusion as to whether the object is known malware based on prior analyses and stored verdicts.
  • the second cybersecurity system 204 may modify its monitoring and malware analysis of the object 216 based on the origination of the object 216 .
  • the second cybersecurity system 204 may typically perform a malware analysis that includes applying a first predetermined rule set to detected behaviors, during or subsequent to, monitoring the processing of PDF objects; however, the origination of the object 216 may indicate that a second predetermined rule set (or second model) is to be used.
  • a more stringent rule set (or model) may be applied during the monitoring and analysis of the object 216 than would otherwise be applied. Specific examples are provided below with respect to FIG. 4 .
  • the second cybersecurity system 204 may perform a classification phase in which the results of the analysis are utilized by the network cybersecurity system to classify the network request (e.g., suspicious, malicious, benign, or indeterminate).
  • the second cybersecurity system 204 may also prioritize its classification phase by modifying classification or correlation rules used, altering predetermined thresholds for determining maliciousness, altering weights associated with monitored activities, etc.
  • the second cybersecurity system 204 upon performing a modified monitoring and malware analysis, the second cybersecurity system 204 generates second context information 222 . Similar to the first context information 218 , the second context information 222 may include origination information of each object analyzed by the second cybersecurity system 204 , any verdict, any rules implicated during analysis, and a hash of each object analyzed. It should be noted that the second cybersecurity system 204 does not alter the origination information (e.g., the origination information is passed along from the first cybersecurity system 202 to the second cybersecurity system 204 and to the third cybersecurity system 210 ).
  • the second context information 222 may also provide the verdict determined by the first cybersecurity system 202 , one or more rules implicated by the malware analysis of the first cybersecurity system 202 as well as the verdict determined by the second cybersecurity system 204 and one or more rules implicated by the malware analysis of the second cybersecurity system 204 .
  • the second context information 222 may be provided to one or more of the cybersecurity intelligence hub 206 , the management system 208 and/or a third cybersecurity system 210 .
  • a reporting logic of the second cybersecurity system 204 may generate and issue (or cause the endpoint on which it is installed or cause a security information and event management system (“STEM”) or endpoint threat management system with which it communicates to issue) a report 220 , which may include a visual representation of the context information 222 .
  • the report 220 may include the context information 222 including any verdict, and the report 220 may also be sent to a third cybersecurity system 210 (e.g., a network cybersecurity system as discussed in FIG. 4 ).
  • the management system 208 may provide (e.g., display) the report to a network or security administrator. Further, the second cybersecurity system 204 may additionally provide the report 220 to the cybersecurity intelligence hub 206 . In addition, the second context information 222 may be provided separately or in addition to the report 220 . As discussed as an illustrative example with respect to FIG. 4 below, the third cybersecurity system 210 may utilize the second context information 222 in its own malware analysis after obtaining the second context information 222 via active or passive sharing of an outbound network request 224 initiated during processing of the object 216 on the second cybersecurity system 204 and, optionally, an inbound response 226 , when applicable. Additionally, based on its analysis, the third cybersecurity system 210 may generate context information 228 and/or a report 230 that may be provided to the cybersecurity intelligence hub 206 and/or the management system 208 .
  • FIG. 3 a flowchart illustrating an exemplary method of sharing context information generated during malware analysis between cybersecurity systems of a malware analysis data sharing system operating within an enterprise network is shown.
  • Each block illustrated in FIG. 3 represents an operation performed in the method 300 of sharing context information generated during malware analysis between cybersecurity systems operating within an enterprise network.
  • the method 300 begins when a first cybersecurity system receives and analyzes an object to determine whether the object is associated with malware or a cyberattack (block 302 ). Specifically, the malware analysis performed by the first cybersecurity system results in the generation of context information.
  • the first cybersecurity system may transmit at least the context information to a cybersecurity intelligence hub, or a management system (block 303 ).
  • the first cybersecurity system Upon completing its malware analysis, the first cybersecurity system provides at least the context information to a second cybersecurity system (block 304 ).
  • providing the context information may be via active sharing by modifying the object under analysis to include the context information.
  • the first cybersecurity system need not provide the context information via active sharing but may instead provide the context information to a cybersecurity intelligence hub for retrieval by the second cybersecurity system.
  • the second cybersecurity system upon obtaining the object and the context information generated by the first cybersecurity system, the second cybersecurity system analyzes the object using a second malware analysis differing from that of the first cybersecurity system to determine whether the object is associated with malware or a cyberattack (block 306 ).
  • the second malware analysis is performed based at least in part on the context information generated by the first cybersecurity system. Additionally, the second malware analysis may be different than the first malware analysis.
  • the second cybersecurity system Following the second malware analysis, the second cybersecurity system generates second context information and, optionally, issues a report based on the second malware analysis, which may include the second context information (block 308 ).
  • the generation of the report is based indirectly, and may optionally be based directly, on the first context information generated by the first cybersecurity system as well as the second context information.
  • the second cybersecurity system may transmit at least the second context information to the cybersecurity intelligence hub, or to the management system (block 310 ).
  • the malware analysis data sharing system 400 includes an email cybersecurity system 402 , a second cybersecurity system 404 , i.e., an endpoint agent (“agent”), operating on an endpoint 403 1 of the endpoints 403 1 - 403 i (wherein i ⁇ 1), a management system (MS) 408 and a network cybersecurity system 410 . Additionally, one or more of the components of the malware analysis data sharing system 400 may be communicatively coupled to one or more networks, e.g., a cybersecurity intelligence hub 406 , the internet 414 . For purposes of clarity, FIG. 4 illustrates the network cybersecurity system 410 is communicatively coupled to the internet 414 ; however, it should be understood that the email cybersecurity system 402 and the endpoint 403 1 may also be communicatively coupled thereto.
  • the email cybersecurity system 402 may include logic that analyzes electronic messages, e.g., emails, transmitted to and from the malware analysis data sharing system 400 to identify malicious content within emails.
  • Analysis of an email may include a two-phase approach for detecting malware, i.e., a static phase and a dynamic phase.
  • the static phases the email is inspected for protocol anomalies and other characteristics indicative of a cyberattack.
  • a virtual machine deployed within the cybersecurity system executes objects obtained from the network traffic being analyzed and monitors the behaviors of each object during execution.
  • the endpoint 404 may include a cybersecurity system, namely an agent 404 operating as a daemon process on the endpoint 403 1 .
  • the agent 404 monitors, captures, and, in some embodiments, analyzes the processing performed on the endpoint 403 1 in real-time to identify indicators of compromise of the endpoint 403 1 (that is, processing activity potentially indicative of a cyberattack).
  • the endpoint 403 1 on which the agent 404 is installed communicates over a network, which may be in common with other endpoints 403 2 - 403 1 , with a STEM or other threat management system.
  • the threat management system 407 may be included in the management system 408 , and may be one dedicated to managing threats at endpoints 403 1 - 403 i , depending on the embodiment.
  • the threat management system 407 in the endpoint-dedicated embodiment serves to aggregate the events, context information and, if made available, any verdicts reached by the supported endpoints 403 1 - 403 i , perform cyberattack detection (or validation, depending on whether the agents installed on each endpoint include cyberattack detection), and correlation across supported endpoints and classification, based on the provided information, issue alerts via a user interface, and, in some embodiments, initiate remedial action on the affected endpoints or issue recommended remedial action.
  • the network cybersecurity system 410 may operate to intercept outbound network traffic including network requests to download webpages from a remote server over a public network (e.g., the internet), and analyze the intercepted traffic to determine whether the traffic is likely associated with malware, as well as in-bound responses to the requests including any of the webpages.
  • Embodiments of the network cybersecurity system 410 may utilize a two-phase approach as discussed above.
  • the email cybersecurity system 402 , the agent 404 (operating on an endpoint) and the network cybersecurity system 410 may each apply different predetermined rule sets to their analyses.
  • the email cybersecurity system 402 may apply email-centric rules, such as rules directed to the analysis of attachments, hot-linked content, and embedded objects such as URLs for example, which may be more aggressive, e.g., stringent, in providing higher scores of maliciousness for URLs in or attachments to emails than other cybersecurity systems, e.g., network cybersecurity systems, due to the high number of malware attacks stemming from emails.
  • email-centric rules such as rules directed to the analysis of attachments, hot-linked content, and embedded objects such as URLs for example, which may be more aggressive, e.g., stringent, in providing higher scores of maliciousness for URLs in or attachments to emails than other cybersecurity systems, e.g., network cybersecurity systems, due to the high number of malware attacks stemming from emails.
  • network cybersecurity systems may apply rules associated with webpages as well as attachments and embedded or hyperlinked files such as WORD® documents or PDFs and hot-linked content.
  • agents may apply rules related to monitoring of typical applications running on the endpoint as well as executables including
  • the email cybersecurity system 402 receives an object 416 , e.g., an email object.
  • an object 416 e.g., an email object.
  • Performing malware analysis on emails is a high priority for enterprise networks as malicious network content is often distributed by electronic messages, including email, using such protocols as POP (Post Office Protocol), SMTP (Simple Message Transfer Protocol), IMAP (Internet Message Access Protocol), and various forms of web-based email. Malicious content may be directly attached to the email (for example as a document capable of exploiting a document reading application, such as a malicious Microsoft® Excel® document).
  • emails may contain URL links to malicious content hosted on web servers elsewhere on the network, that when activated, may result in the download of infectious content.
  • the email cybersecurity system 402 Upon receipt of the email 416 , the email cybersecurity system 402 performs a malware analysis on the email 416 . In addition to performing a first malware analysis, the email cybersecurity system 402 generates email context information 418 .
  • the email context information 418 may include, but is not limited or restricted to, the type of malware analysis performed, a verdict determined as a result of the first malware analysis, one or more rules implicated during the first malware analysis, origination information, a hash of the email 416 and any additional objects attached to or embedded in the email 416 , as well as rules implicated in analysis of the additional objects, and a verdict of the analysis of each of the additional objects.
  • the email cybersecurity system 402 determines a verdict as a result of the first malware analysis (suspicious, malicious, benign or indeterminate) or a score reflecting maliciousness.
  • the email cybersecurity system 402 may generate and issue a report (not shown) to the management system 408 and one or more other components of, or communicatively coupled to, the malware analysis data sharing system 400 .
  • the report may include a visual representation of the email context information 418 .
  • the email cybersecurity system 402 When the first malware analysis results in a verdict other than malicious (suspicious, benign or indeterminate) or a score less than the predetermined threshold, the email cybersecurity system 402 provides the email context information 418 to the endpoint 403 1 through either active sharing and/or passive sharing as discussed above. Additionally, the email cybersecurity system 402 may optionally provide the context information 408 to the cybersecurity intelligence hub 406 and/or the management system 408 for correlation with context information or other data received from cybersecurity systems. In some embodiments, the management system 408 may relay the email 416 and the context information 418 to the endpoint 403 1 .
  • the email cybersecurity system 402 actively shares the email context information 418 with the endpoint 403 1 through modification of the email 416 by the email cybersecurity system 402 .
  • the email cybersecurity system 402 may add a X-header to the email 416 such that the X-header includes at least the email context information 418 .
  • the email context information may be a representation of an encoded plurality of bits utilized by the agent 404 to determine the content of the context information 418 .
  • the email cybersecurity system 402 Upon modifying the email 416 to include the email context information 418 , the email cybersecurity system 402 transmits the modified email 416 to endpoint 403 1 .
  • the endpoint 403 1 receives the email context information 418 .
  • the endpoint 403 1 may obtain the email context information 418 via passive sharing techniques.
  • the email cybersecurity system 402 may passively share the email context information 418 with the endpoint 403 1 by uploading the email context information 418 to the cybersecurity intelligence hub 406 and transmitting the email 416 , in an unmodified state, to the endpoint 403 1 .
  • the agent 404 may then cause the endpoint 403 1 to retrieve the email context information 418 from the cybersecurity intelligence hub 406 .
  • the agent 404 may compute a hash of the email 416 and query the cybersecurity intelligence hub 406 for context information associated with the hash of the email 416 .
  • the query to the cybersecurity intelligence hub 406 may include an identifier of the email cybersecurity system 402 , which may be used by the cybersecurity intelligence hub 406 to provide the applicable context information as referenced above.
  • the agent 404 Upon obtaining the context information 418 , the agent 404 performs one or more operations to determine the origination of the email 416 , which may include parsing the context information 418 for an indicator of the origination (e.g., email, other network traffic, removable storage via an endpoint, etc.). As stated above, in the embodiment illustrated in FIG. 4 , the origination is shown as being by email via the email cybersecurity system 402 . As mentioned above, the logic components of the agent 404 that cause performance of operations associated with the monitoring and analyzing of activities on an endpoint are illustrated in FIG. 9 .
  • the agent 404 which monitors and analyzes the processing on an endpoint in real-time, improves its malware analysis by prioritizing the analysis of objects and processes operating on the endpoint by modifying the analysis of a particular object based on, at least in part, the context information associated with the object.
  • the objects and processes are run under user control, so the agent does not prioritize the processing of either, but prioritizes what the agent monitors and the types of analysis of observed indicators of compromise (i.e., tailors its monitoring, analysis and/or classification of the object).
  • the malware analysis may be improved by reducing occurrences of false positives and false negatives while avoiding degradation in performance of the endpoint.
  • Determining the origination of the email 416 may enable the agent 404 to prioritize the analysis of the processes and objects associated with the email 416 .
  • processes initiated by an object associated with an email e.g., an attachment
  • prioritizing the analysis and/or monitoring of objects and processes based on origination information may result in a modification of one or more rule sets used in a malware analysis of the email 416 , associated objects and corresponding processes to tailor the malware analysis thereof based on the origination.
  • the agent 404 may typically perform a malware analysis that includes applying a first predetermined rule set (or model) to detected behaviors while monitoring the processing of PDF objects; however, the origination of the PDF attachment being via email may indicate that a second predetermined rule set is to be used, e.g., a more stringent rule set may be applied during the monitoring of the PDF attachment than would otherwise be applied.
  • the agent 404 Upon performing a modified malware analysis, the agent 404 generates second context information 420 . Similar to the email context information 418 , the second context information may include origination information of each object analyzed by the agent 404 along with a hash of each object analyzed as well as other information as described above. The second context information 420 may also provide the verdict determined by the agent 404 , one or more rules implicated by the malware analysis of the agent 404 as well as the verdict determined by the email cybersecurity system 402 and one or more rules implicated by the malware analysis of the email cybersecurity system 402 .
  • the second context information 420 may be provided to one or more of the cybersecurity intelligence hub 406 , the management system 408 , the network cybersecurity system 410 .
  • the second context information 420 may be accessible by an administrator/cybersecurity specialist 412 (via the management system 408 , and in particular, the user interface (UI) logic 409 ).
  • the malware analysis of the email 416 , and associated objects and processes continues as an outbound network request 422 is generated, i.e., as a result of processing the email 416 and associated objects.
  • the outbound network request 422 may seek to download a webpage from a remote server, e.g., over a public network such as the internet.
  • the remote server may be legitimate or a malicious server.
  • a header logic of the agent 404 modifies the network request 422 to include at least the second context information 420 (e.g., encoded bit representation of certain contextual data) prior to transmission of the network request 422 to the network cybersecurity system 410 .
  • the agent 404 may modify the network request 422 by modifying a HTTP header or, more generally, adding information to the network request 422 , for example, by adding an additional network header, that includes at least the representation of the context information 420 .
  • the modified network request 422 is transmitted to the network cybersecurity system 410 .
  • the agent 404 may passively share the context information 420 by uploading, via the endpoint 403 1 , the context information 420 to the cybersecurity intelligence hub 406 as discussed above.
  • the network cybersecurity system 410 may determine the origination of the network request 422 based on the context information 420 .
  • the determination of the origination of the network request 422 may be done in a similar manner as discussed above with respect to the determination of the origination of the email 416 by the agent 404 .
  • the network cybersecurity system 410 may parse the context information 420 included in the network request 422 for the origination information included therein.
  • the context information 420 may indicate that the network request 422 was generated as a result of processing of either the email 416 , or an associated object, that entered the enterprise network via email.
  • the network cybersecurity system 410 may prioritize the analysis, e.g., a third malware analysis, of the network request 422 accordingly, such as applying a modified rule set during analysis. As further illustrated in FIG. 4 , the network cybersecurity system 410 may query the cybersecurity intelligence hub 406 for the email context information 418 for additional context information of prior analysis not included in the second context information 420 .
  • the inbound response may include identifying information enabling the network cybersecurity system 410 to pair the inbound response with the outbound network request 422 , and, thus utilize at least the context information 420 in analyzing the inbound response. Subsequent to, or concurrent with, the third malware analysis, as well as the analysis of the inbound response, the network cybersecurity system 410 may generate third context information 424 based on the third malware analysis and the analysis of the inbound response, if applicable.
  • the network cybersecurity system 410 may generate and issue a report 426 to one or more of the endpoint 403 1 . Additionally, the network cybersecurity system 410 may provide the report 426 and/or the third context information 424 to the cybersecurity intelligence hub 406 and/or the management system 408 (which may provide the report 426 and the third context information 424 to the administrator/cybersecurity specialist 412 ). It should also be noted that, although not shown, reports may be generated by the email cybersecurity system 402 and/or the agent 404 . Such reports may be uploaded to the cybersecurity intelligence hub 406 and/or the management system 408 for storage.
  • the network cybersecurity system 410 may facilitate a remediation process.
  • the network cybersecurity system 410 may include a retroactive detection logic discussed above.
  • the network cybersecurity system 410 may provide the third context information 424 to the management system 408 and/or directly or indirectly to the agent 404 , either of which may include a retroactive detection logic and facilitates remediation of any affected devices by tracing the path through which the email 416 or its associated objects traveled within the enterprise network and causing other endpoints along that path (and other endpoints to whom the email may have been forwarded) to block the opening and processing of the email and attachments thereto (if any) and further forwarding of the email by an email application. Operations of the retroactive detection logic are discussed above.
  • FIG. 5 a flowchart illustrating a method of generating context information by an email cybersecurity system and actively sharing the context information to a second cybersecurity system within an enterprise network is shown.
  • Each block illustrated in FIG. 5 represents an operation performed in the method 500 of generating context information by an email cybersecurity system and actively sharing the context information.
  • the method 500 begins when an email cybersecurity system receives an email object, e.g., an email communication (block 502 ). Additionally, the email object may include one or more attachments or embedded URLs. For the purpose of this example, the email will be discussed as having one attachment.
  • the email cybersecurity system analyzes the email object and the attached object, e.g., via static and/or dynamic analyses. Prior to, following, or concurrent with, the analyses, the email cybersecurity system generates context information including at least a hash of the email object, a hash of the attachment and embedded URLs, and a verdict of the analyses (block 504 ). However, as discussed above, the context information may include additional information. Following the generation of the context information, the email cybersecurity system modifies the email to include the context information (block 506 ). In one embodiment, the email cybersecurity system modifies the header of the email object by adding a X-header to the email header with the X-header containing the context information.
  • the email cybersecurity system may transmit the email and/or the context information to a management system and/or a cybersecurity intelligence hub (block 508 ).
  • the transmission of the context information to the cybersecurity intelligence hub enables the passive sharing of the context information between the email cybersecurity system and the other cybersecurity systems within the enterprise network.
  • the email cybersecurity system Upon modifying the email object to include the context information, the email cybersecurity system transmits the modified email to the endpoint on which an agent cybersecurity system is installed (block 510 ).
  • the agent cybersecurity system in response to a particular activity such as an attempt to open the email, performs a malware analysis based at least in part on the context information provided by the email cybersecurity system.
  • FIG. 6 a flowchart illustrating a method of determining origination by an agent according to the context information of FIG. 5 and performing a malware analysis in light thereof is shown.
  • Each block illustrated in FIG. 6 represents an operation performed in the method 600 of determining origination by an agent according to received context information and performing a malware analysis in light thereof.
  • the method 600 begins when an endpoint having an agent installed thereon receives the email object from the email cybersecurity system described in FIG. 5 having a modified header that includes context information generated by the email cybersecurity system (block 602 ).
  • the agent In response to receipt of the email object having a modified header, the agent obtains the context information from the modified header and parses the context information to determine the origination of the email object (block 604 ). Additionally, as discussed above with respect to FIG. 4 , the email object may include one or more attachments, that may each include embedded objects. The agent determines the origination of each object based on the context information. As a vast number of processes and objects operate on an endpoint concurrently at any given time, the origination of each object is important in prioritizing the monitoring or analysis of objects or processes.
  • the agent prioritizes the monitoring and analysis, and optionally, the classification phase, of the object based at least in part on the origination of the object as discussed above (block 606 ). Based on the prioritization monitoring and analysis, the agent monitors activities of the object (and associated objects) for indicators of compromise (IoCs) that may indicate an association with malware or a cyberattack (block 608 ). In addition, the agent generates second context information based on the monitoring and analysis performed by the agent.
  • IoCs indicators of compromise
  • the agent generates second context information based on the monitoring and analysis performed by the agent.
  • the monitoring and analysis may include detection of certain behaviors or operations, that based on the application of one or more rule sets, may indicate that a behavior or operation has a high likelihood of being an IoC.
  • the endpoint may transmit at least the second context information to the cybersecurity hub and/or the management system (block 609 ).
  • an object or process may initiate a network request, e.g., a request to access a website or retrieve social media content via an application installed on the endpoint.
  • a network request associated with the email object e.g., or any object included therein
  • the agent modifies the header of the network request to include at least a representation of the context information generated by the agent (block 610 ).
  • modification of the header of the network request may compromise including an additional network header, for example, as described above.
  • the endpoint transmits the network request to a network cybersecurity system (block 612 ).
  • FIG. 7 a flowchart illustrating a method of determining origination by a network cybersecurity system according to the context information of FIG. 6 and performing a malware analysis in light thereof is shown.
  • Each block illustrated in FIG. 7 represents an operation performed in the method 700 of determining origination by a network cybersecurity system according to received context information and performing a malware analysis in light thereof.
  • the method 700 begins when a network cybersecurity system receives a network request from the endpoint described in FIG. 6 , the network request having a modified header that includes context information generated by the agent (block 702 ).
  • the network cybersecurity system determines the origination of the network request based on the context information included in the modified header (block 704 ).
  • context information may include information tracing the path of the network request through the malware analysis data sharing system as well as the origination of the initiating object.
  • the context information of a network request may include an indication that the processing of an attachment of an email resulted in the initiation of the network request such that the origination is via email.
  • the network cybersecurity system Based at least in part on the context information generated by the agent, the network cybersecurity system prioritizes the analysis of the network request, which may be performed by the scheduler 828 as illustrated in FIG. 8 .
  • the network cybersecurity system prioritizes an analysis of the network request, which may be based on the origination of the network request (e.g., origination may indicate a likelihood of association with malware above a suspiciousness threshold but below a maliciousness threshold) according to a set of predetermined prioritization rules and/or a configuration rules (e.g., containing threshold parameter values) of the network cybersecurity system (block 706 ).
  • the network cybersecurity system Upon prioritizing the analysis of the network request, the network cybersecurity system analyzes the network request (or a copy thereof, depending on the deployment) from the endpoint according to the prioritized, e.g., tailored, analysis (block 708 ).
  • the network cybersecurity system transmits the outbound network request to a public network, i.e., the internet (optional block 710 ).
  • the network cybersecurity system may receive an inbound response, associate the inbound response with the outbound network request and analyze the inbound response based at least in part on the context information corresponding to the network request and generated by the agent (optional block 712 ).
  • the inbound response may include identifying information enabling the network cybersecurity system to pair the inbound response with the outbound network request, and, thus utilize at least the context information corresponding to the network request in analyzing the inbound response.
  • the network cybersecurity system performs a correlation or classification phase in which at least the results of the analysis are utilized by the network cybersecurity system to classify the network request (e.g., suspicious, malicious, benign, or indeterminate) (block 714 ).
  • context information from prior analyses of the object that initiated the network request including any classification verdicts, may be utilized in the classification phase of the network cybersecurity system.
  • the network cybersecurity system Upon completion of the correlation or classification phase, the network cybersecurity system generates third context information and issues a report based on the results of the analysis and the correlation or classification phase (block 716 ). Additionally, optionally, the network cybersecurity system may transmit at least the third context information to the cybersecurity hub and/or the management system ( 718 ). It should be understood that each cybersecurity system discussed in the disclosure may perform a correlation or classification phase upon completing a malware analysis.
  • the appliance cybersecurity system 800 may be a network device that includes a housing, which may be made entirely or partially of a hardened material (e.g., hardened plastic, metal, glass, composite or any combination thereof) that protects the circuitry within the housing, namely one or more processors 802 that are coupled to a network interface 804 and an administration interface 806 , for receiving updates, for example.
  • a hardened material e.g., hardened plastic, metal, glass, composite or any combination thereof
  • the network interface(s) 804 in combination with a network interface logic 838 , enables communications with external network devices and/or other network appliances to receive objects, such as object 842 as well as other data, e.g., context information corresponding to object 842 when not included in a modified header.
  • the network interface 804 may be implemented as a physical interface including one or more ports for wired connectors.
  • the interwork interface 804 may be implemented with one or more radio units for supporting wireless communications with other electronic devices.
  • the network interface logic 838 may include logic for performing operations of receiving and transmitting one or more objects via the network interface 804 , such as the object 842 .
  • the cybersecurity system appliance 800 may also include a persistent storage 808 that is communicatively coupled to the processors 802 and stores one or more executable software components configured to monitor behaviors and characteristics of the object 842 .
  • the persistent storage 808 may include the following logic as software modules: a header logic 820 , a (pre-and-post) traffic analysis logic 812 , a rules engine 814 , a header encoder/decoder logic 816 , a rules store 818 , a detection engine 820 including a static analysis engine 822 , a dynamic analysis engine 824 and a suspiciousness determination logic 826 , a scheduler 828 including prioritization logic 830 and a detection engine configurator 832 , a classification logic 834 , a reporting logic 836 , a network interface logic 838 and a retroactive detection logic 840 .
  • the traffic analysis logic 812 is configured to perform pre- and post-analysis of communications, which may include parsing the communications (incoming or outgoing) and extracting the headers. For incoming communications, the traffic analysis logic 812 extracts the header, e.g., of object 842 , and transmit the header to the header logic 810 which parses the header for the context information (the header logic 810 then passes the context information to the scheduler 828 ).
  • a header encoder/decoder logic 816 is configured to (i) decode a header including context information upon receipt of an object, and (ii) encode a header with context information prior to transmission of an object.
  • the header encoder/decoder logic 816 receives an encoded header from the header logic 810 and decodes the header, e.g., decodes a X-header of a received email to enable the header logic 810 to parse the header for context information.
  • the header encoder/decoder logic 816 receives a header of an object that has been modified by the header logic 810 and encodes the header prior to transmission of the object.
  • the static analysis engine 822 is configured to perform a static phase, during which network traffic is examined (without execution), for example, for signature-based matches against a library of known malware, and/or for communication-based protocol anomalies or other characteristics upon which a cybersecurity classification may be based.
  • the dynamic analysis engine 824 is configured to perform a dynamic phase, during which a virtual machine deployed within the cybersecurity system executes objects obtained from the network traffic and monitors the behaviors of each object during execution where information regarding each monitored behavior may also be referred to as an “event” and may be used in cybersecurity classification of the object.
  • the suspiciousness determination logic 826 is configured as an intermediary logic engine between the static analysis engine 822 and the dynamic analysis engine 824 that modifies the scoring and weighting used by the static analysis engine 822 in determining suspiciousness or maliciousness of the object 824 .
  • the suspiciousness determination logic 826 may perform a series of operations. First, the suspiciousness determination logic 826 assigns one or more weights or scores to each of the observed characteristics of the static analysis in accordance with a set of rules (e.g., a default set of static analysis rules). Second, the suspiciousness determination logic 826 compares a combined score or weight of the observed characteristics against a first threshold, e.g., established by a second rule set, e.g., different than the static analysis rules.
  • a first threshold e.g., established by a second rule set, e.g., different than the static analysis rules.
  • the suspiciousness determination logic 826 passes the object 842 to the dynamic analysis engine 824 .
  • the object 842 may be passed to the dynamic analysis engine 824 regardless of whether the combined score is greater than or equal to the first threshold.
  • the suspiciousness determination logic 826 upon receiving a score or weight from the dynamic analysis engine 824 , the suspiciousness determination logic 826 combines the dynamic analysis score or weight with the scores or weights of the static analysis and compares the total combined score or weight against a second threshold, which may be the same as or different than the first threshold before providing the results to the classification logic when the second threshold is met or exceeded.
  • the suspiciousness determination logic 826 may implement additional iterations of either the static analysis and/or the dynamic analysis, with the same or different rules utilized therein.
  • the dynamic analysis engine 824 may modify the first and second thresholds based on the context information corresponding to the object 842 .
  • the dynamic analysis engine 824 may apply additional weighting to the weights or scores of either the static analysis and/or the dynamic analysis results.
  • the suspiciousness determination logic 826 receives the context information (or alternatively instructions from the scheduler 828 ) and determines a modification of the scoring and weighting used by the static analysis engine 822 .
  • the context information may influence the verdict of the static analysis of the object 842 , which may determine whether the object 842 is processed by the dynamic analysis engine 824 (i.e., the scoring and weighting may be modified based on the origination of the object 842 ).
  • the prioritization logic 830 included within the scheduler 828 , may be configured to utilize received context information to modify (i) the rule sets utilized by the detection engine 820 in the analysis of the object 842 , (ii) the correlation rules used by the classification logic 834 , (iii) the thresholds used by the classification logic 834 , (iv) a time duration for processing the object 842 with the dynamic analysis engine 824 , and/or (v) the scoring and weighting used by the classification logic 834 .
  • the detection engine configurator 832 may coordinate performance of a deeper static analysis and/or an augmented static analysis via a remote cybersecurity system based on the context information (and the results of the static analysis in some embodiments).
  • the detection engine configurator 832 which is present in network cybersecurity systems, may be configured to (i) schedule when the object 842 is to be processed and analyzed in light of the context information, (ii) determine that the object 842 will be processed with a specific guest image within a virtual machine due to the context information indicating one or more particular applications should be running in the dynamic analysis environment, and/or (iii) determine the object 842 will be monitored according to a specific instrumentation package (i.e., a set of process monitors) based on the context information.
  • a specific instrumentation package i.e., a set of process monitors
  • the endpoint 900 has physical hardware including hardware processors 902 , network interface(s) 904 , a persistent storage 912 , a system interconnect 910 , and optionally, a user interface 908 .
  • the persistent storage 912 may contain software comprising an operating system (OS) 914 , one or more applications 916 and an agent 918 .
  • the physical hardware e.g. hardware processors 902 , network interfaces(s) 904 , persistent storage 912
  • the endpoint 900 is a network-connected electronic device, such as a general purpose personal computer, laptop, smart phone, tablet or specialized device such as point of sale (POS) terminal and server.
  • POS point of sale
  • the hardware processor 902 is a multipurpose, programmable device that accepts digital data as input, processes the input data according to instructions stored in its memory, and provides results as output.
  • One example of the hardware processor 902 is an Intel® microprocessor with its associated instruction set architecture, which is used as a central processing unit (CPU) of the endpoint 900 .
  • the hardware processor 902 may include another type of CPU, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or the like.
  • the network device(s) 906 may include various input/output (I/O) or peripheral devices, such as a storage device, for example.
  • a storage device may include a solid state drive (SSD) embodied as a flash storage device or other non-volatile, solid-state electronic device (e.g., drives based on storage class memory components).
  • SSD solid state drive
  • HDD hard disk drive
  • Each network device 906 may include one or more network ports containing the mechanical, electrical and/or signaling circuitry needed to connect the endpoint 900 to a private network to thereby facilitate communications over a system network.
  • the network interface(s) 904 may be configured to transmit and/or receive messages using a variety of communication protocols including, inter alia, TCP/IP and HTTPS.
  • the persistent storage 912 may include a plurality of locations that are addressable by the hardware processor 902 and the network interface(s) 904 for storing software (including software applications) and data structures associated with such software.
  • the hardware processor 902 is adapted to manipulate the stored data structures as well as execute the stored software, which includes an operating system (OS) 914 , one or more applications 916 and the agent 918 .
  • OS operating system
  • the operating system (OS) 914 is software that manages hardware, software resources, and provides common services for computer programs, such as applications 916 .
  • applications 916 For hardware functions such as input and output (I/O) and memory allocation, the operating system 914 acts as an intermediary between applications 916 and the computer hardware, although the application code is usually executed directly by the hardware and frequently makes system calls to an OS function or be interrupted by it.
  • the agent 918 is comprised of one or more executable software components configured to monitor activities of the applications 916 and/or operating system 914 .
  • the agent 918 may be comprised of the following logic as software modules: one or more process monitors 902 , a header logic 922 , interprocess interface logic 924 , header encoder/decoder logic 926 , classification logic 928 , reporting logic 930 , detection engine 932 , detection engine configurator 934 , rules store 936 , and retroactive detection logic 938 .
  • the one or more process monitors 902 are configured to monitor the processing activity that is occurring on the endpoint 900 .
  • rules, stored in the rules stored 936 are used to assist the agent 918 in activities that are to be monitored, as well as in detection and classification of the activities.
  • the rules store 936 is also configured to store prioritization rules, classification rules, etc., as discussed above.
  • the rules store 936 may be, periodically or aperiodically, updated to reflect additional rule sets, remove obsolete rules, etc.
  • the agent 918 may perform classification via the classification logic 928 , e.g., using correlation rules stored in the rules store 936 .
  • the agent 918 may monitor activities and log certain activities to be reported to a separate network device such as a threat management system or a SIEMs for correlation and classification.
  • the header logic 922 is configured to parse a header of a received object (i.e., the object 905 ), such as an email or a network request. As discussed above, in the case of an email object, the header logic 922 parses the email header for a X-header including context information. In addition, as discussed above, upon generating context information, the header logic 922 may modify the header of the object 905 to include the generated context information prior to the endpoint 900 transmitting the object 905 to another cybersecurity system and/or another endpoint.
  • a received object i.e., the object 905
  • the header logic 922 parses the email header for a X-header including context information.
  • the header logic 922 may modify the header of the object 905 to include the generated context information prior to the endpoint 900 transmitting the object 905 to another cybersecurity system and/or another endpoint.
  • the header logic 922 modifies the header of the network request to include context information generated according to the analysis of the object 905 by the agent 918 .
  • the header logic 922 modifies a HTTP header and/or adds a network header in order to include the context information.
  • the interprocess interface logic 924 is configured to enable interaction and cooperation between the agent 918 and processes that are running on the endpoint 900 to enable the agent 918 to receive information when events occur (e.g., when the endpoint 900 receives an email).
  • the header encoder/decoder logic 926 is configured to (i) decode a header including context information upon receipt of an object, and (ii) encode a header with context information prior to transmission of an object. More specifically, the header encoder/decoder logic 926 receives an encoded header from the header logic 922 and decodes the header, e.g., decodes a X-header of a received email to enable the header logic 922 to parse the header for context information. In addition, the header encoder/decoder logic 926 receives a header of an object that has been modified by the header logic 922 and encodes the header prior to transmission of the object.
  • the detection engine 932 in the agent 900 , activates process monitors for the analysis of the object 905 and detects specific activities that may indicate a likelihood of an association with a cyberattack.
  • the classification logic 928 is configured to perform a classification phase, using correlation rules, in which the results of the analysis by the agent 918 are utilized to classify the object 905 (e.g., suspicious, malicious, benign, or indeterminate).
  • the detection engine configurator 934 is configured to determine one or more rule sets to be employed by the detection engine 932 and the classification logic 928 . As discussed above, the prioritization of an agent's monitoring and analysis may result in a tailoring of the typical rule sets used by the agent based on the context information corresponding to the object 905 by the endpoint 900 .
  • the reporting logic 930 may be configured to generate and issue (or cause the endpoint 900 , STEM or an endpoint threat management system with which it communicates to issue) a report.
  • the retroactive detection logic 938 may be optionally included in the agent 918 or may alternatively be included in a threat management system.
  • the retroactive detection logic 938 is configured to facilitate remediation of an affected device (e.g., endpoint 900 ).
  • the retroactive detection logic 938 may utilize context information to trace the path through which a malicious object traveled within the enterprise network. By determining the path through which the malicious object traveled, the retroactive detection logic 938 can initiate remediation efforts on any affected network device (e.g., quarantine the device on the network and/or the object within the device).
  • any affected network device e.g., quarantine the device on the network and/or the object within the device.
  • this logic may be implemented as hardware, and if so, such logic could be implemented separately from each other.
  • model based cybersecurity systems may be deployed in which models are used to conduct the malware analysis in lieu of a rule set as identified throughout portions of the specification. While rules are applied in series to incoming data to produce a result, for models, the entire model is applied to incoming data and a result is produced therefrom.
  • This disclosure discusses the use of rules for purposes of clarity; however, the disclosure is not intended to be so limiting as any analysis control scheme may be utilized.

Abstract

A computerized method for analyzing an object is disclosed. The computerized method includes obtaining, by a cybersecurity system, an object and context information generated during a first malware analysis of the object conducted prior to obtaining the object. Thereafter, the cybersecurity system performs a second malware analysis of the object to determine a verdict indicating maliciousness of the object. The scrutiny of the second malware analysis is adjusted based, at least in part, the context information, which may include (i) activating additional or different monitors, (ii) adjusting thresholds for determining maliciousness, or (iii) applying a modified rule set during the second malware analysis based on the context information.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 16/353,982, issued as U.S. Pat. No. 11,558,401, which is based upon and claims the benefit of priority from U.S. Provisional Patent Application No. 62/650,946 filed Mar. 30, 2018, the entire contents of both of which are incorporated herein by reference.
FIELD
Embodiments of the disclosure relate to the field of cybersecurity. More specifically, one embodiment of the disclosure relates to a system and method for improved detection of cyberattacks through the sharing of data between cybersecurity systems operating within an enterprise network.
GENERAL BACKGROUND
Network devices provide useful and necessary services that assist individuals in business and in their everyday lives. In recent years, a growing number of cyberattacks are being conducted on all types of network devices. In some cases, these cyberattacks are orchestrated in an attempt to gain access to content stored on one or more network devices (e.g., endpoints, cybersecurity systems, etc.). Such access is for illicit (i.e., unauthorized) purposes, such as spying or other malicious or nefarious activities. For protection, cybersecurity systems may be deployed at a local network or on an endpoint in efforts to detect a cyberattack caused by a malicious object.
Over the years, companies have deployed many different types of cybersecurity systems as part of their network-based, malware protection solution. One type of cybersecurity system includes a network appliance, which performs a two-phase approach for detecting malware contained in network traffic. This two-phase approach includes a static phase and a dynamic phase. During the static phase, network traffic is examined (without execution), for example, for signature-based matches against a library of known malware, and/or for communication-based protocol anomalies or other characteristics upon which a cybersecurity classification may be based. During the dynamic phase, a virtual machine deployed within the cybersecurity system executes objects obtained from the network traffic and monitors the behaviors of each object during execution where information regarding each monitored behavior may also be referred to as an “event” and may be used in cybersecurity classification of the object.
Alternatively, another type of cybersecurity system involves the installation of a cybersecurity agent (hereinafter, “agent”) within an endpoint to be protected. For this deployment, the agent is responsible for monitoring and locally storing selected behaviors. Herein, with respect to an endpoint, a behavior includes a task or activity that is conducted by a software component running on the endpoint and, in some situations, the activity may be undesired or unexpected indicating a cyberattack is being attempted, such as a file being written to disk, a process being executed or created, or an attempted network connection.
Currently, cybersecurity detection platforms that deploy a plurality of cybersecurity systems may perform malware detection by analyzing objects according to a particular focus of each cybersecurity system. For example, a first cybersecurity system, operating as a first line of defense, may be an email appliance directed to the analysis of incoming emails and associated objects (i.e., attachments, embedded Uniform Resource Locators “URLs,” etc.). Additionally, a second cybersecurity system, operating as a second line of defense, may be an agent running as a daemon process on an endpoint to which an email may be directed, where the agent analyzes the activities resulting from processing of the email by an email application running on the endpoint in real-time. As the first and second cybersecurity systems perform different analyses, each cybersecurity system may include various logic components and apply different rule sets. Thus, analysis of the same object (e.g., the incoming email) by the first and second cybersecurity systems may result in different outcomes, i.e., verdicts of maliciousness, which may be a determination of a classification of malicious, suspicious, benign or indeterminate. Further, the first and second cybersecurity systems typically operate within separate “silos.”
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the disclosure are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
FIG. 1 is an exemplary block diagram of an embodiment of data sharing within a malware analysis data sharing system;
FIG. 2 is an exemplary block diagram of an embodiment of data sharing within a malware analysis data sharing system including a management system;
FIG. 3 is a flowchart illustrating an exemplary method of sharing context information generated during malware analysis between cybersecurity systems of a malware analysis data sharing system operating within an enterprise network;
FIG. 4 is a second, detailed exemplary block diagram of an embodiment of data sharing within a malware analysis data sharing system including a management system;
FIG. 5 is a flowchart illustrating a method of generating context information by an email cybersecurity system and actively sharing the context information to a second cybersecurity system within an enterprise network;
FIG. 6 is a flowchart illustrating a method of determining origination by an agent according to the context information of FIG. 5 and performing a malware analysis in light thereof;
FIG. 7 is a flowchart illustrating a method of determining origination by a network cybersecurity system according to the context information of FIG. 6 and performing a malware analysis in light thereof;
FIG. 8 is an exemplary embodiment of a logical representation of an appliance cybersecurity system; and
FIG. 9 is an exemplary embodiment of a logical representation of an endpoint including an agent cybersecurity system.
DETAILED DESCRIPTION
I.Overview Summary
In embodiments of the invention, objects in transit in network traffic or contained in emails may be analyzed by multiple cybersecurity systems as the objects enter and traverse an enterprise network. Contextual data from previously performed analyses are shared among the cybersecurity systems so as to enhance the analysis and classification of the objects in later analyses. Absent such sharing, some analyses may fail to account for the vector, e.g., manner, by which the object entered the network (“the origination of the object”) and the results of prior analyses of the object. By sharing the origination of the object and other contextual data of prior analyses, later analyses of the object may more efficiently utilize system resources, and more effectively detect cyberattacks by reducing false negative (FN) and/or false positive (FP) classifications. In addition, by the sharing and reporting of the combined contextual data from among the cybersecurity systems, these embodiments can provide more information regarding attack life cycles, including the kill chain of cyberattacks so as to enhance remediation efforts.
In general, one embodiment of the disclosure relates to a malware analysis data sharing system that is designed to facilitate the sharing of contextual data between a first cybersecurity system and a second cybersecurity system in order to improve malware analyses performed by the second cybersecurity system. For this embodiment of the disclosure, the malware analysis data sharing system includes a plurality of cybersecurity systems (e.g., cybersecurity appliances and/or agents) deployed within or coupled to an enterprise network. Each cybersecurity system is configured to conduct analyses of objects to determine whether any of the objects may be associated with malware.
As described below, according to one embodiment of the disclosure, a first cybersecurity system performs a first malware analysis on the object and generates contextual data (generally referred to as “context information”) following, or concurrent with, the analysis. Herein, the term “concurrent” means at least partially overlapping in time. The “context information” may refer to information detailing the performance of a malware analysis, which may include a result of the analysis, often referred to as a score or verdict, one or more identifiers (e.g., hashes) of analyzed objects, identifiers of processes running objects of interest, one or more rules implicated during the analysis, and/or origination information of the one or more analyzed objects. Herein, this context information may be provided in different formats such as the actual contextual data, a representation of the actual contextual data as a plurality of bits or pointers each representing a portion of the context information in lieu of the actual contextual data itself, or a combination thereof.
In one embodiment, upon completing the first malware analysis, the first cybersecurity system modifies the object to include a representation of the context information. The modification of the object with a representation of the context information facilitates and automates the sharing of the context information with a second cybersecurity system. Herein, modification of an object to include a representation of the context information may be referred to as “active sharing.” For example, the first cybersecurity system may modify the header of an email object to include the context information. In particular, the first cybersecurity system may perform a first malware analysis that differs from a second malware analysis performed by the second cybersecurity system. In one embodiment, the first cybersecurity system may be a network appliance that performs an analysis of objects received via email including emails, attachments, embedded objects, URLs, etc., while the second cybersecurity system may be a software agent processing on an endpoint within the enterprise network configured to monitor activities at the endpoint. As the analyses performed by the first and second cybersecurity systems may differ in rules or logic applied as well as behaviors monitored, the cybersecurity systems may not gather the same information during their analyses.
Therefore, by providing context information associated with its malware analysis, the first cybersecurity system can greatly improve and assist with the malware analysis performed by the second cybersecurity system. Specifically, the second cybersecurity system, e.g., an agent installed on an endpoint, may improve its analysis by either (i) determining the origination of the object, and prioritizing the analysis of the object to increase the scrutiny of the analysis, such as by activating certain monitors, adjusting thresholds for determining maliciousness, applying a modified rule set during its analysis for example, or (ii) maintaining a more detailed event log and performing a more detailed preliminary detection, if the agent is so-equipped. In particular, one or more thresholds may be used by the cybersecurity systems to determine levels of maliciousness (e.g., suspicious or malicious) based on comparing scores associated with the activities, behaviors or characteristics observed and other context information, and may be modified based on the context information. The logic components of the agent that assist in and perform the prioritizing are discussed in further detail with respect to FIG. 9 .
In some embodiments, cybersecurity systems implemented as appliances (such as those directed to analyzing network traffic or email traffic) may perform an analysis including (i) static and/or dynamic analyses, as described above, (ii) monitoring for selected events or combinations of events conducted by the object (or the application in which the object is processed, and/or the virtual machine during such processing), (iii) detecting occurrences of any of these monitored events or combinations of events, and (iv) classifying the observed events with respect to maliciousness. In some embodiments, a network appliance monitors traffic entering and, sometimes, exiting, a trusted area of a protected network (e.g., at least a portion of an enterprise network), and, thus is disposed to monitor the traffic at the periphery of the network. Additionally, in some embodiments, an email appliance is situated behind the exchange server and configured to monitor email traffic entering, and at times, exiting the network. The logic components of the appliances that assist in and perform the prioritizing are discussed in further detail with respect to FIG. 8 .
The cybersecurity systems may also perform a correlation or classification phase based on its own malware analysis and, in the case of the second cybersecurity system, the context information provided by the first cybersecurity system, to determine whether the object is malicious, benign or indeterminate (i.e., neither malicious nor benign), which may be represented by a score. Additionally, the second cybersecurity system may generate and issue a report, directly or indirectly via another cybersecurity system, to one or more endpoints, an administrator of the enterprise network and/or a cybersecurity specialist such that the report is based on its malware analysis, and optionally, the context information provided by the first cybersecurity system.
The malware analysis data sharing system may also facilitate a remediation process when an object is determined to be malicious. Based on the context information, the second cybersecurity system, or another logic component within the enterprise system, may determine the origination of a malicious object and employ retroactive detection logic to facilitate remediation of any infected devices (e.g., endpoints and/or network appliances). The retroactive detection logic may utilize the context information to trace the path through which the malicious object traveled within the enterprise network. By determining the path through which the malicious object traveled, the retroactive detection logic can initiate remediation efforts on any affected network device (e.g., quarantine the device on the network and/or the object within the device). In addition, the retroactive detection logic may flag any rules during past analyses that failed to lead to classifying the object as malicious and transmit the flagged rule(s), directly or indirectly, to an administrator and/or cybersecurity specialist for review and/or updating to improve efficacy in future detections by the updated rule set. Alternatively, this can be performed automatically. Additionally, in some embodiments when an agent determines an email object is malicious, the agent may prevent the user from opening an attachment or activating a URL, if applicable. Similarly, when a network cybersecurity system determines an outbound network request or an inbound response is associated with malware or a cyberattack, the network cybersecurity system can prevent the network request from being transmitted and/or prevent the inbound response from reaching the corresponding endpoint. Further, any cybersecurity system may, upon determining an object is malicious, transmit a notification to a threat management system, which notifies other cybersecurity systems and endpoints that received the same object, e.g., an email.
Additionally, in some embodiments, the first cybersecurity system may provide the context information based on the analysis of one or more objects to a non-transitory storage location communicatively coupled to the enterprise network, often referred to as a “cybersecurity intelligence hub.” Additionally, the context information may be provided to a management system, e.g., a logic component generally configured to correlate data received from multiple cybersecurity systems. Receipt of context information from multiple cybersecurity systems enables the management system to (i) determine whether the same malware appears to be present at different cybersecurity systems (i.e., evidence of a malware attack) and (ii) consolidate at least a portion of the data in order to provide a holistic view of the malware attack. One embodiment of a management system is described in more detail in U.S. Pat. No. 9,311,479, titled, “Correlation and Consolidation of Analytic Data For Holistic View of A Malware Attack” by Manni et al., filed Apr. 12, 2016, the entire contents of which are hereby incorporated by reference.
In some embodiments in which the context information is provided to a cybersecurity intelligence hub (described below), the first cybersecurity system may provide the one or more analyzed objects to the second cybersecurity system without the context information. The second cybersecurity system may then retrieve the context information from the cybersecurity intelligence hub and perform its malware analysis in accordance with the context information. Herein, the use of the cybersecurity intelligence hub for storage and retrieval of context information may be referred to as “passive sharing.” Further, in some embodiments, a combination of active sharing and passive sharing are utilized to share context information generated by a first cybersecurity system with a second cybersecurity system.
In some embodiments, as will be discussed in detail below, a first cybersecurity system performs a first malware analysis on one or more objects of an incoming message, e.g., an email, and generates first context information that is provided, via active or passive sharing, to a second cybersecurity system, and optionally, a cybersecurity intelligence hub. The cybersecurity intelligence hub is configured to perform monitoring on a global scale, while reducing the overall network throughput requirements and mitigating repetitive analytics on identical objects. This allows for better platform scalability without adversely affecting the currency or relevancy of stored metadata within the cybersecurity intelligence hub. Hence, the cybersecurity intelligence hub may operate as (i) a central facility connected via a network to receive context information from the cybersecurity systems; (ii) an intelligence analytics resource to analyze the received context information, including results from an analysis of context information or object received from disparate sources, and store the analysis results with (or cross-referenced with) the received context information; and/or (iii) a central facility serving as a distribution hub connected via a network to distribute the stored context information to the consumers.
The second cybersecurity system then performs a second malware analysis, in some embodiments, at least in part in accordance with the first context information, and generates a second context information corresponding to the second malware analysis. The second context information may then be provided, via active or passive sharing, to the cybersecurity intelligence hub and a third cybersecurity system, which may perform a third malware analysis in accordance with at least the second context information such as analyzing context information of an outgoing message, e.g., outbound network request, and updating the header of the outgoing message to reflect both its origination and any an operation that triggered the outgoing message. In one embodiment, the third cybersecurity system may also retrieve the first context information from the cybersecurity intelligence hub and perform the third malware analysis in light of both the first and second context information.
It should also be noted that, although the examples discussed herein relate to receipt of an email object, a network request and, in some instances, an inbound response, other object types may be analyzed in a similar manner by one or more of the cybersecurity systems disclosed herein. For example, a cybersecurity system may be deployed as an agent on an endpoint to analyze an object stored on a removable storage device, such as for example a USB device. The agent may utilize the origination of the object to determine a specific rule set for analysis of the object, and remediation, if necessary. For example, if the object retrieved from a USB device launches a script, such activity may be deemed at least suspicious based on the object's origination.
II. Terminology
In the following description, certain terminology is used to describe various features of the invention. For example, each of the terms “logic,” “engine,” and “component” may be representative of hardware, firmware or software that is configured to perform one or more functions. As hardware, the term logic (or component) may include circuitry having data processing and/or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor, one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC”, etc.), a semiconductor memory, or combinatorial elements.
Additionally, or in the alternative, the logic (or component) may include software such as one or more processes, one or more instances, Application Programming Interface(s) (API), subroutine(s), function(s), applet(s), servlet(s), routine(s), source code, object code, shared library/dynamic link library (d11), or even one or more instructions. This software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the logic (or component) may be stored in persistent storage.
Herein, a “communication” generally refers to related data that is received, transmitted, or exchanged within a communication session. The data may include a plurality of packets, where a “packet” broadly refers to a series of bits or bytes having a prescribed format. Alternatively, the data may include a collection of data that may take the form of an individual or a number of packets carrying related payloads, e.g., a single webpage received over a network.
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.
The term “agent” generally refers to a module of software installed on a target system (e.g., an endpoint, or other network device) that monitors processing activities and interacts with the target system. Agents gather information about multiple aspects of the target system. Additionally, agents, in some embodiments and responsive to the activities in accordance to monitoring rules followed by the agent, store the monitored activities as events in an event log and permit remote retrieval, on a push or pull basis, of the contents of the event log. The agent may be configured to either communicate (via the endpoint in which it is installed) over a computer network, or to read and write all relevant configuration information and acquired data to a computer storage medium, such as a hard drive or removable read/write media (USB drive, etc.). In one embodiment, the agent is built in a modular fashion. The ability to gather a particular piece of data from a target system (e.g. a list of running processes on the target system or a log file or timeline) is implemented as separate modules of software and loaded by the agent. This allows for easy adaptation of the agent to different environments that have specific requirements for data collection.
According to one embodiment of the disclosure, the term “malware” may be broadly construed as any code, communication or activity that initiates or furthers a cyberattack. Malware may prompt or cause unauthorized, anomalous, unintended and/or unwanted behaviors, or in some situations, more specifically, operations. constituting a security compromise of information infrastructure (herein, the term “operation” may be considered one example of a behavior). For instance, malware may correspond to a type of malicious computer code that, as an illustrative example, executes an exploit to take advantage of a vulnerability in a network, network device or software, for example, to gain unauthorized access, harm or co-opt operation of a network device or misappropriate, modify or delete data. Alternatively, as another illustrative example, malware may correspond to information (e.g., executable code, script(s), data, command(s), etc.) that is designed to cause a network device to experience anomalous (unexpected or undesirable) behaviors. The anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device executing application software in an atypical manner; (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context.
The term “object” generally relates to content (or a reference to access such content) having a logical structure or organization that enables it to be classified for purposes of analysis for malware. The content may include an executable (e.g., an application, program, code segment, a script, dynamic link library “d11” or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.), a non-executable (e.g., a storage file; any document such as a Portable Document Format “PDF” document; a word processing document such as Word® document; an electronic mail “email” message, web page, etc.), or simply a collection of related data. Additionally, the term object may refer to an instance of an executable that is executing (“a process”). In one embodiment, an object may be a URL or list of URLs. The object may be retrieved from information in transit (e.g., one or more packets, one or more flows each being a plurality of related packets, etc.) or information at rest (e.g., data bytes from a storage medium).
The term “network device” may be construed as any electronic computing system with the capability of processing data and connecting to a network. Such a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, an endpoint (e.g., a laptop, a mobile phone, a tablet, a computer, etc.), a standalone appliance, a server, a router or other intermediary communication device, a firewall, etc. For convenience, and by way of illustration, the description that follows will often describe the agent and its operation in terms of being located on an endpoint rather than the more general case of a network device. Moreover, the description may describe communication as being between an agent and one or more external devices or components thereof though it will be understood that such communication is effected via the network device in which the agent is installed.
The term “rules” generally refers to software or data that is used in detection of malware or cyberattacks. According to one embodiment of the disclosure, each rule is configured to specify a conditional logic statement or programmatic entity used in a cybersecurity system during operation in detecting and classifying cyberattacks. Rules may be received and maintained by the cybersecurity system in files, libraries, directories, or other modular programmatic structures, or may be integrated into logic running within the cybersecurity systems for example such as in their operating software. Importantly, in embodiments of the invention, the cybersecurity rules may be individually modified or a set of rules may be selected and/or modified (changed, added, subtracted, etc.) for use in the cybersecurity engine during runtime to adjust operability of the cyber-security system and influence cybersecurity verdicts.
For instance, rules may be logic for use in detecting a cyberattack, each capable of being represented as a logical expression for example, an “if this, then that” conditional statement where “this” represents a condition and “that” represents the conclusion (e.g., malicious or not malicious, etc.). A condition may encompass, for example, a signature, heuristic, pattern, string or value. The conclusion is applied when the condition is met, for example, by one or more observed characteristics, behaviors or activities. For convenience in terminology, each rule may also represent only the “if this” portion of the conditional statement, with the balance of the logical expression (“then that”), implemented by the operating software of the cybersecurity engine that consumes the rule. Hence, the term “implicated rules,” as used herein, refers to the one or more specific rules applied in reaching a verdict, reflecting observed characteristics, behaviors and activities and the conclusions drawn from them based on the logical expressions.
As another illustrative example, a rule may provide configuration information containing parameter values for configuring the operating software of the cybersecurity system, such as, for example, threshold values used in detection (e.g., specifying the threshold for suspiciousness and maliciousness). Different types of analyses may be configured to utilize different types of rules. For instance, signature-based rules are used in determining whether a hash (or other signature of an event) matches a stored library of signatures (e.g., exploit, vulnerability or fingerprint-type signatures). Likewise, protocol anomaly rules determine whether an event matches a stored library of protocol-specific requirements and/or anomalies (e.g., communication header anomalies with respect to HTTP) while execution anomaly rules determine whether, during execution of an object, observed activities and behaviors are expected or anomalous. Classification rules determine verdicts, for example, based on weightings or scores for observed characteristics, activities and behaviors. In addition, cybersecurity rules sets include prioritization rule sets and remediation rule sets, as described below.
Herein, rules may be stored in a rules store (e.g., a repository) in persistent memory of a cybersecurity system and are typically updated frequently (periodically or aperiodically) in light of the prevailing threat landscape. The rule updates may be distributed to the cybersecurity systems in security content files or libraries, originating from, for example, a manufacturer or other source charged with assuring the security content used by the cybersecurity systems are current. Such rule updates are in contrast to rule set selection (where plural alternative rule sets may be maintained by the cybersecurity system), or rule modification by the cybersecurity system, based on the contextual information of a prior analysis, as described herein with regard to embodiments of the invention.
Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
III. General Architecture
Referring to FIG. 1 , an exemplary block diagram of an embodiment of data sharing within a malware analysis data sharing system is shown. Herein, the malware analysis data sharing system 100 includes a first cybersecurity system 102 communicatively coupled to a second cybersecurity system 104. The first cybersecurity system 102 is shown to receive the object 106, e.g., via an origination vector such as, for example, email. The first cybersecurity system 102 performs a first malware analysis and generates context information 108 based on the first malware analysis. As discussed above, the context information 108 may be information detailing the performance of the first malware analysis and include a verdict of the analysis (suspicious, malicious, benign or indeterminate), an identifier (e.g., hash) of the analyzed object (object 106), one or more rules implicated during the analysis, and origination information (i.e., information indicating the vector by which the analyzed object 106 into the enterprise network as represented by determined categories (e.g., email, network traffic such as webpage traffic, removable storage device such as a USB device, etc.)). Additionally, when the object 106 includes additional objects, attached to or embedded in the object 106, the context information 108 may include hashes of the additional objects, rules implicated in analysis thereof, and a verdict of the analysis of each of the additional objects.
According to FIG. 1 , the second cybersecurity system 104 receives the object 106 and the context information 108. In this embodiment, the first cybersecurity system 102 provides the context information 108 to the first cybersecurity system 104 via active sharing. As discussed above, active sharing refers to the modification of the object 106 to include the context information 108. For instance, in a first embodiment in which the object 106 is an email and the first cybersecurity system 102 is an email appliance located at a periphery of a network, the first cybersecurity system 102 may modify the object 106 to include a “X-header” that stores a plurality of bits representing the context information 108. A X-header may generally be understood as an additional header of an email added during transmission, which contains customizable information. However, in a second embodiment in which the object 106 is a webpage and the first cybersecurity system 102 is a network appliance, the first cybersecurity system 102 may modify the object 106 to include HTTP header information representing the context information 108.
Further, upon receiving the modified object 106 with the context information 108, the second cybersecurity system 104 performs a second malware analysis on the object 106 in light of the context information 108. As will be described in detail below, the second cybersecurity system 104 may determine the origination of the object 106 from the context information 108. As one example, in an embodiment in which the object 106 is an email object received by an email cybersecurity appliance monitoring emails entering the network, the origination refers to “email”.
Based on the origination of the object 106, and optionally other information included in the context information 108, the second cybersecurity system 104 may prioritize, e.g., modify or tailor, its malware analysis of the object 106. For example, the second cybersecurity system 104 may typically employ logic that utilizes a set of predetermined rules (or models, as discussed below) in its malware analysis and/or classification phase. However, based on the origination of the object 106, the second cybersecurity system 104 may employ the logic utilizing a modified set of rules (or models). Therefore, the second cybersecurity system 104 may utilize the context information 108 to tailor a malware analysis and/or classification phase to the object 106, taking into account the origination of the object 106 and one or more rules (or models) implicated in the malware analysis performed by the first cybersecurity system 102 (i.e., rules triggered during analysis that factored in the determination of the verdict). Specifically, the tailored malware analysis and classification phase leads to fewer false positives and false negatives, thereby providing an improved malware detection process.
As a useful construct, the rules used in the cybersecurity system 102 and 104 may be categorized as follows: (1) detection rules, (2) correlation rules, and (3) remediation rules. Detection rules are used to determine whether an alert or other report of one or more cybersecurity events should be generated and issued when the condition or conditions within a rule matches observed characteristics, activities, and behaviors. One example of detection rules differentiates between normal internet activities and malicious activities indicative of an intrusion into a protected network. Information regarding these activities, when detected, constitute events stored in an event log, and it is these events to which the rules are applied. Hence, the detection rules generally “model” the many events that cybersecurity systems may capture. Correlation rules are used to compare one or more events (e.g., patterns or sequences) with patterns of known malicious or non-malicious activities to classify the observed activities, e.g., as malicious, benign, or indeterminate, and thus ascertain whether a cyberattack occurred or is occurring. Remediation rules are used to determine what remedial measures, if any, should be activated to prevent, block or mitigate a cyberattack, which measures may automatically be deployed or and which only upon approval from a network or security administrator.
For example, one or more of the cybersecurity systems 102 and 104 (e.g., cybersecurity system 102) may be deployed as an appliance that is communicatively coupled to receive and analyze incoming messages. As an appliance, the cybersecurity system 102 includes logic being physical components that analyze incoming message for malware, such as a processor and memory including one or more virtual machines, software (e.g., OS(es), application(s), plug-in(s), etc.) to instantiate each of the virtual machines, and monitoring logic to monitor for certain behaviors conducted by an object running in a virtual machine (VM). FIG. 8 provides additional detail with respect to the appliance architecture and logic components stored thereon.
Further, one or more of the cybersecurity systems 102 and 104 (e.g., cybersecurity system 104), may be deployed as a virtual device, namely a software (daemon) agent to detect cyberattacks, which may operate in the foreground (or background as the daemon) of a network device (e.g., an endpoint). An agent cybersecurity system installed on an endpoint may monitor activities processing on the endpoint looking for indicators of compromise (IoCs), which may be discovered by the agent cybersecurity system during monitoring of operations performed by the endpoint. FIG. 9 provides additional detail with respect to the agent architecture and associated logic components.
Each of the cybersecurity systems 102 and 104 (e.g., cybersecurity system 102) may be deployed on-premises (e.g., as an edge network device for the local network, as a network device within the local network, etc.) to detect and analyze incoming objects propagating into or through the local network for malware, etc., or deployed proximate to an exchange server to monitor email traffic attempting to enter the local network or being sent to a protected network device. Alternatively, although not shown, each of the cybersecurity systems 102 and 104 may be deployed as a cloud-based solution in which the incoming objects (or a representation thereof) are captured at the local network and submitted to at least one of the cloud-based cybersecurity systems 102 and 104 (e.g., or a copy of the incoming objects may be submitted). Additionally, at least one of the cybersecurity systems 102 and 104 (e.g., cybersecurity system 104) may be deployed at an endpoint as a software agent operating in the background to analyze and monitor for certain behaviors by the object.
It is contemplated that, although described within or coupled to an enterprise network deployment, the cybersecurity systems 102 and 104 may be deployed as systems within a public or private cloud service or systems deployed and communicatively coupled over a public network (e.g., internet). In such systems, customers may subscribe to cybersecurity services, and pay according to the services received. In such cloud-based deployments, based on the context information 108 from the first cybersecurity system 102 (e.g., origination), the second cybersecurity system 104 may modify its malware analysis to accommodate different quality of service (QoS) levels based on subscription tier or other subscription-related factors associated with the customer of a cybersecurity service, the service being provided, at least in part, by the first cybersecurity system 102. For instance, the second cybersecurity system 104 may support a different (quicker) response time or a different set of predetermined rules in its malware analysis (i.e., more comprehensive analysis) based on the context information 108 provided and based as well on the subscription factors for the customer involved (e.g., the customer to whom the email or webpage, as the case may be, was directed). The rules may be modified, e.g., customized, pursuant to a request by or in light of the threat landscape confronting the customer. In addition, one or more thresholds used by the cybersecurity systems to determine levels of maliciousness (e.g., suspicious or malicious) based on comparing scores associated with the behaviors and characteristics observed and other context information, may be modified on a per-customer basis.
IV. System Architecture
Referring now to FIG. 2 , an exemplary block diagram of an embodiment of data sharing within a malware analysis data sharing system including a management system is shown. The malware analysis data sharing system 200, deployed within an enterprise network, includes or is coupled to, a first cybersecurity system 202, a second cybersecurity system 204, a management system (MS) 208 and a third cybersecurity system 210. Additionally, a cybersecurity intelligence hub 206 is communicatively coupled to the malware analysis data sharing system 200.
As is seen in the illustration of FIG. 2 , the first cybersecurity system 202 receives an object 216. For the purposes of this embodiment, the receipt of the object 216 by the first cybersecurity system 202 will be referred to as the point at which the object 216 entered the enterprise network. Upon receipt of the object 216, the first cybersecurity system 202 performs a malware analysis on the object 216. As discussed above, the malware analysis may include a static and/or dynamic analysis, monitoring of processing of the object 216 and detection of malicious or nefarious behaviors that indicate the object 216 is likely associated with malware. In addition to performing a first malware analysis, the first cybersecurity system 202 generates first context information 218. The first context information 218 may include, but is not limited or restricted to, the type of malware analysis performed, a verdict determined as a result of the first malware analysis, one or more rules implicated during the first malware analysis, characteristics and behaviors observed through static and dynamic analyses, origination information, and/or an identifier (e.g., a hash value) of the object 216. Additionally, the first context information 218 may include any additional objects attached to or embedded in the object 216, as well as rules implicated in analysis of the additional objects, and/or a verdict of the analysis of each of the additional objects.
The first cybersecurity system 202 determines a verdict as a result of the first malware analysis (suspicious, malicious, benign or indeterminate) or a score reflecting the maliciousness of the object. When the first malware analysis results in a verdict of maliciousness (or a score exceeding a predetermined threshold), the first cybersecurity system 202 may generate and issue a report to the management system 208 and/or the second and third cybersecurity systems 204 and 210. The report may include a visual representation of the first context information 218 (e.g., one or more display screens, printed report, etc.).
When the first malware analysis results in a verdict other than malicious (suspicious, benign or indeterminate) or the score does not exceed a predetermined threshold, the first cybersecurity system 202 provides at least the first context information 218 to the second cybersecurity system 204 through either active sharing and/or passive sharing, as will be discussed below. Additionally, the first cybersecurity system 202 may optionally provide the context information to the management system 208 for aggregation and correlation with context information 218 or other data received from other cybersecurity systems. Although not illustrated in FIG. 2 , the first cybersecurity system 202 may transmit the object 216 to the second cybersecurity system 204 or another network device. As an illustrative example, where the first cybersecurity system 202 is an email appliance, it may be deployed in-line and block malicious emails. The emails that are suspicious, indeterminate or benign, may continue to an exchange server which transmits the emails to the endpoint destination which may have an endpoint agent.
1 Active Sharing
In one embodiment, the first cybersecurity system 202 may actively share the first context information 218 with the second cybersecurity system 204. For example, the active sharing may include modification of the object 216 to include at least a representation of the first context information 218. In some embodiments, the object 216 may be modified by altering the header of the object 216 to include the first context information 218, represented by a vector comprising a plurality of bits for example. The plurality of bits may enable the second cybersecurity system 204 to determine the content of the context information 218. As discussed above, altering of the header of the object 216 may include the addition of a X-header where the object is an email. However, modification of the object 216 to include the context information 218 is not limited to addition of a X-header or even generally modification of the header of the object 216. The disclosure contemplates that active sharing should be broadly construed as any modification of the object 216 to include the context information 218.
Additionally, as referenced above, the context information 218, or a representation thereof such as a plurality of bits, may be encoded when provided to the second cybersecurity system 204. The encoding of the context information provides resource-saving advantages by compressing the data and also obscures the information so as not to be easily intercepted by malware, malware writers and/or alternative cybersecurity systems. Malware may use the header information to evade detection.
Upon modifying the object 216 to include the first context information 218, the first cybersecurity system 202 transmits the modified object 216 to the second cybersecurity system 204. Thus, by receiving the modified object 216, the second cybersecurity system 204 receives the first context information 218.
2. Passive Sharing
As an alternative, or in addition, to active sharing, the second cybersecurity system 204 may obtain the first context information 218 via passive sharing techniques. In one embodiment, the first cybersecurity system 202 may passively share the first context information 218 with the second cybersecurity system 204 by uploading the first context information 218 to the cybersecurity intelligence hub 206 and transmitting the object 216, in an unmodified state, to the second cybersecurity system 204. The second cybersecurity system 204 may then retrieve the first context information 218 from the cybersecurity intelligence hub 206. In one specific embodiment, the second cybersecurity system 204 may compute a hash of the object 216 and query the cybersecurity intelligence hub 206 for context information that includes the hash of the object 216 or may be referenced by content within the hash of the object 216. Additionally, the query to the cybersecurity intelligence hub 206 may include an identifier of the first cybersecurity system 202. The context information 216 may be stored in the cybersecurity intelligence hub 206 with the identifier indicating that the context information 216 was uploaded by the first cybersecurity system 202. In some cases, the header is only modified to provide information serving as an index into entries in the cybersecurity intelligence hub 206 where the context information 216 can be located.
In yet some embodiments, the object 216 and the first context information 218 may be uploaded to the cybersecurity intelligence hub 206 and a communication message transmitted to the second cybersecurity system 204 indicating that the object 216 and the context information 218 are available on the cybersecurity intelligence hub 206 for retrieval by the second cybersecurity system 204.
Although not illustrated, the malware analysis data sharing system 200 may include, or have access to, a rule (or model) database configured to store rules (or models) used in the malware analyses applied by the cybersecurity systems within the malware analysis data sharing system 200, e.g., the cybersecurity systems 202, 204 and/or 210. Each of the cybersecurity systems 202, 204 and/or 210 may be communicatively coupled to the database. In particular, the context information shared between cybersecurity systems, e.g., the context information 218, may include one or more rules, models, or a representation thereof, implicated during the malware analysis corresponding to the context information. Thus, the cybersecurity system that receives the context information, e.g., the second cybersecurity system 204 receiving the first context information 218, may query the database to determine the rules (or models) represented by the representation of the implicated rules within the context information 128. Although FIG. 2 illustrates that the object 216 is received by the first cybersecurity system 202, the object 216 may be received by an endpoint, for example when the first cybersecurity system 202 is deployed out-of-band.
3. Origination Determination
Upon obtaining the context information 218, the second cybersecurity system 204 performs one or more operations to determine the origination of the object 216, e.g., the vector by which the object 216 entered the enterprise network, which, in this embodiment, is via the first cybersecurity system 202. Determination of the origination of the object 216 is advantageous for the second cybersecurity system 204 as the origination may be used to prioritize or adjust analysis of the object 216 performed by the second cybersecurity system 204.
A. Prioritization
A cybersecurity system may prioritize its analysis of an object by modifying its analysis to utilize an amended rule set, activate certain monitors of a cybersecurity system, and analyze the object according to the prioritized analysis based at least in part on received context information. In one embodiment, the prioritization of the analysis of an object may be determined, at least in part, by object type and origination according to a set of predetermined prioritization rules. The prioritization rules, which may be stored in a rules store, or stored with or communicatively coupled to the cybersecurity system, may set forth logic (e.g., a decision tree) that indicates the modified rule set to be used in analysis of the object 216 based on object type and origination (other factors may be considered as well, such as the verdict or score determined by the first cybersecurity system 202 and/or one or more rules implicated during the first malware analysis). In order to determine the origination of the object 216, the second cybersecurity system 204 parses the context information 218, which includes origination information of the object 216 and associated objects analyzed by the first cybersecurity system 202 along with a hash of each object. Upon determining the origination information, the second cybersecurity system 204 may prioritize the malware analysis of the object 216 as discussed above. Additionally, in some embodiments, the second cybersecurity system 204 may cause a query, which includes a hash of the object, to be transmitted to the cybersecurity intelligence hub 206, which may correlate the hash with stored hashes in order to rapidly reach a conclusion as to whether the object is known malware based on prior analyses and stored verdicts.
More specifically, the second cybersecurity system 204 may modify its monitoring and malware analysis of the object 216 based on the origination of the object 216. For example, assuming the object 216 includes an attached, embedded, or linked PDF object, the second cybersecurity system 204 may typically perform a malware analysis that includes applying a first predetermined rule set to detected behaviors, during or subsequent to, monitoring the processing of PDF objects; however, the origination of the object 216 may indicate that a second predetermined rule set (or second model) is to be used. For example, based on the origination of the object 216, a more stringent rule set (or model) may be applied during the monitoring and analysis of the object 216 than would otherwise be applied. Specific examples are provided below with respect to FIG. 4 .
Upon performing a modified monitoring and malware analysis, the second cybersecurity system 204 may perform a classification phase in which the results of the analysis are utilized by the network cybersecurity system to classify the network request (e.g., suspicious, malicious, benign, or indeterminate). The second cybersecurity system 204 may also prioritize its classification phase by modifying classification or correlation rules used, altering predetermined thresholds for determining maliciousness, altering weights associated with monitored activities, etc.
Further, upon performing a modified monitoring and malware analysis, the second cybersecurity system 204 generates second context information 222. Similar to the first context information 218, the second context information 222 may include origination information of each object analyzed by the second cybersecurity system 204, any verdict, any rules implicated during analysis, and a hash of each object analyzed. It should be noted that the second cybersecurity system 204 does not alter the origination information (e.g., the origination information is passed along from the first cybersecurity system 202 to the second cybersecurity system 204 and to the third cybersecurity system 210). The second context information 222 may also provide the verdict determined by the first cybersecurity system 202, one or more rules implicated by the malware analysis of the first cybersecurity system 202 as well as the verdict determined by the second cybersecurity system 204 and one or more rules implicated by the malware analysis of the second cybersecurity system 204.
As is illustrated in FIG. 2 , the second context information 222 may be provided to one or more of the cybersecurity intelligence hub 206, the management system 208 and/or a third cybersecurity system 210.
4. Report Generation
Upon completion of the second malware analysis, a reporting logic of the second cybersecurity system 204, i.e., the reporting logic 836 of FIG. 8 or the reporting logic 930 of FIG. 9 , may generate and issue (or cause the endpoint on which it is installed or cause a security information and event management system (“STEM”) or endpoint threat management system with which it communicates to issue) a report 220, which may include a visual representation of the context information 222. The report 220 may include the context information 222 including any verdict, and the report 220 may also be sent to a third cybersecurity system 210 (e.g., a network cybersecurity system as discussed in FIG. 4 ). The management system 208, which may include a threat management system, may provide (e.g., display) the report to a network or security administrator. Further, the second cybersecurity system 204 may additionally provide the report 220 to the cybersecurity intelligence hub 206. In addition, the second context information 222 may be provided separately or in addition to the report 220. As discussed as an illustrative example with respect to FIG. 4 below, the third cybersecurity system 210 may utilize the second context information 222 in its own malware analysis after obtaining the second context information 222 via active or passive sharing of an outbound network request 224 initiated during processing of the object 216 on the second cybersecurity system 204 and, optionally, an inbound response 226, when applicable. Additionally, based on its analysis, the third cybersecurity system 210 may generate context information 228 and/or a report 230 that may be provided to the cybersecurity intelligence hub 206 and/or the management system 208.
IV. General Operations
Referring to FIG. 3 , a flowchart illustrating an exemplary method of sharing context information generated during malware analysis between cybersecurity systems of a malware analysis data sharing system operating within an enterprise network is shown. Each block illustrated in FIG. 3 represents an operation performed in the method 300 of sharing context information generated during malware analysis between cybersecurity systems operating within an enterprise network. Herein, the method 300 begins when a first cybersecurity system receives and analyzes an object to determine whether the object is associated with malware or a cyberattack (block 302). Specifically, the malware analysis performed by the first cybersecurity system results in the generation of context information. Optionally, the first cybersecurity system may transmit at least the context information to a cybersecurity intelligence hub, or a management system (block 303).
Upon completing its malware analysis, the first cybersecurity system provides at least the context information to a second cybersecurity system (block 304). As discussed above, providing the context information may be via active sharing by modifying the object under analysis to include the context information. However, in other embodiments, the first cybersecurity system need not provide the context information via active sharing but may instead provide the context information to a cybersecurity intelligence hub for retrieval by the second cybersecurity system.
Referring still to FIG. 3 , upon obtaining the object and the context information generated by the first cybersecurity system, the second cybersecurity system analyzes the object using a second malware analysis differing from that of the first cybersecurity system to determine whether the object is associated with malware or a cyberattack (block 306). Importantly, the second malware analysis is performed based at least in part on the context information generated by the first cybersecurity system. Additionally, the second malware analysis may be different than the first malware analysis.
Following the second malware analysis, the second cybersecurity system generates second context information and, optionally, issues a report based on the second malware analysis, which may include the second context information (block 308). The generation of the report is based indirectly, and may optionally be based directly, on the first context information generated by the first cybersecurity system as well as the second context information. Optionally, the second cybersecurity system may transmit at least the second context information to the cybersecurity intelligence hub, or to the management system (block 310).
IV. Exemplary System Architecture
Referring now to FIG. 4 , a second, detailed exemplary block diagram of an embodiment of data sharing within a malware analysis data sharing system 400 including a management system is shown. The malware analysis data sharing system 400 includes an email cybersecurity system 402, a second cybersecurity system 404, i.e., an endpoint agent (“agent”), operating on an endpoint 403 1 of the endpoints 403 1-403 i (wherein i≥1), a management system (MS) 408 and a network cybersecurity system 410. Additionally, one or more of the components of the malware analysis data sharing system 400 may be communicatively coupled to one or more networks, e.g., a cybersecurity intelligence hub 406, the internet 414. For purposes of clarity, FIG. 4 illustrates the network cybersecurity system 410 is communicatively coupled to the internet 414; however, it should be understood that the email cybersecurity system 402 and the endpoint 403 1 may also be communicatively coupled thereto.
In one embodiment, the email cybersecurity system 402 may include logic that analyzes electronic messages, e.g., emails, transmitted to and from the malware analysis data sharing system 400 to identify malicious content within emails. Analysis of an email may include a two-phase approach for detecting malware, i.e., a static phase and a dynamic phase. During the static phases, the email is inspected for protocol anomalies and other characteristics indicative of a cyberattack. During the dynamic phase, a virtual machine deployed within the cybersecurity system executes objects obtained from the network traffic being analyzed and monitors the behaviors of each object during execution.
As mentioned above, the endpoint 404 may include a cybersecurity system, namely an agent 404 operating as a daemon process on the endpoint 403 1. The agent 404 monitors, captures, and, in some embodiments, analyzes the processing performed on the endpoint 403 1 in real-time to identify indicators of compromise of the endpoint 403 1 (that is, processing activity potentially indicative of a cyberattack).
In one embodiment, the endpoint 403 1 on which the agent 404 is installed communicates over a network, which may be in common with other endpoints 403 2-403 1, with a STEM or other threat management system. The threat management system 407, may be included in the management system 408, and may be one dedicated to managing threats at endpoints 403 1-403 i, depending on the embodiment. The threat management system 407 in the endpoint-dedicated embodiment serves to aggregate the events, context information and, if made available, any verdicts reached by the supported endpoints 403 1-403 i, perform cyberattack detection (or validation, depending on whether the agents installed on each endpoint include cyberattack detection), and correlation across supported endpoints and classification, based on the provided information, issue alerts via a user interface, and, in some embodiments, initiate remedial action on the affected endpoints or issue recommended remedial action.
Further, the network cybersecurity system 410 may operate to intercept outbound network traffic including network requests to download webpages from a remote server over a public network (e.g., the internet), and analyze the intercepted traffic to determine whether the traffic is likely associated with malware, as well as in-bound responses to the requests including any of the webpages. Embodiments of the network cybersecurity system 410 may utilize a two-phase approach as discussed above. In particular, the email cybersecurity system 402, the agent 404 (operating on an endpoint) and the network cybersecurity system 410 may each apply different predetermined rule sets to their analyses. For example, the email cybersecurity system 402 may apply email-centric rules, such as rules directed to the analysis of attachments, hot-linked content, and embedded objects such as URLs for example, which may be more aggressive, e.g., stringent, in providing higher scores of maliciousness for URLs in or attachments to emails than other cybersecurity systems, e.g., network cybersecurity systems, due to the high number of malware attacks stemming from emails. Differently, network cybersecurity systems may apply rules associated with webpages as well as attachments and embedded or hyperlinked files such as WORD® documents or PDFs and hot-linked content. Further, agents may apply rules related to monitoring of typical applications running on the endpoint as well as executables including known malware to detect indicators of compromise, e.g., processing activities.
As is seen in the illustration of FIG. 4 , the email cybersecurity system 402 receives an object 416, e.g., an email object. Performing malware analysis on emails is a high priority for enterprise networks as malicious network content is often distributed by electronic messages, including email, using such protocols as POP (Post Office Protocol), SMTP (Simple Message Transfer Protocol), IMAP (Internet Message Access Protocol), and various forms of web-based email. Malicious content may be directly attached to the email (for example as a document capable of exploiting a document reading application, such as a malicious Microsoft® Excel® document). Alternatively, emails may contain URL links to malicious content hosted on web servers elsewhere on the network, that when activated, may result in the download of infectious content.
Upon receipt of the email 416, the email cybersecurity system 402 performs a malware analysis on the email 416. In addition to performing a first malware analysis, the email cybersecurity system 402 generates email context information 418. The email context information 418 may include, but is not limited or restricted to, the type of malware analysis performed, a verdict determined as a result of the first malware analysis, one or more rules implicated during the first malware analysis, origination information, a hash of the email 416 and any additional objects attached to or embedded in the email 416, as well as rules implicated in analysis of the additional objects, and a verdict of the analysis of each of the additional objects.
The email cybersecurity system 402 determines a verdict as a result of the first malware analysis (suspicious, malicious, benign or indeterminate) or a score reflecting maliciousness. When the first malware analysis results in a verdict of malicious or a score above a predetermined threshold, the email cybersecurity system 402 may generate and issue a report (not shown) to the management system 408 and one or more other components of, or communicatively coupled to, the malware analysis data sharing system 400. The report may include a visual representation of the email context information 418.
When the first malware analysis results in a verdict other than malicious (suspicious, benign or indeterminate) or a score less than the predetermined threshold, the email cybersecurity system 402 provides the email context information 418 to the endpoint 403 1 through either active sharing and/or passive sharing as discussed above. Additionally, the email cybersecurity system 402 may optionally provide the context information 408 to the cybersecurity intelligence hub 406 and/or the management system 408 for correlation with context information or other data received from cybersecurity systems. In some embodiments, the management system 408 may relay the email 416 and the context information 418 to the endpoint 403 1.
In one embodiment as illustrated in FIG. 4 , the email cybersecurity system 402 actively shares the email context information 418 with the endpoint 403 1 through modification of the email 416 by the email cybersecurity system 402. For example, the email cybersecurity system 402 may add a X-header to the email 416 such that the X-header includes at least the email context information 418. The email context information may be a representation of an encoded plurality of bits utilized by the agent 404 to determine the content of the context information 418. Upon modifying the email 416 to include the email context information 418, the email cybersecurity system 402 transmits the modified email 416 to endpoint 403 1. Thus, by receiving the modified email 416, the endpoint 403 1 receives the email context information 418.
Alternatively, or in addition to active sharing, the endpoint 403 1 may obtain the email context information 418 via passive sharing techniques. For example, the email cybersecurity system 402 may passively share the email context information 418 with the endpoint 403 1 by uploading the email context information 418 to the cybersecurity intelligence hub 406 and transmitting the email 416, in an unmodified state, to the endpoint 403 1. The agent 404 may then cause the endpoint 403 1 to retrieve the email context information 418 from the cybersecurity intelligence hub 406. As discussed above, in one specific embodiment, the agent 404 may compute a hash of the email 416 and query the cybersecurity intelligence hub 406 for context information associated with the hash of the email 416. Additionally, the query to the cybersecurity intelligence hub 406 may include an identifier of the email cybersecurity system 402, which may be used by the cybersecurity intelligence hub 406 to provide the applicable context information as referenced above.
Upon obtaining the context information 418, the agent 404 performs one or more operations to determine the origination of the email 416, which may include parsing the context information 418 for an indicator of the origination (e.g., email, other network traffic, removable storage via an endpoint, etc.). As stated above, in the embodiment illustrated in FIG. 4 , the origination is shown as being by email via the email cybersecurity system 402. As mentioned above, the logic components of the agent 404 that cause performance of operations associated with the monitoring and analyzing of activities on an endpoint are illustrated in FIG. 9 .
Specifically, due to the vast number of processes and objects for a cybersecurity system to analyze, in-depth analysis of every process and object is not typically viable as discussed above. In the embodiment illustrated in FIG. 4 , the agent 404, which monitors and analyzes the processing on an endpoint in real-time, improves its malware analysis by prioritizing the analysis of objects and processes operating on the endpoint by modifying the analysis of a particular object based on, at least in part, the context information associated with the object. For clarity, on an endpoint, the objects and processes are run under user control, so the agent does not prioritize the processing of either, but prioritizes what the agent monitors and the types of analysis of observed indicators of compromise (i.e., tailors its monitoring, analysis and/or classification of the object). By tailoring the monitoring, analysis and/or object classification, the malware analysis may be improved by reducing occurrences of false positives and false negatives while avoiding degradation in performance of the endpoint.
Determining the origination of the email 416 may enable the agent 404 to prioritize the analysis of the processes and objects associated with the email 416. For example, processes initiated by an object associated with an email (e.g., an attachment) may receive a more scrutinized monitoring and result in, based on predetermined rules or a configuration of the agent 404 and responsive to the origination and other context information, a “suspicious” verdict for the email, a higher level of suspiciousness than processes initiated by other objects, or even a malicious verdict. Therefore, by determining which objects and processes originated via email (e.g., those associated with the email 416), the agent 404 is able to prioritize, e.g., tailor, the monitoring of processing activities of these objects and processes. As discussed above, the agent 404 may determine the origination from the context information 418.
As discussed above, prioritizing the analysis and/or monitoring of objects and processes based on origination information may result in a modification of one or more rule sets used in a malware analysis of the email 416, associated objects and corresponding processes to tailor the malware analysis thereof based on the origination. For example, assuming the email 416 includes a PDF object as an attachment, the agent 404 may typically perform a malware analysis that includes applying a first predetermined rule set (or model) to detected behaviors while monitoring the processing of PDF objects; however, the origination of the PDF attachment being via email may indicate that a second predetermined rule set is to be used, e.g., a more stringent rule set may be applied during the monitoring of the PDF attachment than would otherwise be applied.
Upon performing a modified malware analysis, the agent 404 generates second context information 420. Similar to the email context information 418, the second context information may include origination information of each object analyzed by the agent 404 along with a hash of each object analyzed as well as other information as described above. The second context information 420 may also provide the verdict determined by the agent 404, one or more rules implicated by the malware analysis of the agent 404 as well as the verdict determined by the email cybersecurity system 402 and one or more rules implicated by the malware analysis of the email cybersecurity system 402.
As is illustrated in FIG. 4 , the second context information 420 may be provided to one or more of the cybersecurity intelligence hub 406, the management system 408, the network cybersecurity system 410. Optionally, the second context information 420 may be accessible by an administrator/cybersecurity specialist 412 (via the management system 408, and in particular, the user interface (UI) logic 409). In the embodiment illustrated in FIG. 4 within the malware analysis data sharing system 400, the malware analysis of the email 416, and associated objects and processes, continues as an outbound network request 422 is generated, i.e., as a result of processing the email 416 and associated objects. In one example, the outbound network request 422 may seek to download a webpage from a remote server, e.g., over a public network such as the internet. The remote server may be legitimate or a malicious server.
In response to the generation of the network request 422, in one embodiment wherein active sharing is implemented, a header logic of the agent 404, i.e., the header logic 922 as illustrated in FIG. 9 , modifies the network request 422 to include at least the second context information 420 (e.g., encoded bit representation of certain contextual data) prior to transmission of the network request 422 to the network cybersecurity system 410. Similar to the modification of the email 416 by the email cybersecurity system 402, the agent 404 may modify the network request 422 by modifying a HTTP header or, more generally, adding information to the network request 422, for example, by adding an additional network header, that includes at least the representation of the context information 420. Following the modification of the network request 422, the modified network request 422 is transmitted to the network cybersecurity system 410. As an alternative to actively sharing the context information 420 via modification of the network request 422, the agent 404 may passively share the context information 420 by uploading, via the endpoint 403 1, the context information 420 to the cybersecurity intelligence hub 406 as discussed above.
Upon receiving the modified network request 422, the network cybersecurity system 410 may determine the origination of the network request 422 based on the context information 420. The determination of the origination of the network request 422 may be done in a similar manner as discussed above with respect to the determination of the origination of the email 416 by the agent 404. For example, the network cybersecurity system 410 may parse the context information 420 included in the network request 422 for the origination information included therein. In this embodiment, the context information 420 may indicate that the network request 422 was generated as a result of processing of either the email 416, or an associated object, that entered the enterprise network via email. Thus, the network cybersecurity system 410 may prioritize the analysis, e.g., a third malware analysis, of the network request 422 accordingly, such as applying a modified rule set during analysis. As further illustrated in FIG. 4 , the network cybersecurity system 410 may query the cybersecurity intelligence hub 406 for the email context information 418 for additional context information of prior analysis not included in the second context information 420.
Additionally, in some embodiments, the inbound response may include identifying information enabling the network cybersecurity system 410 to pair the inbound response with the outbound network request 422, and, thus utilize at least the context information 420 in analyzing the inbound response. Subsequent to, or concurrent with, the third malware analysis, as well as the analysis of the inbound response, the network cybersecurity system 410 may generate third context information 424 based on the third malware analysis and the analysis of the inbound response, if applicable.
Upon completion of the third malware analysis, the network cybersecurity system 410 may generate and issue a report 426 to one or more of the endpoint 403 1. Additionally, the network cybersecurity system 410 may provide the report 426 and/or the third context information 424 to the cybersecurity intelligence hub 406 and/or the management system 408 (which may provide the report 426 and the third context information 424 to the administrator/cybersecurity specialist 412). It should also be noted that, although not shown, reports may be generated by the email cybersecurity system 402 and/or the agent 404. Such reports may be uploaded to the cybersecurity intelligence hub 406 and/or the management system 408 for storage.
When the third malware analysis results in a verdict indicating the network request 420 is associated with malware or a cyberattack, the network cybersecurity system 410 may facilitate a remediation process. In one embodiment, the network cybersecurity system 410 may include a retroactive detection logic discussed above. Alternatively, the network cybersecurity system 410 may provide the third context information 424 to the management system 408 and/or directly or indirectly to the agent 404, either of which may include a retroactive detection logic and facilitates remediation of any affected devices by tracing the path through which the email 416 or its associated objects traveled within the enterprise network and causing other endpoints along that path (and other endpoints to whom the email may have been forwarded) to block the opening and processing of the email and attachments thereto (if any) and further forwarding of the email by an email application. Operations of the retroactive detection logic are discussed above.
Referring now to FIG. 5 , a flowchart illustrating a method of generating context information by an email cybersecurity system and actively sharing the context information to a second cybersecurity system within an enterprise network is shown. Each block illustrated in FIG. 5 represents an operation performed in the method 500 of generating context information by an email cybersecurity system and actively sharing the context information. The method 500 begins when an email cybersecurity system receives an email object, e.g., an email communication (block 502). Additionally, the email object may include one or more attachments or embedded URLs. For the purpose of this example, the email will be discussed as having one attachment.
The email cybersecurity system analyzes the email object and the attached object, e.g., via static and/or dynamic analyses. Prior to, following, or concurrent with, the analyses, the email cybersecurity system generates context information including at least a hash of the email object, a hash of the attachment and embedded URLs, and a verdict of the analyses (block 504). However, as discussed above, the context information may include additional information. Following the generation of the context information, the email cybersecurity system modifies the email to include the context information (block 506). In one embodiment, the email cybersecurity system modifies the header of the email object by adding a X-header to the email header with the X-header containing the context information.
As an optional operation performed in the method 500, the email cybersecurity system may transmit the email and/or the context information to a management system and/or a cybersecurity intelligence hub (block 508). The transmission of the context information to the cybersecurity intelligence hub enables the passive sharing of the context information between the email cybersecurity system and the other cybersecurity systems within the enterprise network.
Upon modifying the email object to include the context information, the email cybersecurity system transmits the modified email to the endpoint on which an agent cybersecurity system is installed (block 510). As discussed above, the agent cybersecurity system, in response to a particular activity such as an attempt to open the email, performs a malware analysis based at least in part on the context information provided by the email cybersecurity system.
Referring now to FIG. 6 , with reference to FIG. 5 , a flowchart illustrating a method of determining origination by an agent according to the context information of FIG. 5 and performing a malware analysis in light thereof is shown. Each block illustrated in FIG. 6 represents an operation performed in the method 600 of determining origination by an agent according to received context information and performing a malware analysis in light thereof. The method 600 begins when an endpoint having an agent installed thereon receives the email object from the email cybersecurity system described in FIG. 5 having a modified header that includes context information generated by the email cybersecurity system (block 602).
In response to receipt of the email object having a modified header, the agent obtains the context information from the modified header and parses the context information to determine the origination of the email object (block 604). Additionally, as discussed above with respect to FIG. 4 , the email object may include one or more attachments, that may each include embedded objects. The agent determines the origination of each object based on the context information. As a vast number of processes and objects operate on an endpoint concurrently at any given time, the origination of each object is important in prioritizing the monitoring or analysis of objects or processes.
Following the determination of the origination of each object included within the email object (e.g., such as an attachment or an embedded object), the agent prioritizes the monitoring and analysis, and optionally, the classification phase, of the object based at least in part on the origination of the object as discussed above (block 606). Based on the prioritization monitoring and analysis, the agent monitors activities of the object (and associated objects) for indicators of compromise (IoCs) that may indicate an association with malware or a cyberattack (block 608). In addition, the agent generates second context information based on the monitoring and analysis performed by the agent. In particular, the monitoring and analysis may include detection of certain behaviors or operations, that based on the application of one or more rule sets, may indicate that a behavior or operation has a high likelihood of being an IoC. Optionally, the endpoint may transmit at least the second context information to the cybersecurity hub and/or the management system (block 609).
In some instances during processing, an object or process may initiate a network request, e.g., a request to access a website or retrieve social media content via an application installed on the endpoint. Upon the initiation of a network request associated with the email object (e.g., or any object included therein) such as activation of a URL, the agent modifies the header of the network request to include at least a representation of the context information generated by the agent (block 610). In one embodiment, modification of the header of the network request may compromise including an additional network header, for example, as described above. Following modification of the header of the network request, the endpoint transmits the network request to a network cybersecurity system (block 612).
Referring now to FIG. 7 , with reference to FIGS. 5-6 , a flowchart illustrating a method of determining origination by a network cybersecurity system according to the context information of FIG. 6 and performing a malware analysis in light thereof is shown. Each block illustrated in FIG. 7 represents an operation performed in the method 700 of determining origination by a network cybersecurity system according to received context information and performing a malware analysis in light thereof. The method 700 begins when a network cybersecurity system receives a network request from the endpoint described in FIG. 6 , the network request having a modified header that includes context information generated by the agent (block 702).
Upon receiving the network request, the network cybersecurity system determines the origination of the network request based on the context information included in the modified header (block 704). With respect to network requests, context information may include information tracing the path of the network request through the malware analysis data sharing system as well as the origination of the initiating object. As one example, the context information of a network request may include an indication that the processing of an attachment of an email resulted in the initiation of the network request such that the origination is via email.
Based at least in part on the context information generated by the agent, the network cybersecurity system prioritizes the analysis of the network request, which may be performed by the scheduler 828 as illustrated in FIG. 8 . The network cybersecurity system prioritizes an analysis of the network request, which may be based on the origination of the network request (e.g., origination may indicate a likelihood of association with malware above a suspiciousness threshold but below a maliciousness threshold) according to a set of predetermined prioritization rules and/or a configuration rules (e.g., containing threshold parameter values) of the network cybersecurity system (block 706).
Upon prioritizing the analysis of the network request, the network cybersecurity system analyzes the network request (or a copy thereof, depending on the deployment) from the endpoint according to the prioritized, e.g., tailored, analysis (block 708). When the network request is not found to be malicious (or in some situations, even when found to be malicious, in order to examine a response), the network cybersecurity system transmits the outbound network request to a public network, i.e., the internet (optional block 710). The network cybersecurity system may receive an inbound response, associate the inbound response with the outbound network request and analyze the inbound response based at least in part on the context information corresponding to the network request and generated by the agent (optional block 712). For example, in some embodiments, the inbound response may include identifying information enabling the network cybersecurity system to pair the inbound response with the outbound network request, and, thus utilize at least the context information corresponding to the network request in analyzing the inbound response.
Following the analysis of the network request (and optionally of the inbound response when applicable), the network cybersecurity system performs a correlation or classification phase in which at least the results of the analysis are utilized by the network cybersecurity system to classify the network request (e.g., suspicious, malicious, benign, or indeterminate) (block 714). In some embodiments, context information from prior analyses of the object that initiated the network request, including any classification verdicts, may be utilized in the classification phase of the network cybersecurity system. Upon completion of the correlation or classification phase, the network cybersecurity system generates third context information and issues a report based on the results of the analysis and the correlation or classification phase (block 716). Additionally, optionally, the network cybersecurity system may transmit at least the third context information to the cybersecurity hub and/or the management system (718). It should be understood that each cybersecurity system discussed in the disclosure may perform a correlation or classification phase upon completing a malware analysis.
Referring now to FIG. 8 , an exemplary embodiment of a logical representation of an appliance cybersecurity system is shown. The appliance cybersecurity system 800, in an embodiment, may be a network device that includes a housing, which may be made entirely or partially of a hardened material (e.g., hardened plastic, metal, glass, composite or any combination thereof) that protects the circuitry within the housing, namely one or more processors 802 that are coupled to a network interface 804 and an administration interface 806, for receiving updates, for example. The network interface(s) 804, in combination with a network interface logic 838, enables communications with external network devices and/or other network appliances to receive objects, such as object 842 as well as other data, e.g., context information corresponding to object 842 when not included in a modified header. According to one embodiment of the disclosure, the network interface 804 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, the interwork interface 804 may be implemented with one or more radio units for supporting wireless communications with other electronic devices. The network interface logic 838 may include logic for performing operations of receiving and transmitting one or more objects via the network interface 804, such as the object 842.
The cybersecurity system appliance 800 may also include a persistent storage 808 that is communicatively coupled to the processors 802 and stores one or more executable software components configured to monitor behaviors and characteristics of the object 842. Specifically, the persistent storage 808 may include the following logic as software modules: a header logic 820, a (pre-and-post) traffic analysis logic 812, a rules engine 814, a header encoder/decoder logic 816, a rules store 818, a detection engine 820 including a static analysis engine 822, a dynamic analysis engine 824 and a suspiciousness determination logic 826, a scheduler 828 including prioritization logic 830 and a detection engine configurator 832, a classification logic 834, a reporting logic 836, a network interface logic 838 and a retroactive detection logic 840.
Numerous operations of the software modules, upon execution by the processor(s) 802, are described above and below. However, in some detail, the traffic analysis logic 812 is configured to perform pre- and post-analysis of communications, which may include parsing the communications (incoming or outgoing) and extracting the headers. For incoming communications, the traffic analysis logic 812 extracts the header, e.g., of object 842, and transmit the header to the header logic 810 which parses the header for the context information (the header logic 810 then passes the context information to the scheduler 828). For outgoing communications, e.g., a network request (not shown) detected during processing of the object 842 in the dynamic analysis engine 824, the traffic analysis logic 812 receives notice of such network request from the detection engine 820 and provides information to the header logic 810 to ensure that context information is added to the header of the network request. Additionally, a header encoder/decoder logic 816 is configured to (i) decode a header including context information upon receipt of an object, and (ii) encode a header with context information prior to transmission of an object. More specifically, the header encoder/decoder logic 816 receives an encoded header from the header logic 810 and decodes the header, e.g., decodes a X-header of a received email to enable the header logic 810 to parse the header for context information. In addition, the header encoder/decoder logic 816 receives a header of an object that has been modified by the header logic 810 and encodes the header prior to transmission of the object.
The static analysis engine 822 is configured to perform a static phase, during which network traffic is examined (without execution), for example, for signature-based matches against a library of known malware, and/or for communication-based protocol anomalies or other characteristics upon which a cybersecurity classification may be based. The dynamic analysis engine 824 is configured to perform a dynamic phase, during which a virtual machine deployed within the cybersecurity system executes objects obtained from the network traffic and monitors the behaviors of each object during execution where information regarding each monitored behavior may also be referred to as an “event” and may be used in cybersecurity classification of the object.
The suspiciousness determination logic 826 is configured as an intermediary logic engine between the static analysis engine 822 and the dynamic analysis engine 824 that modifies the scoring and weighting used by the static analysis engine 822 in determining suspiciousness or maliciousness of the object 824. The suspiciousness determination logic 826 may perform a series of operations. First, the suspiciousness determination logic 826 assigns one or more weights or scores to each of the observed characteristics of the static analysis in accordance with a set of rules (e.g., a default set of static analysis rules). Second, the suspiciousness determination logic 826 compares a combined score or weight of the observed characteristics against a first threshold, e.g., established by a second rule set, e.g., different than the static analysis rules. As a third operation, when the combined score is greater than or equal to the first threshold, the suspiciousness determination logic 826 passes the object 842 to the dynamic analysis engine 824. However, is some embodiments, the object 842 may be passed to the dynamic analysis engine 824 regardless of whether the combined score is greater than or equal to the first threshold. As a fourth operation, upon receiving a score or weight from the dynamic analysis engine 824, the suspiciousness determination logic 826 combines the dynamic analysis score or weight with the scores or weights of the static analysis and compares the total combined score or weight against a second threshold, which may be the same as or different than the first threshold before providing the results to the classification logic when the second threshold is met or exceeded. In some embodiments, the suspiciousness determination logic 826 may implement additional iterations of either the static analysis and/or the dynamic analysis, with the same or different rules utilized therein.
Further, the dynamic analysis engine 824 may modify the first and second thresholds based on the context information corresponding to the object 842. In addition, the dynamic analysis engine 824 may apply additional weighting to the weights or scores of either the static analysis and/or the dynamic analysis results. For example, the suspiciousness determination logic 826 receives the context information (or alternatively instructions from the scheduler 828) and determines a modification of the scoring and weighting used by the static analysis engine 822. Thus, the context information may influence the verdict of the static analysis of the object 842, which may determine whether the object 842 is processed by the dynamic analysis engine 824 (i.e., the scoring and weighting may be modified based on the origination of the object 842).
The prioritization logic 830, included within the scheduler 828, may be configured to utilize received context information to modify (i) the rule sets utilized by the detection engine 820 in the analysis of the object 842, (ii) the correlation rules used by the classification logic 834, (iii) the thresholds used by the classification logic 834, (iv) a time duration for processing the object 842 with the dynamic analysis engine 824, and/or (v) the scoring and weighting used by the classification logic 834. In addition, the detection engine configurator 832 may coordinate performance of a deeper static analysis and/or an augmented static analysis via a remote cybersecurity system based on the context information (and the results of the static analysis in some embodiments).
The detection engine configurator 832, which is present in network cybersecurity systems, may be configured to (i) schedule when the object 842 is to be processed and analyzed in light of the context information, (ii) determine that the object 842 will be processed with a specific guest image within a virtual machine due to the context information indicating one or more particular applications should be running in the dynamic analysis environment, and/or (iii) determine the object 842 will be monitored according to a specific instrumentation package (i.e., a set of process monitors) based on the context information. Of course, it is contemplated that some or all of this logic may be implemented as hardware, and if so, such logic could be implemented separately from each other.
Referring now to FIG. 9 , an exemplary embodiment of a logical representation of an endpoint including an agent cybersecurity system is shown. The endpoint 900 has physical hardware including hardware processors 902, network interface(s) 904, a persistent storage 912, a system interconnect 910, and optionally, a user interface 908. The persistent storage 912 may contain software comprising an operating system (OS) 914, one or more applications 916 and an agent 918. The physical hardware (e.g. hardware processors 902, network interfaces(s) 904, persistent storage 912) may be connected for communication by the system interconnect 910, such as a bus. Generally speaking, the endpoint 900 is a network-connected electronic device, such as a general purpose personal computer, laptop, smart phone, tablet or specialized device such as point of sale (POS) terminal and server.
The hardware processor 902 is a multipurpose, programmable device that accepts digital data as input, processes the input data according to instructions stored in its memory, and provides results as output. One example of the hardware processor 902 is an Intel® microprocessor with its associated instruction set architecture, which is used as a central processing unit (CPU) of the endpoint 900. Alternatively, the hardware processor 902 may include another type of CPU, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or the like.
The network device(s) 906 may include various input/output (I/O) or peripheral devices, such as a storage device, for example. One type of storage device may include a solid state drive (SSD) embodied as a flash storage device or other non-volatile, solid-state electronic device (e.g., drives based on storage class memory components). Another type of storage device may include a hard disk drive (HDD). Each network device 906 may include one or more network ports containing the mechanical, electrical and/or signaling circuitry needed to connect the endpoint 900 to a private network to thereby facilitate communications over a system network. To that end, the network interface(s) 904 may be configured to transmit and/or receive messages using a variety of communication protocols including, inter alia, TCP/IP and HTTPS.
The persistent storage 912 may include a plurality of locations that are addressable by the hardware processor 902 and the network interface(s) 904 for storing software (including software applications) and data structures associated with such software. The hardware processor 902 is adapted to manipulate the stored data structures as well as execute the stored software, which includes an operating system (OS) 914, one or more applications 916 and the agent 918.
The operating system (OS) 914 is software that manages hardware, software resources, and provides common services for computer programs, such as applications 916. For hardware functions such as input and output (I/O) and memory allocation, the operating system 914 acts as an intermediary between applications 916 and the computer hardware, although the application code is usually executed directly by the hardware and frequently makes system calls to an OS function or be interrupted by it.
The agent 918 is comprised of one or more executable software components configured to monitor activities of the applications 916 and/or operating system 914. Specifically, the agent 918 may be comprised of the following logic as software modules: one or more process monitors 902, a header logic 922, interprocess interface logic 924, header encoder/decoder logic 926, classification logic 928, reporting logic 930, detection engine 932, detection engine configurator 934, rules store 936, and retroactive detection logic 938.
Numerous operations of the software modules, upon execution by the processor(s) 902, are described above. However, in some detail, the one or more process monitors 902 are configured to monitor the processing activity that is occurring on the endpoint 900. In particular, rules, stored in the rules stored 936 are used to assist the agent 918 in activities that are to be monitored, as well as in detection and classification of the activities. The rules store 936 is also configured to store prioritization rules, classification rules, etc., as discussed above. The rules store 936 may be, periodically or aperiodically, updated to reflect additional rule sets, remove obsolete rules, etc. In some embodiments, the agent 918 may perform classification via the classification logic 928, e.g., using correlation rules stored in the rules store 936. In other embodiments, the agent 918 may monitor activities and log certain activities to be reported to a separate network device such as a threat management system or a SIEMs for correlation and classification.
The header logic 922 is configured to parse a header of a received object (i.e., the object 905), such as an email or a network request. As discussed above, in the case of an email object, the header logic 922 parses the email header for a X-header including context information. In addition, as discussed above, upon generating context information, the header logic 922 may modify the header of the object 905 to include the generated context information prior to the endpoint 900 transmitting the object 905 to another cybersecurity system and/or another endpoint. Additionally, when a second object, e.g., a network request associated with the object 905, is to be transmitted to a network cybersecurity system, the header logic 922 modifies the header of the network request to include context information generated according to the analysis of the object 905 by the agent 918. In the case of a network request, the header logic 922 modifies a HTTP header and/or adds a network header in order to include the context information.
The interprocess interface logic 924 is configured to enable interaction and cooperation between the agent 918 and processes that are running on the endpoint 900 to enable the agent 918 to receive information when events occur (e.g., when the endpoint 900 receives an email). The header encoder/decoder logic 926 is configured to (i) decode a header including context information upon receipt of an object, and (ii) encode a header with context information prior to transmission of an object. More specifically, the header encoder/decoder logic 926 receives an encoded header from the header logic 922 and decodes the header, e.g., decodes a X-header of a received email to enable the header logic 922 to parse the header for context information. In addition, the header encoder/decoder logic 926 receives a header of an object that has been modified by the header logic 922 and encodes the header prior to transmission of the object.
The detection engine 932, in the agent 900, activates process monitors for the analysis of the object 905 and detects specific activities that may indicate a likelihood of an association with a cyberattack. The classification logic 928 is configured to perform a classification phase, using correlation rules, in which the results of the analysis by the agent 918 are utilized to classify the object 905 (e.g., suspicious, malicious, benign, or indeterminate).
The detection engine configurator 934 is configured to determine one or more rule sets to be employed by the detection engine 932 and the classification logic 928. As discussed above, the prioritization of an agent's monitoring and analysis may result in a tailoring of the typical rule sets used by the agent based on the context information corresponding to the object 905 by the endpoint 900. The reporting logic 930 may be configured to generate and issue (or cause the endpoint 900, STEM or an endpoint threat management system with which it communicates to issue) a report.
The retroactive detection logic 938 may be optionally included in the agent 918 or may alternatively be included in a threat management system. The retroactive detection logic 938 is configured to facilitate remediation of an affected device (e.g., endpoint 900). The retroactive detection logic 938 may utilize context information to trace the path through which a malicious object traveled within the enterprise network. By determining the path through which the malicious object traveled, the retroactive detection logic 938 can initiate remediation efforts on any affected network device (e.g., quarantine the device on the network and/or the object within the device). Of course, it is contemplated that some or all of this logic may be implemented as hardware, and if so, such logic could be implemented separately from each other.
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. For example, in lieu of the use of rules-based cybersecurity systems, as described above, model based cybersecurity systems may be deployed in which models are used to conduct the malware analysis in lieu of a rule set as identified throughout portions of the specification. While rules are applied in series to incoming data to produce a result, for models, the entire model is applied to incoming data and a result is produced therefrom. This disclosure discusses the use of rules for purposes of clarity; however, the disclosure is not intended to be so limiting as any analysis control scheme may be utilized.

Claims (19)

What is claimed is:
1. A computerized method for analyzing an object within an enterprise network, the method comprising:
obtaining, by a cybersecurity system, an object and first context information generated during a first malware analysis of the object conducted prior to obtaining the object; and
performing, by the cybersecurity system, a second malware analysis of the object to determine a verdict indicating maliciousness of the object, wherein a scrutiny of the second malware analysis is adjusted based at least in part by (i) activating additional or different monitors, (ii) adjusting thresholds for determining maliciousness, or (iii) applying a modified rule set during the second malware analysis based on the first context information,
wherein the second malware analysis is based at least in part on an origination of the object, the origination being a vector by which the object entered the enterprise network, and wherein the origination is determined by parsing the first context information for origination information associated with the origination of the object.
2. The computerized method of claim 1, wherein prior to performing the second malware analysis, modifying a set of predetermined rules associated with the second malware analysis based at least in part on the first context information to produce the modified rule set.
3. The computerized method of claim 1, wherein prior to performing the second malware analysis, activating the additional or different monitors by at least activating a particular set of process monitors based at least in part on the first context information.
4. The computerized method of claim 1 further comprising:
performing the first malware analysis of the object by a first cybersecurity system being a first network device, wherein the first malware analysis produces the first context information that includes at least the origination information of the object corresponding to a manner by which the object entered the enterprise network and additional information detailing performance of the first malware analysis.
5. The computerized method of claim 1, wherein the first context information further includes a result of the first malware analysis, a hash of the object and one or more rules implicated during the first malware analysis.
6. The computerized method of claim 1, wherein the object is a modified object including the first context information.
7. The computerized method of claim 6, wherein the modified object is an email including a modified header of the email including the first context information, the modified object being provided to an agent on an endpoint conducting the second malware analysis of the modified object.
8. The computerized method of claim 4 further comprising:
uploading, by the first cybersecurity system, the first context information to a storage device communicatively coupled to the enterprise network; and
obtaining, by the second cybersecurity system, the first context information by causing a query to be transmitted to the storage device.
9. The computerized method of claim 1, wherein the vector corresponds to information identifying a manner in which the object entered into the enterprise network.
10. The computerized method of claim 1, wherein the performing of the second malware analysis is conducted based, at least in part, on an origination and object type of the object.
11. The computerized method of claim 9, wherein the vector includes a mode of entry into the enterprise network including (i) email traffic, (ii) network traffic, or (iii) a removable storage device.
12. A non-transitory storage medium including software that, when executed, by a processor performs operations including analyzing an object within an enterprise network, comprising:
obtaining, by the processor, an object and first context information generated during a first malware analysis of the object conducted prior to obtaining the object; and
performing, by the processor, a second malware analysis of the object to determine a verdict indicating maliciousness of the object, wherein a scrutiny of the second malware analysis is adjusted based at least in part by (i) activating additional or different monitors, (ii) adjusting thresholds for determining maliciousness, or (iii) applying a modified rule set during the second malware analysis based on the first context information,
wherein the second malware analysis is based at least in part on an origination of the object, the origination being a vector by which the object entered the enterprise network, and wherein the origination is determined by parsing the first context information for origination information associated with the origination of the object.
13. The non-transitory storage medium of claim 12, wherein the software, prior to performing the second malware analysis, conducts an operation of modifying a set of predetermined rules associated with the second malware analysis based at least in part on the first context information to produce the modified rule set.
14. The non-transitory storage medium of claim 12, wherein the software, prior to performing the second malware analysis, conducts an operation of activating the additional or different monitors by at least activating a particular set of process monitors based at least in part on the first context information.
15. The non-transitory storage medium of claim 12, wherein the software, upon execution by the processor, further obtains additional information detailing performance of the first malware analysis along with the origination information.
16. The non-transitory storage medium of claim 12, wherein the first context information further includes a result of the first malware analysis, a hash of the object, and one or more rules implicated during the first malware analysis.
17. The non-transitory storage medium of claim 12, wherein the obtained object is a modified object including the first context information.
18. The non-transitory storage medium of claim 17, wherein the modified object is an email including a modified header of the email including the first context information, the modified object being provided to an agent on an endpoint conducting the second malware analysis of the modified object.
19. The non-transitory storage medium of claim 12, wherein the vector corresponds to information identifying a manner in which the object entered into the enterprise network.
US18/097,091 2018-03-30 2023-01-13 Multi-vector malware detection data sharing system for improved detection Active US11856011B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/097,091 US11856011B1 (en) 2018-03-30 2023-01-13 Multi-vector malware detection data sharing system for improved detection

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862650946P 2018-03-30 2018-03-30
US16/353,982 US11558401B1 (en) 2018-03-30 2019-03-14 Multi-vector malware detection data sharing system for improved detection
US18/097,091 US11856011B1 (en) 2018-03-30 2023-01-13 Multi-vector malware detection data sharing system for improved detection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/353,982 Continuation US11558401B1 (en) 2018-03-30 2019-03-14 Multi-vector malware detection data sharing system for improved detection

Publications (1)

Publication Number Publication Date
US11856011B1 true US11856011B1 (en) 2023-12-26

Family

ID=84922877

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/353,982 Active 2040-05-12 US11558401B1 (en) 2018-03-30 2019-03-14 Multi-vector malware detection data sharing system for improved detection
US18/097,091 Active US11856011B1 (en) 2018-03-30 2023-01-13 Multi-vector malware detection data sharing system for improved detection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/353,982 Active 2040-05-12 US11558401B1 (en) 2018-03-30 2019-03-14 Multi-vector malware detection data sharing system for improved detection

Country Status (1)

Country Link
US (2) US11558401B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11558401B1 (en) 2018-03-30 2023-01-17 Fireeye Security Holdings Us Llc Multi-vector malware detection data sharing system for improved detection
US20210406368A1 (en) * 2020-06-30 2021-12-30 Microsoft Technology Licensing, Llc Deep learning-based analysis of signals for threat detection
US20220292198A1 (en) * 2021-03-15 2022-09-15 AO Kaspersky Lab Systems and methods for modifying a malicious code detection rule
US11941121B2 (en) * 2021-12-28 2024-03-26 Uab 360 It Systems and methods for detecting malware using static and dynamic malware models

Citations (565)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292580A (en) 1978-11-30 1981-09-29 Siemens Aktiengesellschaft Circuit arrangement for attenuation of power oscillations in networks
US5175732A (en) 1991-02-15 1992-12-29 Standard Microsystems Corp. Method and apparatus for controlling data communication operations within stations of a local-area network
US5319776A (en) 1990-04-19 1994-06-07 Hilgraeve Corporation In transit detection of computer virus with safeguard
US5440723A (en) 1993-01-19 1995-08-08 International Business Machines Corporation Automatic immune system for computers and computer networks
US5490249A (en) 1992-12-23 1996-02-06 Taligent, Inc. Automated testing system
US5657473A (en) 1990-02-21 1997-08-12 Arendee Limited Method and apparatus for controlling access to and corruption of information in computer systems
US5802277A (en) 1995-07-31 1998-09-01 International Business Machines Corporation Virus protection in computer systems
US5842002A (en) 1994-06-01 1998-11-24 Quantum Leap Innovations, Inc. Computer virus trap
US5960170A (en) 1997-03-18 1999-09-28 Trend Micro, Inc. Event triggered iterative virus detection
US5978917A (en) 1997-08-14 1999-11-02 Symantec Corporation Detection and elimination of macro viruses
US5983348A (en) 1997-09-10 1999-11-09 Trend Micro Incorporated Computer network malicious code scanner
US6088803A (en) 1997-12-30 2000-07-11 Intel Corporation System for virus-checking network data during download to a client device
US6092194A (en) 1996-11-08 2000-07-18 Finjan Software, Ltd. System and method for protecting a computer and a network from hostile downloadables
US6094677A (en) 1997-05-30 2000-07-25 International Business Machines Corporation Methods, systems and computer program products for providing insertions during delays in interactive systems
US6108799A (en) 1997-11-21 2000-08-22 International Business Machines Corporation Automated sample creation of polymorphic and non-polymorphic marcro viruses
US6154844A (en) 1996-11-08 2000-11-28 Finjan Software, Ltd. System and method for attaching a downloadable security profile to a downloadable
US20010005889A1 (en) 1999-12-24 2001-06-28 F-Secure Oyj Remote computer virus scanning
US6269330B1 (en) 1997-10-07 2001-07-31 Attune Networks Ltd. Fault location and performance testing of communication networks
US6279113B1 (en) 1998-03-16 2001-08-21 Internet Tools, Inc. Dynamic signature inspection-based network intrusion detection
US6298445B1 (en) 1998-04-30 2001-10-02 Netect, Ltd. Computer security
US20010047326A1 (en) 2000-03-14 2001-11-29 Broadbent David F. Interface system for a mortgage loan originator compliance engine
WO2002006928A2 (en) 2000-07-14 2002-01-24 Vcis, Inc. Computer immune system and method for detecting unwanted code in a computer system
US20020018903A1 (en) 2000-07-21 2002-02-14 Tadashi Kokubo Anti-thrombogenic material and manufacturing method therefor
US6357008B1 (en) 1997-09-23 2002-03-12 Symantec Corporation Dynamic heuristic method for detecting computer viruses using decryption exploration and evaluation phases
WO2002023805A2 (en) 2000-09-13 2002-03-21 Karakoram Limited Monitoring network activity
US20020038430A1 (en) 2000-09-13 2002-03-28 Charles Edwards System and method of data collection, processing, analysis, and annotation for monitoring cyber-threats and the notification thereof to subscribers
US20020091819A1 (en) 2001-01-05 2002-07-11 Daniel Melchione System and method for configuring computer applications and devices using inheritance
US20020095607A1 (en) 2001-01-18 2002-07-18 Catherine Lin-Hendel Security protection for computers and computer-networks
US6424627B1 (en) 1997-02-24 2002-07-23 Metrobility Optical Systems Full-duplex medium tap apparatus and system
US20020116627A1 (en) 2001-02-20 2002-08-22 Tarbotton Lee Codel Lawson Software audit system
US6442696B1 (en) 1999-10-05 2002-08-27 Authoriszor, Inc. System and method for extensible positive client identification
US20020144156A1 (en) 2001-01-31 2002-10-03 Copeland John A. Network port profiling
US20020162015A1 (en) 2001-04-29 2002-10-31 Zhaomiao Tang Method and system for scanning and cleaning known and unknown computer viruses, recording medium and transmission medium therefor
US20020166063A1 (en) 2001-03-01 2002-11-07 Cyber Operations, Llc System and method for anti-network terrorism
US20020169952A1 (en) 1999-06-21 2002-11-14 Disanto Frank J. Method and apparatus for securing e-mail attachments
US6484315B1 (en) 1999-02-01 2002-11-19 Cisco Technology, Inc. Method and system for dynamically distributing updates in a network
US6487666B1 (en) 1999-01-15 2002-11-26 Cisco Technology, Inc. Intrusion detection signature analysis using regular expressions and logical operators
US20020184528A1 (en) 2001-04-12 2002-12-05 Shevenell Michael P. Method and apparatus for security management via vicarious network devices
US6493756B1 (en) 1999-10-28 2002-12-10 Networks Associates, Inc. System and method for dynamically sensing an asynchronous network event within a modular framework for network event processing
US20020188887A1 (en) 2000-05-19 2002-12-12 Self Repairing Computers, Inc. Computer with switchable components
US20020194490A1 (en) 2001-06-18 2002-12-19 Avner Halperin System and method of virus containment in computer networks
US20030021728A1 (en) 2001-07-26 2003-01-30 Sharpe Richard R. Method of and apparatus for object-oriented real-time mechanical control of automated chemistry instruments
US6550012B1 (en) 1998-12-11 2003-04-15 Network Associates, Inc. Active firewall system and methodology
US20030074578A1 (en) 2001-10-16 2003-04-17 Richard Ford Computer virus containment
US20030084318A1 (en) 2001-10-31 2003-05-01 Schertz Richard L. System and method of graphically correlating data for an intrusion protection system
US20030101381A1 (en) 2001-11-29 2003-05-29 Nikolay Mateev System and method for virus checking software
US20030115483A1 (en) 2001-12-04 2003-06-19 Trend Micro Incorporated Virus epidemic damage control system and method for network environment
US20030188190A1 (en) 2002-03-26 2003-10-02 Aaron Jeffrey A. System and method of intrusion detection employing broad-scope monitoring
US20030191957A1 (en) 1999-02-19 2003-10-09 Ari Hypponen Distributed computer virus detection and scanning
US20030200460A1 (en) 2002-02-28 2003-10-23 Ntt Docomo, Inc Server apparatus, and information processing method
US20030212902A1 (en) 2002-05-13 2003-11-13 Van Der Made Peter A.J. Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine
US20030229801A1 (en) 2001-08-01 2003-12-11 Networks Associates Technology, Inc. Wireless malware scanning back-end system and method
US20030237000A1 (en) 2002-06-19 2003-12-25 International Business Machines Corporation Method, system and program product for detecting intrusion of a wireless network
US20040003323A1 (en) 2002-06-29 2004-01-01 Steve Bennett Control over faults occurring during the operation of guest software in the virtual-machine architecture
US20040006473A1 (en) 2002-07-02 2004-01-08 Sbc Technology Resources, Inc. Method and system for automated categorization of statements
US20040015712A1 (en) 2002-07-19 2004-01-22 Peter Szor Heuristic detection of malicious computer code by page tracking
US20040019832A1 (en) 2002-07-23 2004-01-29 International Business Machines Corporation Method and apparatus for the automatic determination of potentially worm-like behavior of a program
US20040047356A1 (en) 2002-09-06 2004-03-11 Bauer Blaine D. Network traffic monitoring
US20040083408A1 (en) 2002-10-24 2004-04-29 Mark Spiegel Heuristic detection and termination of fast spreading network worm attacks
US20040088581A1 (en) 2002-11-04 2004-05-06 Brawn John Melvin Signal level propagation mechanism for distribution of a payload to vulnerable systems
US20040093513A1 (en) 2002-11-07 2004-05-13 Tippingpoint Technologies, Inc. Active network defense system and method
US20040111531A1 (en) 2002-12-06 2004-06-10 Stuart Staniford Method and system for reducing the rate of infection of a communications network by a software worm
US20040117624A1 (en) 2002-10-21 2004-06-17 Brandt David D. System and methodology providing automation security analysis, validation, and learning in an industrial controller environment
US20040128355A1 (en) 2002-12-25 2004-07-01 Kuo-Jen Chao Community-based message classification and self-amending system for a messaging system
US6775657B1 (en) 1999-12-22 2004-08-10 Cisco Technology, Inc. Multilayered intrusion detection system and method
US20040165588A1 (en) 2002-06-11 2004-08-26 Pandya Ashish A. Distributed network security system and a hardware processor therefor
US20040236963A1 (en) 2003-05-20 2004-11-25 International Business Machines Corporation Applying blocking measures progressively to malicious network traffic
US20040243349A1 (en) 2003-05-30 2004-12-02 Segue Software, Inc. Method of non-intrusive analysis of secure and non-secure web application traffic in real-time
US20040249911A1 (en) 2003-03-31 2004-12-09 Alkhatib Hasan S. Secure virtual community network system
US6832367B1 (en) 2000-03-06 2004-12-14 International Business Machines Corporation Method and system for recording and replaying the execution of distributed java programs
US6831893B1 (en) 2000-04-03 2004-12-14 P-Cube, Ltd. Apparatus and method for wire-speed classification and pre-processing of data packets in a full duplex network
US20040255161A1 (en) 2003-04-12 2004-12-16 Deep Nines, Inc. System and method for network edge data protection
US20040268147A1 (en) 2003-06-30 2004-12-30 Wiederin Shawn E Integrated security system
US20050005159A1 (en) 2003-07-01 2005-01-06 Oliphant Brett M. Vulnerability and remediation database
US20050021740A1 (en) 2001-08-14 2005-01-27 Bar Anat Bremler Detecting and protecting against worm traffic on a network
US20050033989A1 (en) 2002-11-04 2005-02-10 Poletto Massimiliano Antonio Detection of scanning attacks
US20050033960A1 (en) 2001-02-12 2005-02-10 Jukka Vialen Message authentication
US20050050148A1 (en) 2003-06-18 2005-03-03 Said Mohammadioun System and method for providing notification on remote devices
US20050086523A1 (en) 2003-10-15 2005-04-21 Zimmer Vincent J. Methods and apparatus to provide network traffic support and physical security support
US20050091652A1 (en) 2003-10-28 2005-04-28 Ross Jonathan K. Processor-architecture for facilitating a virtual machine monitor
US20050091513A1 (en) 2003-10-28 2005-04-28 Fujitsu Limited Device, method and program for detecting unauthorized access
US20050091533A1 (en) 2003-10-28 2005-04-28 Fujitsu Limited Device and method for worm detection, and computer product
US6895550B2 (en) 2001-12-05 2005-05-17 I2 Technologies Us, Inc. Computer-implemented PDF document management
US20050108562A1 (en) 2003-06-18 2005-05-19 Khazan Roger I. Technique for detecting executable malicious code using a combination of static and dynamic analyses
US6898632B2 (en) 2003-03-31 2005-05-24 Finisar Corporation Network security tap for use with intrusion detection system
US20050114663A1 (en) 2003-11-21 2005-05-26 Finisar Corporation Secure network access devices with data encryption
US20050125195A1 (en) 2001-12-21 2005-06-09 Juergen Brendel Method, apparatus and sofware for network traffic management
US6907396B1 (en) 2000-06-01 2005-06-14 Networks Associates Technology, Inc. Detecting computer viruses or malicious software by patching instructions into an emulator
US20050149726A1 (en) 2003-10-21 2005-07-07 Amit Joshi Systems and methods for secure client applications
US20050157662A1 (en) 2004-01-20 2005-07-21 Justin Bingham Systems and methods for detecting a compromised network
US20050183143A1 (en) 2004-02-13 2005-08-18 Anderholm Eric J. Methods and systems for monitoring user, application or device activity
US6941348B2 (en) 2002-02-19 2005-09-06 Postini, Inc. Systems and methods for managing the transmission of electronic messages through active message date updating
US20050201297A1 (en) 2003-12-12 2005-09-15 Cyrus Peikari Diagnosis of embedded, wireless mesh networks with real-time, flexible, location-specific signaling
US20050210533A1 (en) 2001-11-30 2005-09-22 Copeland John A Packet Sampling Flow-Based Detection of Network Intrusions
US20050238005A1 (en) 2004-04-21 2005-10-27 Yi-Fen Chen Method and apparatus for controlling traffic in a computer network
US20050240781A1 (en) 2004-04-22 2005-10-27 Gassoway Paul A Prioritizing intrusion detection logs
US20050262562A1 (en) 2004-05-21 2005-11-24 Paul Gassoway Systems and methods of computer security
US6971097B1 (en) 2000-06-09 2005-11-29 Sun Microsystems, Inc. Method and apparatus for implementing concurrently running jobs on an extended virtual machine using different heaps managers
US20050265331A1 (en) 2003-11-12 2005-12-01 The Trustees Of Columbia University In The City Of New York Apparatus method and medium for tracing the origin of network transmissions using n-gram distribution of data
US20050283839A1 (en) 2002-09-10 2005-12-22 Ingenia Technology Limited Security device and system
US6981279B1 (en) 2000-08-17 2005-12-27 International Business Machines Corporation Method and apparatus for replicating and analyzing worm programs
US20060010495A1 (en) 2004-07-06 2006-01-12 Oded Cohen Method for protecting a computer from suspicious objects
US20060015715A1 (en) 2004-07-16 2006-01-19 Eric Anderson Automatically protecting network service from network attack
US20060015416A1 (en) 2001-03-23 2006-01-19 Restaurant Services, Inc. System, method and computer program product for utilizing market demand information for generating revenue
US20060015747A1 (en) 2004-07-16 2006-01-19 Red Hat, Inc. System and method for detecting computer virus
US20060021029A1 (en) 2004-06-29 2006-01-26 Brickell Ernie F Method of improving computer security through sandboxing
US20060021054A1 (en) 2004-07-21 2006-01-26 Microsoft Corporation Containment of worms
US20060031476A1 (en) 2004-08-05 2006-02-09 Mathes Marvin L Apparatus and method for remotely monitoring a computer network
US7007107B1 (en) 2001-10-22 2006-02-28 United Electronic Industries Methods and apparatus for performing data acquisition and control
US20060047665A1 (en) 2001-01-09 2006-03-02 Tim Neil System and method for simulating an application for subsequent deployment to a device in communication with a transaction server
US20060070130A1 (en) 2004-09-27 2006-03-30 Microsoft Corporation System and method of identifying the source of an attack on a computer network
US20060075496A1 (en) 2003-05-20 2006-04-06 International Bussiness Machines Corporation Applying blocking measures progressively to malicious network traffic
US7028179B2 (en) 2001-07-03 2006-04-11 Intel Corporation Apparatus and method for secure, automated response to distributed denial of service attacks
US20060095968A1 (en) 2004-10-28 2006-05-04 Cisco Technology, Inc. Intrusion detection in a data center environment
US7043757B2 (en) 2001-05-22 2006-05-09 Mci, Llc System and method for malicious code detection
US20060101516A1 (en) 2004-10-12 2006-05-11 Sushanthan Sudaharan Honeynet farms as an early warning system for production networks
US20060101517A1 (en) 2004-10-28 2006-05-11 Banzhof Carl E Inventory management-based computer vulnerability resolution system
US20060117385A1 (en) 2004-11-30 2006-06-01 Mester Michael L Monitoring propagation protection within a network
US7058822B2 (en) 2000-03-30 2006-06-06 Finjan Software, Ltd. Malicious mobile code runtime monitoring system and methods
US20060123477A1 (en) 2004-12-06 2006-06-08 Kollivakkam Raghavan Method and apparatus for generating a network topology representation based on inspection of application messages at a network device
US7069316B1 (en) 2002-02-19 2006-06-27 Mcafee, Inc. Automated Internet Relay Chat malware monitoring and interception
US20060143709A1 (en) 2004-12-27 2006-06-29 Raytheon Company Network intrusion prevention
US20060150249A1 (en) 2003-05-07 2006-07-06 Derek Gassen Method and apparatus for predictive and actual intrusion detection on a network
US7080407B1 (en) 2000-06-27 2006-07-18 Cisco Technology, Inc. Virus detection and removal system and method for network-based systems
US7080408B1 (en) 2001-11-30 2006-07-18 Mcafee, Inc. Delayed-delivery quarantining of network communications having suspicious contents
US20060161989A1 (en) 2004-12-13 2006-07-20 Eran Reshef System and method for deterring rogue users from attacking protected legitimate users
US20060161987A1 (en) 2004-11-10 2006-07-20 Guy Levy-Yurista Detecting and remedying unauthorized computer programs
US20060161983A1 (en) 2005-01-20 2006-07-20 Cothrell Scott A Inline intrusion detection
US20060164199A1 (en) 2005-01-26 2006-07-27 Lockdown Networks, Inc. Network appliance for securely quarantining a node on a network
US20060173992A1 (en) 2002-11-04 2006-08-03 Daniel Weber Event detection/anomaly correlation heuristics
US20060179147A1 (en) 2005-02-07 2006-08-10 Veritas Operating Corporation System and method for connection failover using redirection
US7093002B2 (en) 2001-12-06 2006-08-15 Mcafee, Inc. Handling of malware scanning of files stored within a file storage device of a computer network
US20060184632A1 (en) 2005-02-15 2006-08-17 Spam Cube, Inc. Apparatus and method for analyzing and filtering email and for providing web related services
US7096498B2 (en) 2002-03-08 2006-08-22 Cipher Trust, Inc. Systems and methods for message threat management
US20060191010A1 (en) 2005-02-18 2006-08-24 Pace University System for intrusion detection and vulnerability assessment in a computer network using simulation and machine learning
US7100201B2 (en) 2002-01-24 2006-08-29 Arxceo Corporation Undetectable firewall
US20060200677A1 (en) 2005-03-03 2006-09-07 Microsoft Corporation Method and system for encoding metadata
US7107617B2 (en) 2001-10-15 2006-09-12 Mcafee, Inc. Malware scanning of compressed computer files
US20060221956A1 (en) 2005-03-31 2006-10-05 Narayan Harsha L Methods for performing packet classification via prefix pair bit vectors
US20060236393A1 (en) 2005-03-31 2006-10-19 Microsoft Corporation System and method for protecting a limited resource computer from malware
US20060242709A1 (en) 2005-04-21 2006-10-26 Microsoft Corporation Protecting a computer that provides a Web service from malware
US20060248519A1 (en) 2005-05-02 2006-11-02 Ibm Corporation Methods and arrangements for unified program analysis
US20060248582A1 (en) 2005-04-28 2006-11-02 Panjwani Dileep K One-way proxy system
US20060251104A1 (en) 2005-03-31 2006-11-09 Fujitsu Limited Service apparatus, method of controlling switching of connection destination of client apparatus by service apparatus, and storage medium readable by machine
US20060288417A1 (en) 2005-06-21 2006-12-21 Sbc Knowledge Ventures Lp Method and apparatus for mitigating the effects of malicious software in a communication network
US20070006313A1 (en) 2004-09-17 2007-01-04 Phillip Porras Method and apparatus for combating malicious code
US20070006288A1 (en) 2005-06-30 2007-01-04 Microsoft Corporation Controlling network access
US20070011174A1 (en) 1998-09-22 2007-01-11 Kazuo Takaragi Method and a device for managing a computer network
US20070016951A1 (en) 2005-07-13 2007-01-18 Piccard Paul L Systems and methods for identifying sources of malware
US20070019286A1 (en) 2005-07-20 2007-01-25 Alps Electric Co., Ltd. Wavelength branching filter and optical communication module
US20070033645A1 (en) 2005-07-22 2007-02-08 Alcatel DNS based enforcement for confinement and detection of network malicious activities
US20070038943A1 (en) 2005-08-15 2007-02-15 Cisco Technology, Inc. Interactive text communication system
US20070064689A1 (en) 2003-09-19 2007-03-22 Shin Yong M Method of controlling communication between devices in a network and apparatus for the same
US20070074169A1 (en) 2005-08-25 2007-03-29 Fortify Software, Inc. Apparatus and method for analyzing and supplementing a program to provide security
US20070094730A1 (en) 2005-10-20 2007-04-26 Cisco Technology, Inc. Mechanism to correlate the presence of worms in a network
US20070101435A1 (en) 2005-10-14 2007-05-03 Check Point Software Technologies, Inc. System and Methodology Providing Secure Workspace Environment
US20070128855A1 (en) 2005-12-07 2007-06-07 Samsung Electro-Mechanics Co., Ltd. Printed wiring board and method for manufacturing the same
US7231667B2 (en) 2003-05-29 2007-06-12 Computer Associates Think, Inc. System and method for computer virus detection utilizing heuristic analysis
US20070142030A1 (en) 2005-12-19 2007-06-21 Airdefense, Inc. Systems and methods for wireless vulnerability analysis
US20070143827A1 (en) 2005-12-21 2007-06-21 Fiberlink Methods and systems for intelligently controlling access to computing resources
US7240368B1 (en) 1999-04-14 2007-07-03 Verizon Corporate Services Group Inc. Intrusion and misuse deterrence system employing a virtual network
US7240364B1 (en) 2000-05-20 2007-07-03 Ciena Corporation Network device identity authentication
US20070157180A1 (en) 2005-12-30 2007-07-05 Microsoft Corporation Approximating finite domains in symbolic state exploration
US20070156895A1 (en) 2005-12-29 2007-07-05 Research In Motion Limited System and method of dynamic management of spam
US20070157306A1 (en) 2005-12-30 2007-07-05 Elrod Craig T Network threat detection and mitigation
US7243371B1 (en) 2001-11-09 2007-07-10 Cisco Technology, Inc. Method and system for configurable network intrusion detection
US20070168988A1 (en) 2006-01-11 2007-07-19 International Business Machines Corporation Software verification using hybrid explicit and symbolic model checking
US7249175B1 (en) 1999-11-23 2007-07-24 Escom Corporation Method and system for blocking e-mail having a nonexistent sender address
US20070174915A1 (en) 2006-01-23 2007-07-26 University Of Washington Detection of spyware threats within virtual machine
US20070171824A1 (en) 2006-01-25 2007-07-26 Cisco Technology, Inc. A California Corporation Sampling rate-limited traffic
US20070192500A1 (en) 2006-02-16 2007-08-16 Infoexpress, Inc. Network access control including dynamic policy enforcement point
US20070192858A1 (en) 2006-02-16 2007-08-16 Infoexpress, Inc. Peer based network access control
US20070198275A1 (en) 2002-06-27 2007-08-23 Malden Matthew S Method and system for processing intelligence information
US20070208822A1 (en) 2006-03-01 2007-09-06 Microsoft Corporation Honey Monkey Network Exploration
US20070220607A1 (en) 2005-05-05 2007-09-20 Craig Sprosts Determining whether to quarantine a message
US20070240220A1 (en) 2006-04-06 2007-10-11 George Tuvell System and method for managing malware protection on mobile devices
US7287278B2 (en) 2003-08-29 2007-10-23 Trend Micro, Inc. Innoculation of computing devices against a selected computer virus
US20070250930A1 (en) 2004-04-01 2007-10-25 Ashar Aziz Virtual machine with dynamic data flow analysis
US20070271446A1 (en) 2004-07-16 2007-11-22 Tomonori Nakamura Application Execution Device and Application Execution Device Application Execution Method
US20070275741A1 (en) 2006-05-24 2007-11-29 Lucent Technologies Inc. Methods and systems for identifying suspected virus affected mobile stations
US20080005782A1 (en) 2004-04-01 2008-01-03 Ashar Aziz Heuristic based capture with replay to virtual machine
GB2439806A (en) 2006-06-30 2008-01-09 Sophos Plc Classifying software as malware using characteristics (or "genes")
US20080018122A1 (en) 2005-12-28 2008-01-24 Robert Zierler Rifle Sling and Method of Use Thereof
US20080028463A1 (en) 2005-10-27 2008-01-31 Damballa, Inc. Method and system for detecting and responding to attacking networks
US7328453B2 (en) 2001-05-09 2008-02-05 Ecd Systems, Inc. Systems and methods for the prevention of unauthorized use and manipulation of digital content
US20080040710A1 (en) 2006-04-05 2008-02-14 Prevx Limited Method, computer program and computer for analysing an executable computer file
US20080046781A1 (en) 2006-03-29 2008-02-21 Childs Philip L System and method for booting alternate MBR in event of virus attack
US20080066179A1 (en) 2006-09-11 2008-03-13 Fujian Eastern Micropoint Info-Tech Co., Ltd. Antivirus protection system and method for computers
US7346486B2 (en) 2004-01-22 2008-03-18 Nec Laboratories America, Inc. System and method for modeling, abstraction, and analysis of software
US20080077793A1 (en) 2006-09-21 2008-03-27 Sensory Networks, Inc. Apparatus and method for high throughput network security systems
US20080080518A1 (en) 2006-09-29 2008-04-03 Hoeflin David A Method and apparatus for detecting compromised host computers
US7356736B2 (en) 2001-09-25 2008-04-08 Norman Asa Simulated computer system for monitoring of software performance
WO2008041950A2 (en) 2006-10-04 2008-04-10 Trek 2000 International Ltd. Method, apparatus and system for authentication of external storage devices
US20080086720A1 (en) 2006-10-10 2008-04-10 Reinhard Lekel Data processing system and method for execution of a test routine in connection with an operating system
US20080098476A1 (en) 2005-04-04 2008-04-24 Bae Systems Information And Electronic Systems Integration Inc. Method and Apparatus for Defending Against Zero-Day Worm-Based Attacks
US20080120722A1 (en) 2006-11-17 2008-05-22 Caleb Sima Web application assessment based on intelligent generation of attack strings
US20080134334A1 (en) 2006-11-30 2008-06-05 Electronics And Telecommunications Research Institute Apparatus and method for detecting network attack
US20080134178A1 (en) 2006-10-17 2008-06-05 Manageiq, Inc. Control and management of virtual systems
US20080141376A1 (en) 2006-10-24 2008-06-12 Pc Tools Technology Pty Ltd. Determining maliciousness of software
US7392542B2 (en) 2003-08-29 2008-06-24 Seagate Technology Llc Restoration of data corrupted by viruses using pre-infected copy of data
US20080184367A1 (en) 2007-01-25 2008-07-31 Mandiant, Inc. System and method for determining data entropy to identify malware
US20080184373A1 (en) 2007-01-25 2008-07-31 Microsoft Corporation Protection Agents and Privilege Modes
US20080201778A1 (en) 2007-02-21 2008-08-21 Matsushita Electric Industrial Co., Ltd. Intrusion detection using system call monitors on a bayesian network
US20080209557A1 (en) 2007-02-28 2008-08-28 Microsoft Corporation Spyware detection mechanism
US20080215742A1 (en) 2000-04-28 2008-09-04 German Goldszmidt METHOD AND APPARATUS FOR DYNAMICALLY ADJUSTING RESOURCES ASSIGNED TO PLURALITY OF CUSTOMERS, FOR MEETING SERVICE LEVEL AGREEMENTS (SLAs) WITH MINIMAL RESOURCES, AND ALLOWING COMMON POOLS OF RESOURCES TO BE USED ACROSS PLURAL CUSTOMERS ON A DEMAND BASIS
US20080222729A1 (en) 2007-03-05 2008-09-11 Songqing Chen Containment of Unknown and Polymorphic Fast Spreading Worms
US7428300B1 (en) 2002-12-09 2008-09-23 Verizon Laboratories Inc. Diagnosing fault patterns in telecommunication networks
US7441272B2 (en) 2004-06-09 2008-10-21 Intel Corporation Techniques for self-isolation of networked devices
US20080263665A1 (en) 2007-04-20 2008-10-23 Juniper Networks, Inc. Network attack detection using partial deterministic finite automaton pattern matching
US7448084B1 (en) 2002-01-25 2008-11-04 The Trustees Of Columbia University In The City Of New York System and methods for detecting intrusions in a computer system by monitoring operating system registry accesses
US7458098B2 (en) 2002-03-08 2008-11-25 Secure Computing Corporation Systems and methods for enhancing electronic communication security
US20080295172A1 (en) 2007-05-22 2008-11-27 Khushboo Bohacek Method, system and computer-readable media for reducing undesired intrusion alarms in electronic communications systems and networks
US20080301810A1 (en) 2007-06-04 2008-12-04 Agilent Technologies, Inc. Monitoring apparatus and method therefor
US7464407B2 (en) 2002-08-20 2008-12-09 Nec Corporation Attack defending system and attack defending method
US20080307524A1 (en) 2004-04-08 2008-12-11 The Regents Of The University Of California Detecting Public Network Attacks Using Signatures and Fast Content Analysis
US7467408B1 (en) 2002-09-09 2008-12-16 Cisco Technology, Inc. Method and apparatus for capturing and filtering datagrams for network security monitoring
US20080313738A1 (en) 2007-06-15 2008-12-18 Broadcom Corporation Multi-Stage Deep Packet Inspection for Lightweight Devices
US20080320594A1 (en) 2007-03-19 2008-12-25 Xuxian Jiang Malware Detector
US20090007100A1 (en) 2007-06-28 2009-01-01 Microsoft Corporation Suspending a Running Operating System to Enable Security Scanning
US20090003317A1 (en) 2007-06-29 2009-01-01 Kasralikar Rahul S Method and mechanism for port redirects in a network switch
US20090013408A1 (en) 2007-07-06 2009-01-08 Messagelabs Limited Detection of exploits in files
US7478428B1 (en) 2004-10-12 2009-01-13 Microsoft Corporation Adapting input to find integer overflows
US7480773B1 (en) 2005-05-02 2009-01-20 Sprint Communications Company L.P. Virtual machine use and optimization of hardware configurations
US20090031423A1 (en) 2006-12-20 2009-01-29 Peng Liu Proactive worm containment (pwc) for enterprise networks
US20090036111A1 (en) 2007-07-30 2009-02-05 Mobile Iron, Inc. Virtual Instance Architecture for Mobile Device Management Systems
US20090037835A1 (en) 2007-07-30 2009-02-05 Adobe Systems Incorporated Application Tracking for Application Execution Environment
US20090044024A1 (en) 2007-08-06 2009-02-12 The Regents Of The University Of Michigan Network service for the detection, analysis and quarantine of malicious and unwanted files
US20090044274A1 (en) 2007-08-08 2009-02-12 Vmware, Inc. Impeding Progress of Malicious Guest Software
US7496960B1 (en) 2000-10-30 2009-02-24 Trend Micro, Inc. Tracking and reporting of computer virus information
US20090064332A1 (en) 2007-04-04 2009-03-05 Phillip Andrew Porras Method and apparatus for generating highly predictive blacklists
US20090077666A1 (en) 2007-03-12 2009-03-19 University Of Southern California Value-Adaptive Security Threat Modeling and Vulnerability Ranking
US20090083369A1 (en) 2004-10-04 2009-03-26 Netmask (El-Mar) Dynamic content conversion
US20090089879A1 (en) 2007-09-28 2009-04-02 Microsoft Corporation Securing anti-virus software with virtualization
US20090094697A1 (en) 2007-10-05 2009-04-09 Google Inc. Intrusive software management
US7519990B1 (en) 2002-07-19 2009-04-14 Fortinet, Inc. Managing network traffic flow
US20090113425A1 (en) 2007-10-30 2009-04-30 Vmware, Inc. Transparent Memory-Mapped Emulation of I/O Calls
US7530104B1 (en) 2004-02-09 2009-05-05 Symantec Corporation Threat analysis
US20090125976A1 (en) 2007-11-08 2009-05-14 Docomo Communications Laboratories Usa, Inc. Automated test input generation for web applications
US20090126015A1 (en) 2007-10-02 2009-05-14 Monastyrsky Alexey V System and method for detecting multi-component malware
US20090133125A1 (en) 2007-11-21 2009-05-21 Yang Seo Choi Method and apparatus for malware detection
US7540025B2 (en) 2004-11-18 2009-05-26 Cisco Technology, Inc. Mitigating network attacks using automatic signature generation
US20090144823A1 (en) 2006-03-27 2009-06-04 Gerardo Lamastra Method and System for Mobile Network Security, Related Network and Computer Program Product
US7546638B2 (en) 2003-03-18 2009-06-09 Symantec Corporation Automated identification and clean-up of malicious computer code
US20090158430A1 (en) 2005-10-21 2009-06-18 Borders Kevin R Method, system and computer program product for detecting at least one of security threats and undesirable computer files
US20090172815A1 (en) 2007-04-04 2009-07-02 Guofei Gu Method and apparatus for detecting malware infection
US20090187992A1 (en) 2006-06-30 2009-07-23 Poston Robert J Method and system for classification of software using characteristics and combinations of such characteristics
US7568233B1 (en) 2005-04-01 2009-07-28 Symantec Corporation Detecting malicious software through process dump scanning
US20090193293A1 (en) 2006-02-28 2009-07-30 Stolfo Salvatore J Systems, Methods, and Media for Outputting Data Based Upon Anomaly Detection
US20090199274A1 (en) 2008-02-01 2009-08-06 Matthew Frazier method and system for collaboration during an event
US20090198670A1 (en) 2008-02-01 2009-08-06 Jason Shiffer Method and system for collecting and organizing data corresponding to an event
US20090198689A1 (en) 2008-02-01 2009-08-06 Matthew Frazier System and method for data preservation and retrieval
US20090198651A1 (en) 2008-02-01 2009-08-06 Jason Shiffer Method and system for analyzing data related to an event
US20090199296A1 (en) 2008-02-04 2009-08-06 Samsung Electronics Co., Ltd. Detecting unauthorized use of computing devices based on behavioral patterns
US7584455B2 (en) 2003-10-23 2009-09-01 Microsoft Corporation Predicate-based test coverage and generation
US20090228233A1 (en) 2008-03-06 2009-09-10 Anderson Gary F Rank-based evaluation
US20090241190A1 (en) 2008-03-24 2009-09-24 Michael Todd System and method for securing a network from zero-day vulnerability exploits
US20090241187A1 (en) 2008-03-19 2009-09-24 Websense, Inc. Method and system for protection against information stealing software
US20090249482A1 (en) 2008-03-31 2009-10-01 Gurusamy Sarathy Method and system for detecting restricted content associated with retrieved content
US7607171B1 (en) 2002-01-17 2009-10-20 Avinti, Inc. Virus detection by executing e-mail code in a virtual machine
US20090265692A1 (en) 2008-04-21 2009-10-22 Microsoft Corporation Active property checking
US20090271867A1 (en) 2005-12-30 2009-10-29 Peng Zhang Virtual machine to detect malicious code
US20090300761A1 (en) 2008-05-28 2009-12-03 John Park Intelligent Hashes for Centralized Malware Detection
US20090300415A1 (en) 2005-10-19 2009-12-03 Lenovo (Beijing) Limited Computer System and Method for Performing Integrity Detection on the Same
US20090328221A1 (en) 2008-06-30 2009-12-31 Microsoft Corporation Malware detention for suspected malware
US20090328185A1 (en) 2004-11-04 2009-12-31 Eric Van Den Berg Detecting exploit code in network flows
US7644441B2 (en) 2003-09-26 2010-01-05 Cigital, Inc. Methods for identifying malicious software
US20100005146A1 (en) 2008-07-03 2010-01-07 Barracuda Networks Inc. Facilitating transmission of email by checking email parameters with a database of well behaved senders
US20100011205A1 (en) 2004-01-23 2010-01-14 Acxiom Corporation Secure data exchange technique
US7657419B2 (en) 2001-06-19 2010-02-02 International Business Machines Corporation Analytical virtual machine
US20100031353A1 (en) 2008-02-04 2010-02-04 Microsoft Corporation Malware Detection Using Code Analysis and Behavior Monitoring
US20100030996A1 (en) 2008-08-01 2010-02-04 Mandiant, Inc. System and Method for Forensic Identification of Elements Within a Computer System
US20100037314A1 (en) 2008-08-11 2010-02-11 Perdisci Roberto Method and system for detecting malicious and/or botnet-related domain names
US20100043073A1 (en) 2008-08-13 2010-02-18 Fujitsu Limited Anti-virus method, computer, and recording medium
US20100058474A1 (en) 2008-08-29 2010-03-04 Avg Technologies Cz, S.R.O. System and method for the detection of malware
US7676841B2 (en) 2005-02-01 2010-03-09 Fmr Llc Network intrusion mitigation
US20100064044A1 (en) 2008-09-05 2010-03-11 Kabushiki Kaisha Toshiba Information Processing System and Control Method for Information Processing System
US20100077481A1 (en) 2008-09-22 2010-03-25 Microsoft Corporation Collecting and analyzing malware data
US20100083376A1 (en) 2008-09-26 2010-04-01 Symantec Corporation Method and apparatus for reducing false positive detection of malware
US7698548B2 (en) 2005-12-08 2010-04-13 Microsoft Corporation Communications traffic segregation for security purposes
US20100115621A1 (en) 2008-11-03 2010-05-06 Stuart Gresley Staniford Systems and Methods for Detecting Malicious Network Content
US20100132038A1 (en) 2008-11-26 2010-05-27 Zaitsev Oleg V System and Method for Computer Malware Detection
US7730011B1 (en) 2005-10-19 2010-06-01 Mcafee, Inc. Attributes of captured objects in a capture system
US7739740B1 (en) 2005-09-22 2010-06-15 Symantec Corporation Detecting polymorphic threats
US20100154056A1 (en) 2008-12-17 2010-06-17 Symantec Corporation Context-Aware Real-Time Computer-Protection Systems and Methods
US20100180344A1 (en) 2009-01-10 2010-07-15 Kaspersky Labs ZAO Systems and Methods For Malware Classification
US20100192223A1 (en) 2004-04-01 2010-07-29 Osman Abdoul Ismael Detecting Malicious Network Content Using Virtual Environment Components
US7779463B2 (en) 2004-05-11 2010-08-17 The Trustees Of Columbia University In The City Of New York Systems and methods for correlating and distributing intrusion alert information among collaborating computer systems
US7784097B1 (en) 2004-11-24 2010-08-24 The Trustees Of Columbia University In The City Of New York Systems and methods for correlating and distributing intrusion alert information among collaborating computer systems
US20100220863A1 (en) 2009-02-27 2010-09-02 ATMELCorporation Key Recovery Mechanism for Cryptographic Systems
US20100235831A1 (en) 2009-03-12 2010-09-16 Arend Erich Dittmer Method for dynamic configuration of virtual machine
US20100251104A1 (en) 2009-03-27 2010-09-30 Litera Technology Llc. System and method for reflowing content in a structured portable document format (pdf) file
US20100281102A1 (en) 2009-05-02 2010-11-04 Chinta Madhav Methods and systems for launching applications into existing isolation environments
US7832008B1 (en) 2006-10-11 2010-11-09 Cisco Technology, Inc. Protection of computer resources
US20100287260A1 (en) 2009-03-13 2010-11-11 Docusign, Inc. Systems and methods for document management transformation and security
US7836502B1 (en) 2007-07-03 2010-11-16 Trend Micro Inc. Scheduled gateway scanning arrangement and methods thereof
US20100299754A1 (en) 2009-05-20 2010-11-25 International Business Machines Corporation Identifying Security Breaches Caused by Web-Enabled Software Applications
US20100306173A1 (en) 2009-05-31 2010-12-02 Shahar Frank Handling temporary files of a virtual machine
US7849506B1 (en) 2004-10-12 2010-12-07 Avaya Inc. Switching device, method, and computer program for efficient intrusion detection
US20110004737A1 (en) 2009-07-02 2011-01-06 Kenneth Greenebaum Method and apparatus for protected content data processing
US7869073B2 (en) 2005-03-22 2011-01-11 Fuji Xerox Co., Ltd. Image forming system, image forming method and information terminal device
US7877803B2 (en) 2005-06-27 2011-01-25 Hewlett-Packard Development Company, L.P. Automated immune response for a computer
US20110025504A1 (en) 2009-07-31 2011-02-03 Lyon Geoff M USB Hosted Sensor Module
US20110041179A1 (en) 2009-08-11 2011-02-17 F-Secure Oyj Malware detection
US20110047594A1 (en) 2008-10-21 2011-02-24 Lookout, Inc., A California Corporation System and method for mobile communication device application advisement
US20110047620A1 (en) 2008-10-21 2011-02-24 Lookout, Inc., A California Corporation System and method for server-coupled malware prevention
US20110055907A1 (en) 2009-09-03 2011-03-03 Mcafee, Inc. Host state monitoring
US7904959B2 (en) 2005-04-18 2011-03-08 The Trustees Of Columbia University In The City Of New York Systems and methods for detecting and inhibiting attacks using honeypots
US7908660B2 (en) 2007-02-06 2011-03-15 Microsoft Corporation Dynamic risk management
US20110078794A1 (en) 2009-09-30 2011-03-31 Jayaraman Manni Network-Based Binary File Extraction and Analysis for Malware Detection
US7930738B1 (en) 2005-06-02 2011-04-19 Adobe Systems Incorporated Method and apparatus for secure execution of code
US20110093951A1 (en) 2004-06-14 2011-04-21 NetForts, Inc. Computer worm defense system and method
US20110099635A1 (en) 2009-10-27 2011-04-28 Silberman Peter J System and method for detecting executable machine instructions in a data stream
US20110099620A1 (en) 2009-04-09 2011-04-28 Angelos Stavrou Malware Detector
US20110099633A1 (en) 2004-06-14 2011-04-28 NetForts, Inc. System and method of containing computer worms
US7937761B1 (en) 2004-12-17 2011-05-03 Symantec Corporation Differential threat detection processing
US20110113231A1 (en) 2009-11-12 2011-05-12 Daniel Kaminsky System and method for providing secure reception and viewing of transmitted data over a network
US7949849B2 (en) 2004-08-24 2011-05-24 Mcafee, Inc. File system for a capture system
US20110145920A1 (en) 2008-10-21 2011-06-16 Lookout, Inc System and method for adverse mobile application identification
US20110145918A1 (en) 2009-12-15 2011-06-16 Jaeyeon Jung Sensitive data tracking using dynamic taint analysis
US20110145934A1 (en) 2009-10-13 2011-06-16 Miron Abramovici Autonomous distributed programmable logic for monitoring and securing electronic systems
US20110167493A1 (en) 2008-05-27 2011-07-07 Yingbo Song Systems, methods, ane media for detecting network anomalies
US20110167494A1 (en) 2009-12-31 2011-07-07 Bowen Brian M Methods, systems, and media for detecting covert malware
US20110173460A1 (en) 2008-10-10 2011-07-14 Takayuki Ito Information processing device, method, program, and integrated circuit
WO2011084431A2 (en) 2009-12-15 2011-07-14 Mcafee, Inc. Systems and methods for behavioral sandboxing
US7996904B1 (en) 2007-12-19 2011-08-09 Symantec Corporation Automated unpacking of executables packed by multiple layers of arbitrary packers
US7996836B1 (en) 2006-12-29 2011-08-09 Symantec Corporation Using a hypervisor to provide computer security
US8010667B2 (en) 2007-12-12 2011-08-30 Vmware, Inc. On-access anti-virus mechanism for virtual machine architecture
US20110219450A1 (en) 2010-03-08 2011-09-08 Raytheon Company System And Method For Malware Detection
US20110219449A1 (en) 2010-03-04 2011-09-08 St Neitzel Michael Malware detection method, system and computer program product
US8020206B2 (en) 2006-07-10 2011-09-13 Websense, Inc. System and method of analyzing web content
US20110225655A1 (en) 2010-03-15 2011-09-15 F-Secure Oyj Malware protection
US20110225624A1 (en) 2010-03-15 2011-09-15 Symantec Corporation Systems and Methods for Providing Network Access Control in Virtual Environments
WO2011112348A1 (en) 2010-03-08 2011-09-15 Raytheon Company System and method for host-level malware detection
US8028338B1 (en) 2008-09-30 2011-09-27 Symantec Corporation Modeling goodware characteristics to reduce false positive malware signatures
US20110247072A1 (en) 2008-11-03 2011-10-06 Stuart Gresley Staniford Systems and Methods for Detecting Malicious PDF Network Content
US8042184B1 (en) 2006-10-18 2011-10-18 Kaspersky Lab, Zao Rapid analysis of data stream for malware presence
US8045458B2 (en) 2007-11-08 2011-10-25 Mcafee, Inc. Prioritizing network traffic
US8045094B2 (en) 2006-12-26 2011-10-25 Sharp Kabushiki Kaisha Backlight device, display device, and television receiver
US20110265182A1 (en) 2010-04-27 2011-10-27 Microsoft Corporation Malware investigation by analyzing computer memory
US20110289582A1 (en) 2009-08-03 2011-11-24 Barracuda Networks, Inc. Method for detecting malicious javascript
US20110302587A1 (en) 2009-01-16 2011-12-08 Sony Computer Entertainment Inc. Information processing device and information processing method
US20110307955A1 (en) 2010-06-11 2011-12-15 M86 Security, Inc. System and method for detecting malicious content
US20110314546A1 (en) 2004-04-01 2011-12-22 Ashar Aziz Electronic Message Analysis for Malware Detection
US8087086B1 (en) 2008-06-30 2011-12-27 Symantec Corporation Method for mitigating false positive generation in antivirus software
US20120023593A1 (en) 2010-07-26 2012-01-26 Puder George System and method for filtering internet content & blocking undesired websites by secure network appliance
US20120054869A1 (en) 2010-08-31 2012-03-01 Chui-Tin Yen Method and apparatus for detecting botnets
US20120066698A1 (en) 2009-05-20 2012-03-15 Nec Corporation Dynamic data flow tracking method, dynamic data flow tracking program, and dynamic data flow tracking apparatus
US20120079596A1 (en) 2010-08-26 2012-03-29 Verisign, Inc. Method and system for automatic detection and analysis of malware
US20120084859A1 (en) 2010-09-30 2012-04-05 Microsoft Corporation Realtime multiple engine selection and combining
US20120096553A1 (en) 2010-10-19 2012-04-19 Manoj Kumar Srivastava Social Engineering Protection Appliance
US20120110667A1 (en) 2010-11-01 2012-05-03 Zubrilin Sergey A System and Method for Server-Based Antivirus Scan of Data Downloaded From a Network
US8176480B1 (en) 2006-02-27 2012-05-08 Symantec Operating Corporation Adaptive instrumentation through dynamic recompilation
US20120121154A1 (en) 2010-11-15 2012-05-17 Siemens Corporation Method and System for Propagation of Myocardial Infarction from Delayed Enhanced Cardiac Imaging to Cine Magnetic Resonance Imaging Using Hybrid Image Registration
US20120124426A1 (en) 2010-11-12 2012-05-17 Microsoft Corporation Debugging in a cluster processing network
WO2012075336A1 (en) 2010-12-01 2012-06-07 Sourcefire, Inc. Detecting malicious software through contextual convictions, generic signatures and machine learning techniques
US8201246B1 (en) 2008-02-25 2012-06-12 Trend Micro Incorporated Preventing malicious codes from performing malicious actions in a computer system
US8204984B1 (en) 2004-04-01 2012-06-19 Fireeye, Inc. Systems and methods for detecting encrypted bot command and control communication channels
US8214905B1 (en) 2011-12-21 2012-07-03 Kaspersky Lab Zao System and method for dynamically allocating computing resources for processing security information
US20120174196A1 (en) 2010-12-30 2012-07-05 Suresh Bhogavilli Active validation for ddos and ssl ddos attacks
US20120174218A1 (en) 2010-12-30 2012-07-05 Everis Inc. Network Communication System With Improved Security
US8220055B1 (en) 2004-02-06 2012-07-10 Symantec Corporation Behavior blocking utilizing positive behavior system and method
US8225288B2 (en) 2008-01-29 2012-07-17 Intuit Inc. Model-based testing using branches, decisions, and options
US8234709B2 (en) 2008-06-20 2012-07-31 Symantec Operating Corporation Streaming malware definition updates
US8234640B1 (en) 2006-10-17 2012-07-31 Manageiq, Inc. Compliance-based adaptations in managed virtual systems
US8233882B2 (en) 2009-06-26 2012-07-31 Vmware, Inc. Providing security in mobile devices via a virtualization software layer
US20120198279A1 (en) 2011-02-02 2012-08-02 Salesforce.Com, Inc. Automated Testing on Mobile Devices
US8239944B1 (en) 2008-03-28 2012-08-07 Symantec Corporation Reducing malware signature set size through server-side processing
US20120210423A1 (en) 2010-12-01 2012-08-16 Oliver Friedrichs Method and apparatus for detecting malicious software through contextual convictions, generic signatures and machine learning techniques
US8260914B1 (en) 2010-06-22 2012-09-04 Narus, Inc. Detecting DNS fast-flux anomalies
US8266091B1 (en) 2009-07-21 2012-09-11 Symantec Corporation Systems and methods for emulating the behavior of a user in a computer-human interaction environment
US20120255015A1 (en) 2011-03-30 2012-10-04 Sahita Ravi L Method and apparatus for transparently instrumenting an application program
US20120255017A1 (en) 2011-03-31 2012-10-04 Mcafee, Inc. System and method for providing a secured operating system execution environment
US8286251B2 (en) 2006-12-21 2012-10-09 Telefonaktiebolaget L M Ericsson (Publ) Obfuscating computer program code
US20120260342A1 (en) 2011-04-05 2012-10-11 Government Of The United States, As Represented By The Secretary Of The Air Force Malware Target Recognition
US20120266244A1 (en) 2011-04-13 2012-10-18 Microsoft Corporation Detecting Script-Based Malware using Emulation and Heuristics
US20120266245A1 (en) 2011-04-15 2012-10-18 Raytheon Company Multi-Nodal Malware Analysis
US20120278886A1 (en) 2011-04-27 2012-11-01 Michael Luna Detection and filtering of malware based on traffic observations made in a distributed mobile traffic management system
US8307435B1 (en) 2010-02-18 2012-11-06 Symantec Corporation Software object corruption detection
US20120297489A1 (en) 2005-06-06 2012-11-22 International Business Machines Corporation Computer network intrusion detection
US8321936B1 (en) 2007-05-30 2012-11-27 M86 Security, Inc. System and method for malicious software detection in multiple protocols
US8332571B1 (en) 2008-10-07 2012-12-11 Vizioncore, Inc. Systems and methods for improving virtual machine performance
US20120330801A1 (en) 2011-06-27 2012-12-27 Raytheon Company Distributed Malware Detection
US20120331553A1 (en) 2006-04-20 2012-12-27 Fireeye, Inc. Dynamic signature creation and enforcement
US8365297B1 (en) 2011-12-28 2013-01-29 Kaspersky Lab Zao System and method for detecting malware targeting the boot process of a computer using boot process emulation
US8370938B1 (en) 2009-04-25 2013-02-05 Dasient, Inc. Mitigating malware
US8370939B2 (en) 2010-07-23 2013-02-05 Kaspersky Lab, Zao Protection against malware on web resources
US20130074185A1 (en) 2011-09-15 2013-03-21 Raytheon Company Providing a Network-Accessible Malware Analysis
US20130086684A1 (en) 2011-09-30 2013-04-04 David S. Mohler Contextual virtual machines for application quarantine and assessment method and system
US20130097699A1 (en) 2011-10-18 2013-04-18 Mcafee, Inc. System and method for detecting a malicious command and control channel
US20130097706A1 (en) 2011-09-16 2013-04-18 Veracode, Inc. Automated behavioral and static analysis using an instrumented sandbox and machine learning classification for mobile security
US20130111587A1 (en) 2011-10-27 2013-05-02 Microsoft Corporation Detecting Software Vulnerabilities in an Isolated Computing Environment
US20130117852A1 (en) 2011-10-10 2013-05-09 Global Dataguard, Inc. Detecting Emergent Behavior in Communications Networks
US20130117855A1 (en) 2011-11-09 2013-05-09 Electronics And Telecommunications Research Institute Apparatus for automatically inspecting security of applications and method thereof
WO2013067505A1 (en) 2011-11-03 2013-05-10 Cyphort, Inc. Systems and methods for virtualization and emulation assisted malware detection
US20130139264A1 (en) 2011-11-28 2013-05-30 Matthew D. Brinkley Application sandboxing using a dynamic optimization framework
US8458452B1 (en) 2009-10-26 2013-06-04 James P. Morgan System and method for encryption and decryption of data transferred between computer systems
US8464340B2 (en) 2007-09-04 2013-06-11 Samsung Electronics Co., Ltd. System, apparatus and method of malware diagnosis mechanism based on immunization database
US20130160125A1 (en) 2011-12-14 2013-06-20 Nikolay Vladimirovich Likhachev Method and system for rapid signature search over encrypted content
US20130160131A1 (en) 2011-12-20 2013-06-20 Matias Madou Application security testing
US20130160127A1 (en) 2011-12-14 2013-06-20 Korea Internet & Security Agency System and method for detecting malicious code of pdf document type
US20130160130A1 (en) 2011-12-20 2013-06-20 Kirill Mendelev Application security testing
US20130167236A1 (en) 2011-12-15 2013-06-27 Avira Holding GmbH Method and system for automatically generating virus descriptions
US8479291B1 (en) 2010-10-28 2013-07-02 Symantec Corporation Systems and methods for identifying polymorphic malware
US8479276B1 (en) 2010-12-29 2013-07-02 Emc Corporation Malware detection using risk analysis based on file system and network activity
US20130174214A1 (en) 2011-12-29 2013-07-04 Imation Corp. Management Tracking Agent for Removable Media
US20130185789A1 (en) 2012-01-15 2013-07-18 Lenovo (Singapore) Pte. Ltd. Method and apparatus for protecting a password of a computer having a non-volatile memory
US20130185795A1 (en) 2012-01-12 2013-07-18 Arxceo Corporation Methods and systems for providing network protection by progressive degradation of service
US20130185798A1 (en) 2012-01-13 2013-07-18 Accessdata Group, Llc Identifying software execution behavior
US20130191915A1 (en) 2012-01-25 2013-07-25 Damballa, Inc. Method and system for detecting dga-based malware
US20130196649A1 (en) 2012-01-27 2013-08-01 Qualcomm Incorporated Mobile device to detect unexpected behaviour
US8510827B1 (en) 2006-05-18 2013-08-13 Vmware, Inc. Taint tracking mechanism for computer security
US8510842B2 (en) 2011-04-13 2013-08-13 International Business Machines Corporation Pinpointing security vulnerabilities in computer software applications
US8510828B1 (en) 2007-12-31 2013-08-13 Symantec Corporation Enforcing the execution exception to prevent packers from evading the scanning of dynamically created code
US8516478B1 (en) 2008-06-12 2013-08-20 Mcafee, Inc. Subsequent processing of scanning task utilizing subset of virtual machines predetermined to have scanner process and adjusting amount of subsequest VMs processing based on load
US8516590B1 (en) 2009-04-25 2013-08-20 Dasient, Inc. Malicious advertisement detection and remediation
US8522348B2 (en) 2009-07-29 2013-08-27 Northwestern University Matching with a large vulnerability signature ruleset for high performance network defense
US20130227691A1 (en) 2012-02-24 2013-08-29 Ashar Aziz Detecting Malicious Network Content
US8528086B1 (en) 2004-04-01 2013-09-03 Fireeye, Inc. System and method of detecting computer worms
US20130232576A1 (en) 2011-11-18 2013-09-05 Vinsula, Inc. Systems and methods for cyber-threat detection
US8533824B2 (en) 2006-12-04 2013-09-10 Glasswall (Ip) Limited Resisting the spread of unwanted code and data
US8539582B1 (en) 2004-04-01 2013-09-17 Fireeye, Inc. Malware containment and security analysis on connection
US20130246370A1 (en) 2007-08-29 2013-09-19 Anthony V. Bartram System, method, and computer program product for determining whether code is unwanted based on the decompilation thereof
US20130247186A1 (en) 2012-03-15 2013-09-19 Aaron LeMasters System to Bypass a Compromised Mass Storage Device Driver Stack and Method Thereof
US8555391B1 (en) 2009-04-25 2013-10-08 Dasient, Inc. Adaptive scanning
US8561177B1 (en) 2004-04-01 2013-10-15 Fireeye, Inc. Systems and methods for detecting communication channels of bots
US8566946B1 (en) 2006-04-20 2013-10-22 Fireeye, Inc. Malware containment on connection
US20130298243A1 (en) 2012-05-01 2013-11-07 Taasera, Inc. Systems and methods for orchestrating runtime operational integrity
US8584234B1 (en) 2010-07-07 2013-11-12 Symantec Corporation Secure network cache content
US8584094B2 (en) 2007-06-29 2013-11-12 Microsoft Corporation Dynamically computing reputation scores for objects
US8627476B1 (en) 2010-07-05 2014-01-07 Symantec Corporation Altering application behavior based on content provider reputation
US20140032875A1 (en) 2012-07-27 2014-01-30 James Butler Physical Memory Forensics System and Method
US20140053260A1 (en) 2012-08-15 2014-02-20 Qualcomm Incorporated Adaptive Observation of Behavioral Features on a Mobile Device
US20140053261A1 (en) 2012-08-15 2014-02-20 Qualcomm Incorporated On-Line Behavioral Analysis Engine in Mobile Device with Multiple Analyzer Model Providers
US8682812B1 (en) 2010-12-23 2014-03-25 Narus, Inc. Machine learning based botnet detection using real-time extracted traffic features
GB2490431B (en) 2012-05-15 2014-03-26 F Secure Corp Foiling a document exploit attack
US8695096B1 (en) 2011-05-24 2014-04-08 Palo Alto Networks, Inc. Automatic signature generation for malicious PDF files
US8713631B1 (en) 2012-12-25 2014-04-29 Kaspersky Lab Zao System and method for detecting malicious code executed by virtual machine
US20140130158A1 (en) 2012-11-07 2014-05-08 Microsoft Corporation Identification of malware detection signature candidate code
US8726392B1 (en) 2012-03-29 2014-05-13 Symantec Corporation Systems and methods for combining static and dynamic code analysis
US20140137180A1 (en) 2012-11-13 2014-05-15 Bitdefender IPR Management Ltd. Hypervisor-Based Enterprise Endpoint Protection
US8739280B2 (en) 2011-09-29 2014-05-27 Hewlett-Packard Development Company, L.P. Context-sensitive taint analysis
US20140169762A1 (en) 2011-10-21 2014-06-19 Mitsubishi Electric Corporation Video image information playback method and video image information playback device
US20140181131A1 (en) 2012-12-26 2014-06-26 David Ross Timeline wrinkling system and method
US20140179360A1 (en) 2012-12-21 2014-06-26 Verizon Patent And Licensing, Inc. Short message service validation engine
US20140189882A1 (en) 2012-12-28 2014-07-03 Robert Jung System and method for the programmatic runtime de-obfuscation of obfuscated software utilizing virtual machine introspection and manipulation of virtual machine guest memory permissions
US20140189866A1 (en) 2012-12-31 2014-07-03 Jason Shiffer Identification of obfuscated computer items using visual algorithms
US8782792B1 (en) 2011-10-27 2014-07-15 Symantec Corporation Systems and methods for detecting malware on mobile platforms
US8789172B2 (en) 2006-09-18 2014-07-22 The Trustees Of Columbia University In The City Of New York Methods, media, and systems for detecting attack on a digital processing device
US8805947B1 (en) 2008-02-27 2014-08-12 Parallels IP Holdings GmbH Method and system for remote device access in virtual environment
US8806647B1 (en) 2011-04-25 2014-08-12 Twitter, Inc. Behavioral scanning of mobile applications
US20140245440A1 (en) * 2013-02-28 2014-08-28 Trustees Of Boston Univeristy Software Inspection System
US20140282843A1 (en) * 2013-03-15 2014-09-18 Mcafee, Inc. Creating and managing a network security tag
US20140283037A1 (en) 2013-03-15 2014-09-18 Michael Sikorski System and Method to Extract and Utilize Disassembly Features to Classify Software Intent
US20140283063A1 (en) 2013-03-15 2014-09-18 Matthew Thompson System and Method to Manage Sinkholes
US20140280245A1 (en) 2013-03-15 2014-09-18 Mandiant Corporation System and method to visualize user sessions
US8850570B1 (en) 2008-06-30 2014-09-30 Symantec Corporation Filter-based identification of malicious websites
US8881282B1 (en) 2004-04-01 2014-11-04 Fireeye, Inc. Systems and methods for malware attack detection and identification
US20140328204A1 (en) 2011-11-14 2014-11-06 Alcatel Lucent Apparatus, method and computer program for routing data packets
US20140337836A1 (en) 2013-05-10 2014-11-13 Fireeye, Inc. Optimized resource allocation for virtual machines within a malware content detection system
US20140344926A1 (en) 2013-03-15 2014-11-20 Sean Cunningham System and method employing structured intelligence to verify and contain threats at endpoints
US8898788B1 (en) 2004-04-01 2014-11-25 Fireeye, Inc. Systems and methods for malware attack prevention
US20140351935A1 (en) 2011-09-14 2014-11-27 Beijing Qihoo Technology Company Limited Method, apparatus and virtual machine for detecting malicious program
US20140380474A1 (en) 2013-06-24 2014-12-25 Fireeye, Inc. System and Method for Detecting Time-Bomb Malware
US20140380473A1 (en) 2013-06-24 2014-12-25 Fireeye, Inc. Zero-day discovery system
US20150007312A1 (en) 2013-06-28 2015-01-01 Vinay Pidathala System and method for detecting malicious links in electronic messages
US8990944B1 (en) 2013-02-23 2015-03-24 Fireeye, Inc. Systems and methods for automatically detecting backdoors
US20150096024A1 (en) 2013-09-30 2015-04-02 Fireeye, Inc. Advanced persistent threat (apt) detection center
US20150096025A1 (en) * 2013-09-30 2015-04-02 Fireeye, Inc. System, Apparatus and Method for Using Malware Analysis Results to Drive Adaptive Instrumentation of Virtual Machines to Improve Exploit Detection
US20150096023A1 (en) 2013-09-30 2015-04-02 Fireeye, Inc. Fuzzy hash of behavioral results
US20150096022A1 (en) 2013-09-30 2015-04-02 Michael Vincent Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses
US9009822B1 (en) 2013-02-23 2015-04-14 Fireeye, Inc. Framework for multi-phase analysis of mobile applications
US9009823B1 (en) 2013-02-23 2015-04-14 Fireeye, Inc. Framework for efficient security coverage of mobile software applications installed on mobile devices
US9027135B1 (en) 2004-04-01 2015-05-05 Fireeye, Inc. Prospective client identification using malware attack detection
US20150186645A1 (en) * 2013-12-26 2015-07-02 Fireeye, Inc. System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits
US20150199513A1 (en) 2014-01-16 2015-07-16 Fireeye, Inc. Threat-aware microvisor
US20150220735A1 (en) * 2014-02-05 2015-08-06 Fireeye, Inc. Detection efficacy of virtual machine-based analysis with application specific events
US9104867B1 (en) 2013-03-13 2015-08-11 Fireeye, Inc. Malicious content analysis using simulated user interaction without user involvement
US9159035B1 (en) 2013-02-23 2015-10-13 Fireeye, Inc. Framework for computer application analysis of sensitive information tracking
US9176843B1 (en) 2013-02-23 2015-11-03 Fireeye, Inc. Framework for efficient security coverage of mobile software applications
US9189627B1 (en) * 2013-11-21 2015-11-17 Fireeye, Inc. System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection
US9195829B1 (en) 2013-02-23 2015-11-24 Fireeye, Inc. User interface with real-time visual playback along with synchronous textual analysis log display and event/time index for anomalous behavior detection in applications
US20150372980A1 (en) 2014-06-24 2015-12-24 Fireeye, Inc. Intrusion prevention and remedy system
US9223972B1 (en) 2014-03-31 2015-12-29 Fireeye, Inc. Dynamically remote tuning of a malware content detection system
US20160004869A1 (en) 2014-07-01 2016-01-07 Fireeye, Inc. Verification of trusted threat-aware microvisor
US20160006756A1 (en) 2014-07-01 2016-01-07 Fireeye, Inc. Trusted threat-aware microvisor
US9241010B1 (en) 2014-03-20 2016-01-19 Fireeye, Inc. System and method for network behavior detection
US9251343B1 (en) 2013-03-15 2016-02-02 Fireeye, Inc. Detecting bootkits resident on compromised computers
US20160044000A1 (en) 2014-08-05 2016-02-11 Fireeye, Inc. System and method to communicate sensitive information via one or more untrusted intermediate nodes with resilience to disconnected network topology
US9311479B1 (en) * 2013-03-14 2016-04-12 Fireeye, Inc. Correlation and consolidation of analytic data for holistic view of a malware attack
US9355247B1 (en) 2013-03-13 2016-05-31 Fireeye, Inc. File extraction from memory dump for malicious content analysis
US9363280B1 (en) 2014-08-22 2016-06-07 Fireeye, Inc. System and method of detecting delivery of malware using cross-customer data
US9367681B1 (en) 2013-02-23 2016-06-14 Fireeye, Inc. Framework for efficient security coverage of mobile software applications using symbolic execution to reach regions of interest within an application
US20160173508A1 (en) 2013-09-27 2016-06-16 Emc Corporation Dynamic malicious application detection in storage systems
US20160188880A1 (en) * 2014-12-27 2016-06-30 Mcafee, Inc. Outbreak pathology inference
US20160191550A1 (en) 2014-12-29 2016-06-30 Fireeye, Inc. Microvisor-based malware detection endpoint architecture
US20160191547A1 (en) 2014-12-26 2016-06-30 Fireeye, Inc. Zero-Day Rotating Guest Image Profile
US9398028B1 (en) 2014-06-26 2016-07-19 Fireeye, Inc. System, device and method for detecting a malicious attack based on communcations between remotely hosted virtual machines and malicious web servers
US20160232352A1 (en) 2015-02-06 2016-08-11 Qualcomm Incorporated Methods and Systems for Detecting Fake User Interactions with a Mobile Device for Improved Malware Protection
US20160232353A1 (en) 2015-02-09 2016-08-11 Qualcomm Incorporated Determining Model Protection Level On-Device based on Malware Detection in Similar Devices
US9426071B1 (en) 2013-08-22 2016-08-23 Fireeye, Inc. Storing network bidirectional flow data and metadata with efficient processing technique
US9432389B1 (en) * 2014-03-31 2016-08-30 Fireeye, Inc. System, apparatus and method for detecting a malicious attack based on static analysis of a multi-flow object
US9430646B1 (en) 2013-03-14 2016-08-30 Fireeye, Inc. Distributed systems and methods for automatically detecting unknown bots and botnets
US20160253498A1 (en) 2015-02-27 2016-09-01 Qualcomm Incorporated Methods and Systems for On-Device High-Granularity Classification of Device Behaviors using Multi-Label Models
US9438613B1 (en) 2015-03-30 2016-09-06 Fireeye, Inc. Dynamic content activation for automated analysis of embedded objects
US9438623B1 (en) 2014-06-06 2016-09-06 Fireeye, Inc. Computer exploit detection using heap spray pattern matching
US20160277272A1 (en) 2015-03-18 2016-09-22 Arista Networks, Inc. System and method for continuous measurement of transit latency in individual data switches and multi-device topologies
US20160285914A1 (en) * 2015-03-25 2016-09-29 Fireeye, Inc. Exploit detection system
US20160292419A1 (en) 2015-03-31 2016-10-06 Juniper Networks, Inc. Multi-file malware analysis
US9467460B1 (en) * 2014-12-23 2016-10-11 Fireeye, Inc. Modularized database architecture using vertical partitioning for a state machine
US9483644B1 (en) 2015-03-31 2016-11-01 Fireeye, Inc. Methods for detecting file altering malware in VM based analysis
US20160337390A1 (en) 2015-05-11 2016-11-17 Qualcomm Incorporated Methods and Systems for Behavior-Specific Actuation for Real-Time Whitelisting
US20160335110A1 (en) 2015-03-31 2016-11-17 Fireeye, Inc. Selective virtualization for security threat detection
US9537972B1 (en) 2014-02-20 2017-01-03 Fireeye, Inc. Efficient access to sparse packets in large repositories of stored network traffic
US20170013018A1 (en) * 2014-03-19 2017-01-12 Nippon Telegraph And Telephone Corporation Analysis rule adjustment device, analysis rule adjustment system, analysis rule adjustment method, and analysis rule adjustment program
US9565202B1 (en) 2013-03-13 2017-02-07 Fireeye, Inc. System and method for detecting exfiltration content
US9591015B1 (en) * 2014-03-28 2017-03-07 Fireeye, Inc. System and method for offloading packet processing and static analysis operations
US9594912B1 (en) 2014-06-06 2017-03-14 Fireeye, Inc. Return-oriented programming detection
US9594904B1 (en) * 2015-04-23 2017-03-14 Fireeye, Inc. Detecting malware based on reflection
US20170083703A1 (en) * 2015-09-22 2017-03-23 Fireeye, Inc. Leveraging behavior-based rules for malware family classification
US20170093902A1 (en) 2015-09-30 2017-03-30 Symantec Corporation Detection of security incidents with low confidence security events
US20170098074A1 (en) 2014-06-11 2017-04-06 Nippon Telegraph And Telephone Corporation Malware determination device, malware determination system, malware determination method, and program
US9626509B1 (en) 2013-03-13 2017-04-18 Fireeye, Inc. Malicious content analysis with multi-version application support within single operating environment
US9628498B1 (en) 2004-04-01 2017-04-18 Fireeye, Inc. System and method for bot detection
US9635039B1 (en) 2013-05-13 2017-04-25 Fireeye, Inc. Classifying sets of malicious indicators for detecting command and control communications associated with malware
US9654485B1 (en) 2015-04-13 2017-05-16 Fireeye, Inc. Analytics-based security monitoring system and method
US9690606B1 (en) 2015-03-25 2017-06-27 Fireeye, Inc. Selective system call monitoring
US9690936B1 (en) 2013-09-30 2017-06-27 Fireeye, Inc. Multistage system and method for analyzing obfuscated content for malware
US9690933B1 (en) 2014-12-22 2017-06-27 Fireeye, Inc. Framework for classifying an object as malicious with machine learning for deploying updated predictive models
US9747446B1 (en) 2013-12-26 2017-08-29 Fireeye, Inc. System and method for run-time object classification
US20170257388A1 (en) 2016-01-06 2017-09-07 New York University System, method and computer-accessible medium for network intrusion detection
US9773112B1 (en) 2014-09-29 2017-09-26 Fireeye, Inc. Exploit detection of malware and malware families
US9781144B1 (en) 2014-09-30 2017-10-03 Fireeye, Inc. Determining duplicate objects for malware analysis using environmental/context information
US9824216B1 (en) 2015-12-31 2017-11-21 Fireeye, Inc. Susceptible environment detection system
US9825989B1 (en) 2015-09-30 2017-11-21 Fireeye, Inc. Cyber attack early warning system
US9825976B1 (en) 2015-09-30 2017-11-21 Fireeye, Inc. Detection and classification of exploit kits
US9824209B1 (en) 2013-02-23 2017-11-21 Fireeye, Inc. Framework for efficient security coverage of mobile software applications that is usable to harden in the field code
US9838417B1 (en) 2014-12-30 2017-12-05 Fireeye, Inc. Intelligent context aware user interaction for malware detection
US20180033009A1 (en) 2016-07-27 2018-02-01 Intuit Inc. Method and system for facilitating the identification and prevention of potentially fraudulent activity in a financial system
US9888016B1 (en) 2013-06-28 2018-02-06 Fireeye, Inc. System and method for detecting phishing using password prediction
US20180048660A1 (en) 2015-11-10 2018-02-15 Fireeye, Inc. Launcher for setting analysis environment variations for malware detection
US9912681B1 (en) 2015-03-31 2018-03-06 Fireeye, Inc. Injection of content processing delay in an endpoint
US9921978B1 (en) 2013-11-08 2018-03-20 Fireeye, Inc. System and method for enhanced security of storage devices
US9934376B1 (en) 2014-12-29 2018-04-03 Fireeye, Inc. Malware detection appliance architecture
US9973531B1 (en) 2014-06-06 2018-05-15 Fireeye, Inc. Shellcode detection
US20180191736A1 (en) 2017-01-05 2018-07-05 Korea Internet & Security Agency Method and apparatus for collecting cyber incident information
US10027689B1 (en) 2014-09-29 2018-07-17 Fireeye, Inc. Interactive infection visualization for improved exploit detection and signature generation for malware and malware families
US10025691B1 (en) 2016-09-09 2018-07-17 Fireeye, Inc. Verification of complex software code using a modularized architecture
US10033759B1 (en) 2015-09-28 2018-07-24 Fireeye, Inc. System and method of threat detection under hypervisor control
US10033747B1 (en) 2015-09-29 2018-07-24 Fireeye, Inc. System and method for detecting interpreter-based exploit attacks
US10050998B1 (en) 2015-12-30 2018-08-14 Fireeye, Inc. Malicious message analysis system
US10089461B1 (en) 2013-09-30 2018-10-02 Fireeye, Inc. Page replacement code injection
US20180288077A1 (en) 2017-03-30 2018-10-04 Fireeye, Inc. Attribute-controlled malware detection
US10108446B1 (en) 2015-12-11 2018-10-23 Fireeye, Inc. Late load technique for deploying a virtualization layer underneath a running operating system
US10121000B1 (en) 2016-06-28 2018-11-06 Fireeye, Inc. System and method to detect premium attacks on electronic networks and electronic devices
US10133866B1 (en) 2015-12-30 2018-11-20 Fireeye, Inc. System and method for triggering analysis of an object for malware in response to modification of that object
US10169585B1 (en) 2016-06-22 2019-01-01 Fireeye, Inc. System and methods for advanced malware detection through placement of transition events
US10191861B1 (en) 2016-09-06 2019-01-29 Fireeye, Inc. Technique for implementing memory views using a layered virtualization architecture
US10192052B1 (en) 2013-09-30 2019-01-29 Fireeye, Inc. System, apparatus and method for classifying a file as malicious using static scanning
US10210329B1 (en) 2015-09-30 2019-02-19 Fireeye, Inc. Method to detect application execution hijacking using memory protection
US10216927B1 (en) 2015-06-30 2019-02-26 Fireeye, Inc. System and method for protecting memory pages associated with a process using a virtualization layer
US10242185B1 (en) 2014-03-21 2019-03-26 Fireeye, Inc. Dynamic guest image creation and rollback
US20190253435A1 (en) 2018-02-14 2019-08-15 Cisco Technology, Inc. Autonomous domain generation algorithm (dga) detector
US20190272376A1 (en) * 2018-03-02 2019-09-05 Cisco Technology, Inc. Dynamic routing of files to a malware analysis system
US10735468B1 (en) 2017-02-14 2020-08-04 Ca, Inc. Systems and methods for evaluating security services
US11558401B1 (en) 2018-03-30 2023-01-17 Fireeye Security Holdings Us Llc Multi-vector malware detection data sharing system for improved detection

Patent Citations (747)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292580A (en) 1978-11-30 1981-09-29 Siemens Aktiengesellschaft Circuit arrangement for attenuation of power oscillations in networks
US5657473A (en) 1990-02-21 1997-08-12 Arendee Limited Method and apparatus for controlling access to and corruption of information in computer systems
US5319776A (en) 1990-04-19 1994-06-07 Hilgraeve Corporation In transit detection of computer virus with safeguard
US5175732A (en) 1991-02-15 1992-12-29 Standard Microsystems Corp. Method and apparatus for controlling data communication operations within stations of a local-area network
US5490249A (en) 1992-12-23 1996-02-06 Taligent, Inc. Automated testing system
US5440723A (en) 1993-01-19 1995-08-08 International Business Machines Corporation Automatic immune system for computers and computer networks
US5842002A (en) 1994-06-01 1998-11-24 Quantum Leap Innovations, Inc. Computer virus trap
US5802277A (en) 1995-07-31 1998-09-01 International Business Machines Corporation Virus protection in computer systems
US6092194A (en) 1996-11-08 2000-07-18 Finjan Software, Ltd. System and method for protecting a computer and a network from hostile downloadables
US6154844A (en) 1996-11-08 2000-11-28 Finjan Software, Ltd. System and method for attaching a downloadable security profile to a downloadable
US6424627B1 (en) 1997-02-24 2002-07-23 Metrobility Optical Systems Full-duplex medium tap apparatus and system
US5960170A (en) 1997-03-18 1999-09-28 Trend Micro, Inc. Event triggered iterative virus detection
US6094677A (en) 1997-05-30 2000-07-25 International Business Machines Corporation Methods, systems and computer program products for providing insertions during delays in interactive systems
US5978917A (en) 1997-08-14 1999-11-02 Symantec Corporation Detection and elimination of macro viruses
US5983348A (en) 1997-09-10 1999-11-09 Trend Micro Incorporated Computer network malicious code scanner
US6272641B1 (en) 1997-09-10 2001-08-07 Trend Micro, Inc. Computer network malicious code scanner method and apparatus
US6357008B1 (en) 1997-09-23 2002-03-12 Symantec Corporation Dynamic heuristic method for detecting computer viruses using decryption exploration and evaluation phases
US6269330B1 (en) 1997-10-07 2001-07-31 Attune Networks Ltd. Fault location and performance testing of communication networks
US6108799A (en) 1997-11-21 2000-08-22 International Business Machines Corporation Automated sample creation of polymorphic and non-polymorphic marcro viruses
US6088803A (en) 1997-12-30 2000-07-11 Intel Corporation System for virus-checking network data during download to a client device
US6279113B1 (en) 1998-03-16 2001-08-21 Internet Tools, Inc. Dynamic signature inspection-based network intrusion detection
US6298445B1 (en) 1998-04-30 2001-10-02 Netect, Ltd. Computer security
US20070011174A1 (en) 1998-09-22 2007-01-11 Kazuo Takaragi Method and a device for managing a computer network
US6550012B1 (en) 1998-12-11 2003-04-15 Network Associates, Inc. Active firewall system and methodology
US6487666B1 (en) 1999-01-15 2002-11-26 Cisco Technology, Inc. Intrusion detection signature analysis using regular expressions and logical operators
US6484315B1 (en) 1999-02-01 2002-11-19 Cisco Technology, Inc. Method and system for dynamically distributing updates in a network
US20030191957A1 (en) 1999-02-19 2003-10-09 Ari Hypponen Distributed computer virus detection and scanning
US7240368B1 (en) 1999-04-14 2007-07-03 Verizon Corporate Services Group Inc. Intrusion and misuse deterrence system employing a virtual network
US20020169952A1 (en) 1999-06-21 2002-11-14 Disanto Frank J. Method and apparatus for securing e-mail attachments
US6442696B1 (en) 1999-10-05 2002-08-27 Authoriszor, Inc. System and method for extensible positive client identification
US6493756B1 (en) 1999-10-28 2002-12-10 Networks Associates, Inc. System and method for dynamically sensing an asynchronous network event within a modular framework for network event processing
US7249175B1 (en) 1999-11-23 2007-07-24 Escom Corporation Method and system for blocking e-mail having a nonexistent sender address
US6775657B1 (en) 1999-12-22 2004-08-10 Cisco Technology, Inc. Multilayered intrusion detection system and method
US20010005889A1 (en) 1999-12-24 2001-06-28 F-Secure Oyj Remote computer virus scanning
US6832367B1 (en) 2000-03-06 2004-12-14 International Business Machines Corporation Method and system for recording and replaying the execution of distributed java programs
US20010047326A1 (en) 2000-03-14 2001-11-29 Broadbent David F. Interface system for a mortgage loan originator compliance engine
US7058822B2 (en) 2000-03-30 2006-06-06 Finjan Software, Ltd. Malicious mobile code runtime monitoring system and methods
US6831893B1 (en) 2000-04-03 2004-12-14 P-Cube, Ltd. Apparatus and method for wire-speed classification and pre-processing of data packets in a full duplex network
US20080215742A1 (en) 2000-04-28 2008-09-04 German Goldszmidt METHOD AND APPARATUS FOR DYNAMICALLY ADJUSTING RESOURCES ASSIGNED TO PLURALITY OF CUSTOMERS, FOR MEETING SERVICE LEVEL AGREEMENTS (SLAs) WITH MINIMAL RESOURCES, AND ALLOWING COMMON POOLS OF RESOURCES TO BE USED ACROSS PLURAL CUSTOMERS ON A DEMAND BASIS
US20020188887A1 (en) 2000-05-19 2002-12-12 Self Repairing Computers, Inc. Computer with switchable components
US7240364B1 (en) 2000-05-20 2007-07-03 Ciena Corporation Network device identity authentication
US6907396B1 (en) 2000-06-01 2005-06-14 Networks Associates Technology, Inc. Detecting computer viruses or malicious software by patching instructions into an emulator
US6971097B1 (en) 2000-06-09 2005-11-29 Sun Microsystems, Inc. Method and apparatus for implementing concurrently running jobs on an extended virtual machine using different heaps managers
US7080407B1 (en) 2000-06-27 2006-07-18 Cisco Technology, Inc. Virus detection and removal system and method for network-based systems
US7093239B1 (en) 2000-07-14 2006-08-15 Internet Security Systems, Inc. Computer immune system and method for detecting unwanted code in a computer system
WO2002006928A2 (en) 2000-07-14 2002-01-24 Vcis, Inc. Computer immune system and method for detecting unwanted code in a computer system
US20020018903A1 (en) 2000-07-21 2002-02-14 Tadashi Kokubo Anti-thrombogenic material and manufacturing method therefor
US6981279B1 (en) 2000-08-17 2005-12-27 International Business Machines Corporation Method and apparatus for replicating and analyzing worm programs
US20040117478A1 (en) 2000-09-13 2004-06-17 Triulzi Arrigo G.B. Monitoring network activity
WO2002023805A2 (en) 2000-09-13 2002-03-21 Karakoram Limited Monitoring network activity
US20020038430A1 (en) 2000-09-13 2002-03-28 Charles Edwards System and method of data collection, processing, analysis, and annotation for monitoring cyber-threats and the notification thereof to subscribers
US7496960B1 (en) 2000-10-30 2009-02-24 Trend Micro, Inc. Tracking and reporting of computer virus information
US20020091819A1 (en) 2001-01-05 2002-07-11 Daniel Melchione System and method for configuring computer applications and devices using inheritance
US20060047665A1 (en) 2001-01-09 2006-03-02 Tim Neil System and method for simulating an application for subsequent deployment to a device in communication with a transaction server
US20020095607A1 (en) 2001-01-18 2002-07-18 Catherine Lin-Hendel Security protection for computers and computer-networks
US20020144156A1 (en) 2001-01-31 2002-10-03 Copeland John A. Network port profiling
US20050033960A1 (en) 2001-02-12 2005-02-10 Jukka Vialen Message authentication
US20020116627A1 (en) 2001-02-20 2002-08-22 Tarbotton Lee Codel Lawson Software audit system
US20020166063A1 (en) 2001-03-01 2002-11-07 Cyber Operations, Llc System and method for anti-network terrorism
US20060015416A1 (en) 2001-03-23 2006-01-19 Restaurant Services, Inc. System, method and computer program product for utilizing market demand information for generating revenue
US20020184528A1 (en) 2001-04-12 2002-12-05 Shevenell Michael P. Method and apparatus for security management via vicarious network devices
US20020162015A1 (en) 2001-04-29 2002-10-31 Zhaomiao Tang Method and system for scanning and cleaning known and unknown computer viruses, recording medium and transmission medium therefor
US7328453B2 (en) 2001-05-09 2008-02-05 Ecd Systems, Inc. Systems and methods for the prevention of unauthorized use and manipulation of digital content
US7043757B2 (en) 2001-05-22 2006-05-09 Mci, Llc System and method for malicious code detection
US20020194490A1 (en) 2001-06-18 2002-12-19 Avner Halperin System and method of virus containment in computer networks
US7657419B2 (en) 2001-06-19 2010-02-02 International Business Machines Corporation Analytical virtual machine
US7028179B2 (en) 2001-07-03 2006-04-11 Intel Corporation Apparatus and method for secure, automated response to distributed denial of service attacks
US20030021728A1 (en) 2001-07-26 2003-01-30 Sharpe Richard R. Method of and apparatus for object-oriented real-time mechanical control of automated chemistry instruments
US20030229801A1 (en) 2001-08-01 2003-12-11 Networks Associates Technology, Inc. Wireless malware scanning back-end system and method
US20050021740A1 (en) 2001-08-14 2005-01-27 Bar Anat Bremler Detecting and protecting against worm traffic on a network
US7356736B2 (en) 2001-09-25 2008-04-08 Norman Asa Simulated computer system for monitoring of software performance
US7107617B2 (en) 2001-10-15 2006-09-12 Mcafee, Inc. Malware scanning of compressed computer files
US20030074578A1 (en) 2001-10-16 2003-04-17 Richard Ford Computer virus containment
US7007107B1 (en) 2001-10-22 2006-02-28 United Electronic Industries Methods and apparatus for performing data acquisition and control
US20030084318A1 (en) 2001-10-31 2003-05-01 Schertz Richard L. System and method of graphically correlating data for an intrusion protection system
US7243371B1 (en) 2001-11-09 2007-07-10 Cisco Technology, Inc. Method and system for configurable network intrusion detection
US20030101381A1 (en) 2001-11-29 2003-05-29 Nikolay Mateev System and method for virus checking software
US7080408B1 (en) 2001-11-30 2006-07-18 Mcafee, Inc. Delayed-delivery quarantining of network communications having suspicious contents
US20050210533A1 (en) 2001-11-30 2005-09-22 Copeland John A Packet Sampling Flow-Based Detection of Network Intrusions
US20030115483A1 (en) 2001-12-04 2003-06-19 Trend Micro Incorporated Virus epidemic damage control system and method for network environment
US6895550B2 (en) 2001-12-05 2005-05-17 I2 Technologies Us, Inc. Computer-implemented PDF document management
US7093002B2 (en) 2001-12-06 2006-08-15 Mcafee, Inc. Handling of malware scanning of files stored within a file storage device of a computer network
US20050125195A1 (en) 2001-12-21 2005-06-09 Juergen Brendel Method, apparatus and sofware for network traffic management
US7607171B1 (en) 2002-01-17 2009-10-20 Avinti, Inc. Virus detection by executing e-mail code in a virtual machine
US7100201B2 (en) 2002-01-24 2006-08-29 Arxceo Corporation Undetectable firewall
US20090083855A1 (en) 2002-01-25 2009-03-26 Frank Apap System and methods for detecting intrusions in a computer system by monitoring operating system registry accesses
US7448084B1 (en) 2002-01-25 2008-11-04 The Trustees Of Columbia University In The City Of New York System and methods for detecting intrusions in a computer system by monitoring operating system registry accesses
US7069316B1 (en) 2002-02-19 2006-06-27 Mcafee, Inc. Automated Internet Relay Chat malware monitoring and interception
US6941348B2 (en) 2002-02-19 2005-09-06 Postini, Inc. Systems and methods for managing the transmission of electronic messages through active message date updating
US20030200460A1 (en) 2002-02-28 2003-10-23 Ntt Docomo, Inc Server apparatus, and information processing method
US7213260B2 (en) 2002-03-08 2007-05-01 Secure Computing Corporation Systems and methods for upstream threat pushback
US7096498B2 (en) 2002-03-08 2006-08-22 Cipher Trust, Inc. Systems and methods for message threat management
US7458098B2 (en) 2002-03-08 2008-11-25 Secure Computing Corporation Systems and methods for enhancing electronic communication security
US20030188190A1 (en) 2002-03-26 2003-10-02 Aaron Jeffrey A. System and method of intrusion detection employing broad-scope monitoring
US20030212902A1 (en) 2002-05-13 2003-11-13 Van Der Made Peter A.J. Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine
US20040165588A1 (en) 2002-06-11 2004-08-26 Pandya Ashish A. Distributed network security system and a hardware processor therefor
US20030237000A1 (en) 2002-06-19 2003-12-25 International Business Machines Corporation Method, system and program product for detecting intrusion of a wireless network
US20070198275A1 (en) 2002-06-27 2007-08-23 Malden Matthew S Method and system for processing intelligence information
US20040003323A1 (en) 2002-06-29 2004-01-01 Steve Bennett Control over faults occurring during the operation of guest software in the virtual-machine architecture
US20040006473A1 (en) 2002-07-02 2004-01-08 Sbc Technology Resources, Inc. Method and system for automated categorization of statements
US20040015712A1 (en) 2002-07-19 2004-01-22 Peter Szor Heuristic detection of malicious computer code by page tracking
US7418729B2 (en) 2002-07-19 2008-08-26 Symantec Corporation Heuristic detection of malicious computer code by page tracking
US7519990B1 (en) 2002-07-19 2009-04-14 Fortinet, Inc. Managing network traffic flow
US20040019832A1 (en) 2002-07-23 2004-01-29 International Business Machines Corporation Method and apparatus for the automatic determination of potentially worm-like behavior of a program
US7996905B2 (en) 2002-07-23 2011-08-09 Trend Micro Incorporated Method and apparatus for the automatic determination of potentially worm-like behavior of a program
US7487543B2 (en) 2002-07-23 2009-02-03 International Business Machines Corporation Method and apparatus for the automatic determination of potentially worm-like behavior of a program
US20080189787A1 (en) 2002-07-23 2008-08-07 International Business Machines Corporation Method and Apparatus for the Automatic Determination of Potentially Worm-Like Behavior of a Program
US7464407B2 (en) 2002-08-20 2008-12-09 Nec Corporation Attack defending system and attack defending method
US20040047356A1 (en) 2002-09-06 2004-03-11 Bauer Blaine D. Network traffic monitoring
US7467408B1 (en) 2002-09-09 2008-12-16 Cisco Technology, Inc. Method and apparatus for capturing and filtering datagrams for network security monitoring
US20050283839A1 (en) 2002-09-10 2005-12-22 Ingenia Technology Limited Security device and system
US20040117624A1 (en) 2002-10-21 2004-06-17 Brandt David D. System and methodology providing automation security analysis, validation, and learning in an industrial controller environment
US20040083408A1 (en) 2002-10-24 2004-04-29 Mark Spiegel Heuristic detection and termination of fast spreading network worm attacks
US7159149B2 (en) 2002-10-24 2007-01-02 Symantec Corporation Heuristic detection and termination of fast spreading network worm attacks
US20040088581A1 (en) 2002-11-04 2004-05-06 Brawn John Melvin Signal level propagation mechanism for distribution of a payload to vulnerable systems
US20060173992A1 (en) 2002-11-04 2006-08-03 Daniel Weber Event detection/anomaly correlation heuristics
US20050033989A1 (en) 2002-11-04 2005-02-10 Poletto Massimiliano Antonio Detection of scanning attacks
US20040093513A1 (en) 2002-11-07 2004-05-13 Tippingpoint Technologies, Inc. Active network defense system and method
US20040111531A1 (en) 2002-12-06 2004-06-10 Stuart Staniford Method and system for reducing the rate of infection of a communications network by a software worm
US7428300B1 (en) 2002-12-09 2008-09-23 Verizon Laboratories Inc. Diagnosing fault patterns in telecommunication networks
US20040128355A1 (en) 2002-12-25 2004-07-01 Kuo-Jen Chao Community-based message classification and self-amending system for a messaging system
US7546638B2 (en) 2003-03-18 2009-06-09 Symantec Corporation Automated identification and clean-up of malicious computer code
US20040249911A1 (en) 2003-03-31 2004-12-09 Alkhatib Hasan S. Secure virtual community network system
US6898632B2 (en) 2003-03-31 2005-05-24 Finisar Corporation Network security tap for use with intrusion detection system
US20040255161A1 (en) 2003-04-12 2004-12-16 Deep Nines, Inc. System and method for network edge data protection
US20060150249A1 (en) 2003-05-07 2006-07-06 Derek Gassen Method and apparatus for predictive and actual intrusion detection on a network
US20080072326A1 (en) 2003-05-20 2008-03-20 Danford Robert W Applying blocking measures progressively to malicious network traffic
US20040236963A1 (en) 2003-05-20 2004-11-25 International Business Machines Corporation Applying blocking measures progressively to malicious network traffic
US7707633B2 (en) 2003-05-20 2010-04-27 International Business Machines Corporation Applying blocking measures progressively to malicious network traffic
US7464404B2 (en) 2003-05-20 2008-12-09 International Business Machines Corporation Method of responding to a truncated secure session attack
US20060075496A1 (en) 2003-05-20 2006-04-06 International Bussiness Machines Corporation Applying blocking measures progressively to malicious network traffic
US7308716B2 (en) 2003-05-20 2007-12-11 International Business Machines Corporation Applying blocking measures progressively to malicious network traffic
US7231667B2 (en) 2003-05-29 2007-06-12 Computer Associates Think, Inc. System and method for computer virus detection utilizing heuristic analysis
US20040243349A1 (en) 2003-05-30 2004-12-02 Segue Software, Inc. Method of non-intrusive analysis of secure and non-secure web application traffic in real-time
US20050050148A1 (en) 2003-06-18 2005-03-03 Said Mohammadioun System and method for providing notification on remote devices
US20050108562A1 (en) 2003-06-18 2005-05-19 Khazan Roger I. Technique for detecting executable malicious code using a combination of static and dynamic analyses
US20040268147A1 (en) 2003-06-30 2004-12-30 Wiederin Shawn E Integrated security system
US20050005159A1 (en) 2003-07-01 2005-01-06 Oliphant Brett M. Vulnerability and remediation database
US20070256132A2 (en) 2003-07-01 2007-11-01 Securityprofiling, Inc. Vulnerability and remediation database
US7565550B2 (en) 2003-08-29 2009-07-21 Trend Micro, Inc. Automatic registration of a virus/worm monitor in a distributed network
US7287278B2 (en) 2003-08-29 2007-10-23 Trend Micro, Inc. Innoculation of computing devices against a selected computer virus
US7523493B2 (en) 2003-08-29 2009-04-21 Trend Micro Incorporated Virus monitor and methods of use thereof
US7392542B2 (en) 2003-08-29 2008-06-24 Seagate Technology Llc Restoration of data corrupted by viruses using pre-infected copy of data
US7386888B2 (en) 2003-08-29 2008-06-10 Trend Micro, Inc. Network isolation techniques suitable for virus protection
US20070064689A1 (en) 2003-09-19 2007-03-22 Shin Yong M Method of controlling communication between devices in a network and apparatus for the same
US7644441B2 (en) 2003-09-26 2010-01-05 Cigital, Inc. Methods for identifying malicious software
US7496961B2 (en) 2003-10-15 2009-02-24 Intel Corporation Methods and apparatus to provide network traffic support and physical security support
US20050086523A1 (en) 2003-10-15 2005-04-21 Zimmer Vincent J. Methods and apparatus to provide network traffic support and physical security support
US20050149726A1 (en) 2003-10-21 2005-07-07 Amit Joshi Systems and methods for secure client applications
US7584455B2 (en) 2003-10-23 2009-09-01 Microsoft Corporation Predicate-based test coverage and generation
US20050091652A1 (en) 2003-10-28 2005-04-28 Ross Jonathan K. Processor-architecture for facilitating a virtual machine monitor
US20050091513A1 (en) 2003-10-28 2005-04-28 Fujitsu Limited Device, method and program for detecting unauthorized access
US20050091533A1 (en) 2003-10-28 2005-04-28 Fujitsu Limited Device and method for worm detection, and computer product
US20050265331A1 (en) 2003-11-12 2005-12-01 The Trustees Of Columbia University In The City Of New York Apparatus method and medium for tracing the origin of network transmissions using n-gram distribution of data
US20100054278A1 (en) 2003-11-12 2010-03-04 Stolfo Salvatore J Apparatus method and medium for detecting payload anomaly using n-gram distribution of normal data
US7639714B2 (en) 2003-11-12 2009-12-29 The Trustees Of Columbia University In The City Of New York Apparatus method and medium for detecting payload anomaly using n-gram distribution of normal data
US20050114663A1 (en) 2003-11-21 2005-05-26 Finisar Corporation Secure network access devices with data encryption
US20050201297A1 (en) 2003-12-12 2005-09-15 Cyrus Peikari Diagnosis of embedded, wireless mesh networks with real-time, flexible, location-specific signaling
US20050157662A1 (en) 2004-01-20 2005-07-21 Justin Bingham Systems and methods for detecting a compromised network
US7346486B2 (en) 2004-01-22 2008-03-18 Nec Laboratories America, Inc. System and method for modeling, abstraction, and analysis of software
US20100011205A1 (en) 2004-01-23 2010-01-14 Acxiom Corporation Secure data exchange technique
US8220055B1 (en) 2004-02-06 2012-07-10 Symantec Corporation Behavior blocking utilizing positive behavior system and method
US7530104B1 (en) 2004-02-09 2009-05-05 Symantec Corporation Threat analysis
US20050183143A1 (en) 2004-02-13 2005-08-18 Anderholm Eric J. Methods and systems for monitoring user, application or device activity
US9282109B1 (en) 2004-04-01 2016-03-08 Fireeye, Inc. System and method for analyzing packets
US8584239B2 (en) 2004-04-01 2013-11-12 Fireeye, Inc. Virtual machine with dynamic data flow analysis
US20120174186A1 (en) 2004-04-01 2012-07-05 Ashar Aziz Policy Based Capture with Replay to Virtual Machine
US8291499B2 (en) 2004-04-01 2012-10-16 Fireeye, Inc. Policy based capture with replay to virtual machine
US9628498B1 (en) 2004-04-01 2017-04-18 Fireeye, Inc. System and method for bot detection
US9661018B1 (en) 2004-04-01 2017-05-23 Fireeye, Inc. System and method for detecting anomalous behaviors using a virtual machine environment
US9591020B1 (en) 2004-04-01 2017-03-07 Fireeye, Inc. System and method for signature generation
US20130036472A1 (en) 2004-04-01 2013-02-07 FireEye, Inc Computer Worm Defense System and Method
US9516057B2 (en) 2004-04-01 2016-12-06 Fireeye, Inc. Systems and methods for computer worm defense
US9838411B1 (en) 2004-04-01 2017-12-05 Fireeye, Inc. Subscriber based protection system
US20160301703A1 (en) 2004-04-01 2016-10-13 Fireeye, Inc. Systems and methods for computer worm defense
US20130047257A1 (en) 2004-04-01 2013-02-21 Ashar Aziz Systems and Methods for Computer Worm Defense
US9912684B1 (en) 2004-04-01 2018-03-06 Fireeye, Inc. System and method for virtual analysis of network data
US8793787B2 (en) 2004-04-01 2014-07-29 Fireeye, Inc. Detecting malicious network content using virtual environment components
US9356944B1 (en) 2004-04-01 2016-05-31 Fireeye, Inc. System and method for detecting malicious traffic using a virtual machine configured with a select software environment
US10027690B2 (en) 2004-04-01 2018-07-17 Fireeye, Inc. Electronic message analysis for malware detection
US8516593B2 (en) 2004-04-01 2013-08-20 Fireeye, Inc. Systems and methods for computer worm defense
US8528086B1 (en) 2004-04-01 2013-09-03 Fireeye, Inc. System and method of detecting computer worms
US8539582B1 (en) 2004-04-01 2013-09-17 Fireeye, Inc. Malware containment and security analysis on connection
US10068091B1 (en) 2004-04-01 2018-09-04 Fireeye, Inc. System and method for malware containment
US20160127393A1 (en) 2004-04-01 2016-05-05 Fireeye, Inc. Electronic Message Analysis For Malware Detection
US8561177B1 (en) 2004-04-01 2013-10-15 Fireeye, Inc. Systems and methods for detecting communication channels of bots
US20070250930A1 (en) 2004-04-01 2007-10-25 Ashar Aziz Virtual machine with dynamic data flow analysis
US8171553B2 (en) 2004-04-01 2012-05-01 Fireeye, Inc. Heuristic based capture with replay to virtual machine
US10097573B1 (en) 2004-04-01 2018-10-09 Fireeye, Inc. Systems and methods for malware defense
US8881282B1 (en) 2004-04-01 2014-11-04 Fireeye, Inc. Systems and methods for malware attack detection and identification
US8635696B1 (en) 2004-04-01 2014-01-21 Fireeye, Inc. System and method of detecting time-delayed malicious traffic
US20080005782A1 (en) 2004-04-01 2008-01-03 Ashar Aziz Heuristic based capture with replay to virtual machine
US10165000B1 (en) 2004-04-01 2018-12-25 Fireeye, Inc. Systems and methods for malware attack prevention by intercepting flows of information
US20110314546A1 (en) 2004-04-01 2011-12-22 Ashar Aziz Electronic Message Analysis for Malware Detection
US8689333B2 (en) 2004-04-01 2014-04-01 Fireeye, Inc. Malware defense system and method
US8776229B1 (en) 2004-04-01 2014-07-08 Fireeye, Inc. System and method of detecting malicious traffic while reducing false positives
US8204984B1 (en) 2004-04-01 2012-06-19 Fireeye, Inc. Systems and methods for detecting encrypted bot command and control communication channels
US9306960B1 (en) 2004-04-01 2016-04-05 Fireeye, Inc. Systems and methods for unauthorized activity defense
US9197664B1 (en) 2004-04-01 2015-11-24 Fire Eye, Inc. System and method for malware containment
US9106694B2 (en) 2004-04-01 2015-08-11 Fireeye, Inc. Electronic message analysis for malware detection
US9071638B1 (en) 2004-04-01 2015-06-30 Fireeye, Inc. System and method for malware containment
US8898788B1 (en) 2004-04-01 2014-11-25 Fireeye, Inc. Systems and methods for malware attack prevention
US9027135B1 (en) 2004-04-01 2015-05-05 Fireeye, Inc. Prospective client identification using malware attack detection
US8984638B1 (en) 2004-04-01 2015-03-17 Fireeye, Inc. System and method for analyzing suspicious network data
US20100192223A1 (en) 2004-04-01 2010-07-29 Osman Abdoul Ismael Detecting Malicious Network Content Using Virtual Environment Components
US20080307524A1 (en) 2004-04-08 2008-12-11 The Regents Of The University Of California Detecting Public Network Attacks Using Signatures and Fast Content Analysis
US20050238005A1 (en) 2004-04-21 2005-10-27 Yi-Fen Chen Method and apparatus for controlling traffic in a computer network
US20050240781A1 (en) 2004-04-22 2005-10-27 Gassoway Paul A Prioritizing intrusion detection logs
US20100281541A1 (en) 2004-05-11 2010-11-04 The Trustees Of Columbia University In The City Of New York Systems and Methods for Correlating and Distributing Intrusion Alert Information Among Collaborating Computer Systems
US7779463B2 (en) 2004-05-11 2010-08-17 The Trustees Of Columbia University In The City Of New York Systems and methods for correlating and distributing intrusion alert information among collaborating computer systems
US20050262562A1 (en) 2004-05-21 2005-11-24 Paul Gassoway Systems and methods of computer security
US7441272B2 (en) 2004-06-09 2008-10-21 Intel Corporation Techniques for self-isolation of networked devices
US9838416B1 (en) 2004-06-14 2017-12-05 Fireeye, Inc. System and method of detecting malicious content
US20110099633A1 (en) 2004-06-14 2011-04-28 NetForts, Inc. System and method of containing computer worms
US8549638B2 (en) 2004-06-14 2013-10-01 Fireeye, Inc. System and method of containing computer worms
US20110093951A1 (en) 2004-06-14 2011-04-21 NetForts, Inc. Computer worm defense system and method
US8006305B2 (en) 2004-06-14 2011-08-23 Fireeye, Inc. Computer worm defense system and method
US20060021029A1 (en) 2004-06-29 2006-01-26 Brickell Ernie F Method of improving computer security through sandboxing
US20060010495A1 (en) 2004-07-06 2006-01-12 Oded Cohen Method for protecting a computer from suspicious objects
US20060015747A1 (en) 2004-07-16 2006-01-19 Red Hat, Inc. System and method for detecting computer virus
US20060015715A1 (en) 2004-07-16 2006-01-19 Eric Anderson Automatically protecting network service from network attack
US20070271446A1 (en) 2004-07-16 2007-11-22 Tomonori Nakamura Application Execution Device and Application Execution Device Application Execution Method
US20060021054A1 (en) 2004-07-21 2006-01-26 Microsoft Corporation Containment of worms
US7603715B2 (en) 2004-07-21 2009-10-13 Microsoft Corporation Containment of worms
US20060031476A1 (en) 2004-08-05 2006-02-09 Mathes Marvin L Apparatus and method for remotely monitoring a computer network
US7949849B2 (en) 2004-08-24 2011-05-24 Mcafee, Inc. File system for a capture system
US20070006313A1 (en) 2004-09-17 2007-01-04 Phillip Porras Method and apparatus for combating malicious code
US20060070130A1 (en) 2004-09-27 2006-03-30 Microsoft Corporation System and method of identifying the source of an attack on a computer network
US20090083369A1 (en) 2004-10-04 2009-03-26 Netmask (El-Mar) Dynamic content conversion
US7478428B1 (en) 2004-10-12 2009-01-13 Microsoft Corporation Adapting input to find integer overflows
US7849506B1 (en) 2004-10-12 2010-12-07 Avaya Inc. Switching device, method, and computer program for efficient intrusion detection
US20060101516A1 (en) 2004-10-12 2006-05-11 Sushanthan Sudaharan Honeynet farms as an early warning system for production networks
US20060095968A1 (en) 2004-10-28 2006-05-04 Cisco Technology, Inc. Intrusion detection in a data center environment
US20060101517A1 (en) 2004-10-28 2006-05-11 Banzhof Carl E Inventory management-based computer vulnerability resolution system
US20090328185A1 (en) 2004-11-04 2009-12-31 Eric Van Den Berg Detecting exploit code in network flows
US20060161987A1 (en) 2004-11-10 2006-07-20 Guy Levy-Yurista Detecting and remedying unauthorized computer programs
US7540025B2 (en) 2004-11-18 2009-05-26 Cisco Technology, Inc. Mitigating network attacks using automatic signature generation
US7784097B1 (en) 2004-11-24 2010-08-24 The Trustees Of Columbia University In The City Of New York Systems and methods for correlating and distributing intrusion alert information among collaborating computer systems
US20100281542A1 (en) 2004-11-24 2010-11-04 The Trustees Of Columbia University In The City Of New York Systems and Methods for Correlating and Distributing Intrusion Alert Information Among Collaborating Computer Systems
US20060117385A1 (en) 2004-11-30 2006-06-01 Mester Michael L Monitoring propagation protection within a network
US20060123477A1 (en) 2004-12-06 2006-06-08 Kollivakkam Raghavan Method and apparatus for generating a network topology representation based on inspection of application messages at a network device
US7996556B2 (en) 2004-12-06 2011-08-09 Cisco Technology, Inc. Method and apparatus for generating a network topology representation based on inspection of application messages at a network device
US20060161989A1 (en) 2004-12-13 2006-07-20 Eran Reshef System and method for deterring rogue users from attacking protected legitimate users
US7937761B1 (en) 2004-12-17 2011-05-03 Symantec Corporation Differential threat detection processing
US20060143709A1 (en) 2004-12-27 2006-06-29 Raytheon Company Network intrusion prevention
US20060161983A1 (en) 2005-01-20 2006-07-20 Cothrell Scott A Inline intrusion detection
US20060164199A1 (en) 2005-01-26 2006-07-27 Lockdown Networks, Inc. Network appliance for securely quarantining a node on a network
US7676841B2 (en) 2005-02-01 2010-03-09 Fmr Llc Network intrusion mitigation
US20060179147A1 (en) 2005-02-07 2006-08-10 Veritas Operating Corporation System and method for connection failover using redirection
US20060184632A1 (en) 2005-02-15 2006-08-17 Spam Cube, Inc. Apparatus and method for analyzing and filtering email and for providing web related services
US20060191010A1 (en) 2005-02-18 2006-08-24 Pace University System for intrusion detection and vulnerability assessment in a computer network using simulation and machine learning
US20060200677A1 (en) 2005-03-03 2006-09-07 Microsoft Corporation Method and system for encoding metadata
US7869073B2 (en) 2005-03-22 2011-01-11 Fuji Xerox Co., Ltd. Image forming system, image forming method and information terminal device
US20060221956A1 (en) 2005-03-31 2006-10-05 Narayan Harsha L Methods for performing packet classification via prefix pair bit vectors
US20060251104A1 (en) 2005-03-31 2006-11-09 Fujitsu Limited Service apparatus, method of controlling switching of connection destination of client apparatus by service apparatus, and storage medium readable by machine
US20060236393A1 (en) 2005-03-31 2006-10-19 Microsoft Corporation System and method for protecting a limited resource computer from malware
US7568233B1 (en) 2005-04-01 2009-07-28 Symantec Corporation Detecting malicious software through process dump scanning
US20080098476A1 (en) 2005-04-04 2008-04-24 Bae Systems Information And Electronic Systems Integration Inc. Method and Apparatus for Defending Against Zero-Day Worm-Based Attacks
US7904959B2 (en) 2005-04-18 2011-03-08 The Trustees Of Columbia University In The City Of New York Systems and methods for detecting and inhibiting attacks using honeypots
US20060242709A1 (en) 2005-04-21 2006-10-26 Microsoft Corporation Protecting a computer that provides a Web service from malware
US20060248582A1 (en) 2005-04-28 2006-11-02 Panjwani Dileep K One-way proxy system
US20060248519A1 (en) 2005-05-02 2006-11-02 Ibm Corporation Methods and arrangements for unified program analysis
US7480773B1 (en) 2005-05-02 2009-01-20 Sprint Communications Company L.P. Virtual machine use and optimization of hardware configurations
US7712136B2 (en) 2005-05-05 2010-05-04 Ironport Systems, Inc. Controlling a message quarantine
US7854007B2 (en) 2005-05-05 2010-12-14 Ironport Systems, Inc. Identifying threats in electronic messages
US20070220607A1 (en) 2005-05-05 2007-09-20 Craig Sprosts Determining whether to quarantine a message
US7930738B1 (en) 2005-06-02 2011-04-19 Adobe Systems Incorporated Method and apparatus for secure execution of code
US20120297489A1 (en) 2005-06-06 2012-11-22 International Business Machines Corporation Computer network intrusion detection
US20060288417A1 (en) 2005-06-21 2006-12-21 Sbc Knowledge Ventures Lp Method and apparatus for mitigating the effects of malicious software in a communication network
US7877803B2 (en) 2005-06-27 2011-01-25 Hewlett-Packard Development Company, L.P. Automated immune response for a computer
US20070006288A1 (en) 2005-06-30 2007-01-04 Microsoft Corporation Controlling network access
US20070016951A1 (en) 2005-07-13 2007-01-18 Piccard Paul L Systems and methods for identifying sources of malware
US20070019286A1 (en) 2005-07-20 2007-01-25 Alps Electric Co., Ltd. Wavelength branching filter and optical communication module
US20070033645A1 (en) 2005-07-22 2007-02-08 Alcatel DNS based enforcement for confinement and detection of network malicious activities
US20070038943A1 (en) 2005-08-15 2007-02-15 Cisco Technology, Inc. Interactive text communication system
US20070074169A1 (en) 2005-08-25 2007-03-29 Fortify Software, Inc. Apparatus and method for analyzing and supplementing a program to provide security
US7739740B1 (en) 2005-09-22 2010-06-15 Symantec Corporation Detecting polymorphic threats
US20070101435A1 (en) 2005-10-14 2007-05-03 Check Point Software Technologies, Inc. System and Methodology Providing Secure Workspace Environment
US20090300415A1 (en) 2005-10-19 2009-12-03 Lenovo (Beijing) Limited Computer System and Method for Performing Integrity Detection on the Same
US7730011B1 (en) 2005-10-19 2010-06-01 Mcafee, Inc. Attributes of captured objects in a capture system
US8176049B2 (en) 2005-10-19 2012-05-08 Mcafee Inc. Attributes of captured objects in a capture system
US20070094730A1 (en) 2005-10-20 2007-04-26 Cisco Technology, Inc. Mechanism to correlate the presence of worms in a network
US20090158430A1 (en) 2005-10-21 2009-06-18 Borders Kevin R Method, system and computer program product for detecting at least one of security threats and undesirable computer files
US20080028463A1 (en) 2005-10-27 2008-01-31 Damballa, Inc. Method and system for detecting and responding to attacking networks
US20070128855A1 (en) 2005-12-07 2007-06-07 Samsung Electro-Mechanics Co., Ltd. Printed wiring board and method for manufacturing the same
US7698548B2 (en) 2005-12-08 2010-04-13 Microsoft Corporation Communications traffic segregation for security purposes
US20070142030A1 (en) 2005-12-19 2007-06-21 Airdefense, Inc. Systems and methods for wireless vulnerability analysis
US20070143827A1 (en) 2005-12-21 2007-06-21 Fiberlink Methods and systems for intelligently controlling access to computing resources
US20080018122A1 (en) 2005-12-28 2008-01-24 Robert Zierler Rifle Sling and Method of Use Thereof
US20070156895A1 (en) 2005-12-29 2007-07-05 Research In Motion Limited System and method of dynamic management of spam
US20090271867A1 (en) 2005-12-30 2009-10-29 Peng Zhang Virtual machine to detect malicious code
US20070157180A1 (en) 2005-12-30 2007-07-05 Microsoft Corporation Approximating finite domains in symbolic state exploration
US20070157306A1 (en) 2005-12-30 2007-07-05 Elrod Craig T Network threat detection and mitigation
US20070168988A1 (en) 2006-01-11 2007-07-19 International Business Machines Corporation Software verification using hybrid explicit and symbolic model checking
US20130014259A1 (en) 2006-01-23 2013-01-10 University Of Washington Through Its Center For Commercialization Detection of spyware threats within virtual machine
US20070174915A1 (en) 2006-01-23 2007-07-26 University Of Washington Detection of spyware threats within virtual machine
US20070171824A1 (en) 2006-01-25 2007-07-26 Cisco Technology, Inc. A California Corporation Sampling rate-limited traffic
US20070192500A1 (en) 2006-02-16 2007-08-16 Infoexpress, Inc. Network access control including dynamic policy enforcement point
US20070192858A1 (en) 2006-02-16 2007-08-16 Infoexpress, Inc. Peer based network access control
US8176480B1 (en) 2006-02-27 2012-05-08 Symantec Operating Corporation Adaptive instrumentation through dynamic recompilation
US8381299B2 (en) 2006-02-28 2013-02-19 The Trustees Of Columbia University In The City Of New York Systems, methods, and media for outputting a dataset based upon anomaly detection
US20090193293A1 (en) 2006-02-28 2009-07-30 Stolfo Salvatore J Systems, Methods, and Media for Outputting Data Based Upon Anomaly Detection
US20070208822A1 (en) 2006-03-01 2007-09-06 Microsoft Corporation Honey Monkey Network Exploration
US20090144823A1 (en) 2006-03-27 2009-06-04 Gerardo Lamastra Method and System for Mobile Network Security, Related Network and Computer Program Product
US20080046781A1 (en) 2006-03-29 2008-02-21 Childs Philip L System and method for booting alternate MBR in event of virus attack
US20080040710A1 (en) 2006-04-05 2008-02-14 Prevx Limited Method, computer program and computer for analysing an executable computer file
US8479174B2 (en) 2006-04-05 2013-07-02 Prevx Limited Method, computer program and computer for analyzing an executable computer file
US20070240220A1 (en) 2006-04-06 2007-10-11 George Tuvell System and method for managing malware protection on mobile devices
US8312545B2 (en) 2006-04-06 2012-11-13 Juniper Networks, Inc. Non-signature malware detection system and method for mobile platforms
US20070240222A1 (en) 2006-04-06 2007-10-11 George Tuvell System and Method for Managing Malware Protection on Mobile Devices
US8321941B2 (en) 2006-04-06 2012-11-27 Juniper Networks, Inc. Malware modeling detection system and method for mobile platforms
US20070240219A1 (en) 2006-04-06 2007-10-11 George Tuvell Malware Detection System And Method for Compressed Data on Mobile Platforms
US20070240218A1 (en) 2006-04-06 2007-10-11 George Tuvell Malware Detection System and Method for Mobile Platforms
WO2007117636A2 (en) 2006-04-06 2007-10-18 Smobile Systems, Inc. Malware detection system and method for comprssed data on mobile platforms
US8375444B2 (en) 2006-04-20 2013-02-12 Fireeye, Inc. Dynamic signature creation and enforcement
US20120331553A1 (en) 2006-04-20 2012-12-27 Fireeye, Inc. Dynamic signature creation and enforcement
US8566946B1 (en) 2006-04-20 2013-10-22 Fireeye, Inc. Malware containment on connection
US8510827B1 (en) 2006-05-18 2013-08-13 Vmware, Inc. Taint tracking mechanism for computer security
US20070275741A1 (en) 2006-05-24 2007-11-29 Lucent Technologies Inc. Methods and systems for identifying suspected virus affected mobile stations
US8365286B2 (en) 2006-06-30 2013-01-29 Sophos Plc Method and system for classification of software using characteristics and combinations of such characteristics
GB2439806A (en) 2006-06-30 2008-01-09 Sophos Plc Classifying software as malware using characteristics (or "genes")
US20090187992A1 (en) 2006-06-30 2009-07-23 Poston Robert J Method and system for classification of software using characteristics and combinations of such characteristics
US8020206B2 (en) 2006-07-10 2011-09-13 Websense, Inc. System and method of analyzing web content
US20080066179A1 (en) 2006-09-11 2008-03-13 Fujian Eastern Micropoint Info-Tech Co., Ltd. Antivirus protection system and method for computers
US8789172B2 (en) 2006-09-18 2014-07-22 The Trustees Of Columbia University In The City Of New York Methods, media, and systems for detecting attack on a digital processing device
US20080077793A1 (en) 2006-09-21 2008-03-27 Sensory Networks, Inc. Apparatus and method for high throughput network security systems
US20080080518A1 (en) 2006-09-29 2008-04-03 Hoeflin David A Method and apparatus for detecting compromised host computers
US20100017546A1 (en) 2006-10-04 2010-01-21 Trek 2000 International Ltd. Method, apparatus and system for authentication of external storage devices
WO2008041950A2 (en) 2006-10-04 2008-04-10 Trek 2000 International Ltd. Method, apparatus and system for authentication of external storage devices
US20080086720A1 (en) 2006-10-10 2008-04-10 Reinhard Lekel Data processing system and method for execution of a test routine in connection with an operating system
US7832008B1 (en) 2006-10-11 2010-11-09 Cisco Technology, Inc. Protection of computer resources
US8225373B2 (en) 2006-10-11 2012-07-17 Cisco Technology, Inc. Protection of computer resources
US20080134178A1 (en) 2006-10-17 2008-06-05 Manageiq, Inc. Control and management of virtual systems
US8234640B1 (en) 2006-10-17 2012-07-31 Manageiq, Inc. Compliance-based adaptations in managed virtual systems
US8042184B1 (en) 2006-10-18 2011-10-18 Kaspersky Lab, Zao Rapid analysis of data stream for malware presence
US20080141376A1 (en) 2006-10-24 2008-06-12 Pc Tools Technology Pty Ltd. Determining maliciousness of software
US20080120722A1 (en) 2006-11-17 2008-05-22 Caleb Sima Web application assessment based on intelligent generation of attack strings
US20080134334A1 (en) 2006-11-30 2008-06-05 Electronics And Telecommunications Research Institute Apparatus and method for detecting network attack
US8533824B2 (en) 2006-12-04 2013-09-10 Glasswall (Ip) Limited Resisting the spread of unwanted code and data
US20090031423A1 (en) 2006-12-20 2009-01-29 Peng Liu Proactive worm containment (pwc) for enterprise networks
US8286251B2 (en) 2006-12-21 2012-10-09 Telefonaktiebolaget L M Ericsson (Publ) Obfuscating computer program code
US8045094B2 (en) 2006-12-26 2011-10-25 Sharp Kabushiki Kaisha Backlight device, display device, and television receiver
US7996836B1 (en) 2006-12-29 2011-08-09 Symantec Corporation Using a hypervisor to provide computer security
US8069484B2 (en) 2007-01-25 2011-11-29 Mandiant Corporation System and method for determining data entropy to identify malware
US20080184367A1 (en) 2007-01-25 2008-07-31 Mandiant, Inc. System and method for determining data entropy to identify malware
US20080184373A1 (en) 2007-01-25 2008-07-31 Microsoft Corporation Protection Agents and Privilege Modes
US7908660B2 (en) 2007-02-06 2011-03-15 Microsoft Corporation Dynamic risk management
US20080201778A1 (en) 2007-02-21 2008-08-21 Matsushita Electric Industrial Co., Ltd. Intrusion detection using system call monitors on a bayesian network
US20080209557A1 (en) 2007-02-28 2008-08-28 Microsoft Corporation Spyware detection mechanism
US20080222729A1 (en) 2007-03-05 2008-09-11 Songqing Chen Containment of Unknown and Polymorphic Fast Spreading Worms
US20090077666A1 (en) 2007-03-12 2009-03-19 University Of Southern California Value-Adaptive Security Threat Modeling and Vulnerability Ranking
US20080320594A1 (en) 2007-03-19 2008-12-25 Xuxian Jiang Malware Detector
US20090172815A1 (en) 2007-04-04 2009-07-02 Guofei Gu Method and apparatus for detecting malware infection
US20090064332A1 (en) 2007-04-04 2009-03-05 Phillip Andrew Porras Method and apparatus for generating highly predictive blacklists
US20080263665A1 (en) 2007-04-20 2008-10-23 Juniper Networks, Inc. Network attack detection using partial deterministic finite automaton pattern matching
US20080295172A1 (en) 2007-05-22 2008-11-27 Khushboo Bohacek Method, system and computer-readable media for reducing undesired intrusion alarms in electronic communications systems and networks
US8321936B1 (en) 2007-05-30 2012-11-27 M86 Security, Inc. System and method for malicious software detection in multiple protocols
US8402529B1 (en) 2007-05-30 2013-03-19 M86 Security, Inc. Preventing propagation of malicious software during execution in a virtual machine
US20080301810A1 (en) 2007-06-04 2008-12-04 Agilent Technologies, Inc. Monitoring apparatus and method therefor
US20080313738A1 (en) 2007-06-15 2008-12-18 Broadcom Corporation Multi-Stage Deep Packet Inspection for Lightweight Devices
US20090007100A1 (en) 2007-06-28 2009-01-01 Microsoft Corporation Suspending a Running Operating System to Enable Security Scanning
US20090003317A1 (en) 2007-06-29 2009-01-01 Kasralikar Rahul S Method and mechanism for port redirects in a network switch
US8584094B2 (en) 2007-06-29 2013-11-12 Microsoft Corporation Dynamically computing reputation scores for objects
US7836502B1 (en) 2007-07-03 2010-11-16 Trend Micro Inc. Scheduled gateway scanning arrangement and methods thereof
US20090013408A1 (en) 2007-07-06 2009-01-08 Messagelabs Limited Detection of exploits in files
US20090036111A1 (en) 2007-07-30 2009-02-05 Mobile Iron, Inc. Virtual Instance Architecture for Mobile Device Management Systems
US20090037835A1 (en) 2007-07-30 2009-02-05 Adobe Systems Incorporated Application Tracking for Application Execution Environment
US20090044024A1 (en) 2007-08-06 2009-02-12 The Regents Of The University Of Michigan Network service for the detection, analysis and quarantine of malicious and unwanted files
US20090044274A1 (en) 2007-08-08 2009-02-12 Vmware, Inc. Impeding Progress of Malicious Guest Software
US20130246370A1 (en) 2007-08-29 2013-09-19 Anthony V. Bartram System, method, and computer program product for determining whether code is unwanted based on the decompilation thereof
US8464340B2 (en) 2007-09-04 2013-06-11 Samsung Electronics Co., Ltd. System, apparatus and method of malware diagnosis mechanism based on immunization database
US20090089879A1 (en) 2007-09-28 2009-04-02 Microsoft Corporation Securing anti-virus software with virtualization
US8307443B2 (en) 2007-09-28 2012-11-06 Microsoft Corporation Securing anti-virus software with virtualization
US20090126016A1 (en) 2007-10-02 2009-05-14 Andrey Sobko System and method for detecting multi-component malware
US20090126015A1 (en) 2007-10-02 2009-05-14 Monastyrsky Alexey V System and method for detecting multi-component malware
US20090094697A1 (en) 2007-10-05 2009-04-09 Google Inc. Intrusive software management
US20090113425A1 (en) 2007-10-30 2009-04-30 Vmware, Inc. Transparent Memory-Mapped Emulation of I/O Calls
US20090125976A1 (en) 2007-11-08 2009-05-14 Docomo Communications Laboratories Usa, Inc. Automated test input generation for web applications
US8045458B2 (en) 2007-11-08 2011-10-25 Mcafee, Inc. Prioritizing network traffic
US20090133125A1 (en) 2007-11-21 2009-05-21 Yang Seo Choi Method and apparatus for malware detection
US8010667B2 (en) 2007-12-12 2011-08-30 Vmware, Inc. On-access anti-virus mechanism for virtual machine architecture
US7996904B1 (en) 2007-12-19 2011-08-09 Symantec Corporation Automated unpacking of executables packed by multiple layers of arbitrary packers
US8510828B1 (en) 2007-12-31 2013-08-13 Symantec Corporation Enforcing the execution exception to prevent packers from evading the scanning of dynamically created code
US8225288B2 (en) 2008-01-29 2012-07-17 Intuit Inc. Model-based testing using branches, decisions, and options
US10146810B2 (en) 2008-02-01 2018-12-04 Fireeye, Inc. Method and system for collecting and organizing data corresponding to an event
US7937387B2 (en) 2008-02-01 2011-05-03 Mandiant System and method for data preservation and retrieval
US8793278B2 (en) 2008-02-01 2014-07-29 Mandiant, Llc System and method for data preservation and retrieval
US20130325792A1 (en) 2008-02-01 2013-12-05 Jason Shiffer Method and System for Analyzing Data Related to an Event
US20130325791A1 (en) 2008-02-01 2013-12-05 Jason Shiffer Method and System for Analyzing Data Related to an Event
US20110173213A1 (en) 2008-02-01 2011-07-14 Matthew Frazier System and method for data preservation and retrieval
US8949257B2 (en) 2008-02-01 2015-02-03 Mandiant, Llc Method and system for collecting and organizing data corresponding to an event
US20130325872A1 (en) 2008-02-01 2013-12-05 Jason Shiffer Method and System for Collecting and Organizing Data Corresponding to an Event
US8566476B2 (en) 2008-02-01 2013-10-22 Mandiant Corporation Method and system for analyzing data related to an event
US9106630B2 (en) 2008-02-01 2015-08-11 Mandiant, Llc Method and system for collaboration during an event
US20090198670A1 (en) 2008-02-01 2009-08-06 Jason Shiffer Method and system for collecting and organizing data corresponding to an event
US20090199274A1 (en) 2008-02-01 2009-08-06 Matthew Frazier method and system for collaboration during an event
US20130318038A1 (en) 2008-02-01 2013-11-28 Jason Shiffer Method and System for Analyzing Data Related to an Event
US20090198651A1 (en) 2008-02-01 2009-08-06 Jason Shiffer Method and system for analyzing data related to an event
US20130325871A1 (en) 2008-02-01 2013-12-05 Jason Shiffer Method and System for Collecting and Organizing Data Corresponding to an Event
US20130318073A1 (en) 2008-02-01 2013-11-28 Jason Shiffer Method and System for Collecting and Organizing Data Corresponding to an Event
US20090198689A1 (en) 2008-02-01 2009-08-06 Matthew Frazier System and method for data preservation and retrieval
US20100031353A1 (en) 2008-02-04 2010-02-04 Microsoft Corporation Malware Detection Using Code Analysis and Behavior Monitoring
US8595834B2 (en) 2008-02-04 2013-11-26 Samsung Electronics Co., Ltd Detecting unauthorized use of computing devices based on behavioral patterns
US20090199296A1 (en) 2008-02-04 2009-08-06 Samsung Electronics Co., Ltd. Detecting unauthorized use of computing devices based on behavioral patterns
US8201246B1 (en) 2008-02-25 2012-06-12 Trend Micro Incorporated Preventing malicious codes from performing malicious actions in a computer system
US8805947B1 (en) 2008-02-27 2014-08-12 Parallels IP Holdings GmbH Method and system for remote device access in virtual environment
US20090228233A1 (en) 2008-03-06 2009-09-10 Anderson Gary F Rank-based evaluation
US20090241187A1 (en) 2008-03-19 2009-09-24 Websense, Inc. Method and system for protection against information stealing software
US20090241190A1 (en) 2008-03-24 2009-09-24 Michael Todd System and method for securing a network from zero-day vulnerability exploits
US8239944B1 (en) 2008-03-28 2012-08-07 Symantec Corporation Reducing malware signature set size through server-side processing
US20090249482A1 (en) 2008-03-31 2009-10-01 Gurusamy Sarathy Method and system for detecting restricted content associated with retrieved content
US20090265692A1 (en) 2008-04-21 2009-10-22 Microsoft Corporation Active property checking
US20110167493A1 (en) 2008-05-27 2011-07-07 Yingbo Song Systems, methods, ane media for detecting network anomalies
US20090300761A1 (en) 2008-05-28 2009-12-03 John Park Intelligent Hashes for Centralized Malware Detection
US8516478B1 (en) 2008-06-12 2013-08-20 Mcafee, Inc. Subsequent processing of scanning task utilizing subset of virtual machines predetermined to have scanner process and adjusting amount of subsequest VMs processing based on load
US8234709B2 (en) 2008-06-20 2012-07-31 Symantec Operating Corporation Streaming malware definition updates
US8850570B1 (en) 2008-06-30 2014-09-30 Symantec Corporation Filter-based identification of malicious websites
US8087086B1 (en) 2008-06-30 2011-12-27 Symantec Corporation Method for mitigating false positive generation in antivirus software
US20090328221A1 (en) 2008-06-30 2009-12-31 Microsoft Corporation Malware detention for suspected malware
US20100005146A1 (en) 2008-07-03 2010-01-07 Barracuda Networks Inc. Facilitating transmission of email by checking email parameters with a database of well behaved senders
US8881271B2 (en) 2008-08-01 2014-11-04 Mandiant, Llc System and method for forensic identification of elements within a computer system
US20100030996A1 (en) 2008-08-01 2010-02-04 Mandiant, Inc. System and Method for Forensic Identification of Elements Within a Computer System
US20100037314A1 (en) 2008-08-11 2010-02-11 Perdisci Roberto Method and system for detecting malicious and/or botnet-related domain names
US20100043073A1 (en) 2008-08-13 2010-02-18 Fujitsu Limited Anti-virus method, computer, and recording medium
US20100058474A1 (en) 2008-08-29 2010-03-04 Avg Technologies Cz, S.R.O. System and method for the detection of malware
US20100064044A1 (en) 2008-09-05 2010-03-11 Kabushiki Kaisha Toshiba Information Processing System and Control Method for Information Processing System
US20100077481A1 (en) 2008-09-22 2010-03-25 Microsoft Corporation Collecting and analyzing malware data
US20100083376A1 (en) 2008-09-26 2010-04-01 Symantec Corporation Method and apparatus for reducing false positive detection of malware
US8028338B1 (en) 2008-09-30 2011-09-27 Symantec Corporation Modeling goodware characteristics to reduce false positive malware signatures
US8332571B1 (en) 2008-10-07 2012-12-11 Vizioncore, Inc. Systems and methods for improving virtual machine performance
US20110173460A1 (en) 2008-10-10 2011-07-14 Takayuki Ito Information processing device, method, program, and integrated circuit
US20110145920A1 (en) 2008-10-21 2011-06-16 Lookout, Inc System and method for adverse mobile application identification
US20130263260A1 (en) 2008-10-21 2013-10-03 Lookout, Inc. System and method for assessing an application to be installed on a mobile communication device
US20110047594A1 (en) 2008-10-21 2011-02-24 Lookout, Inc., A California Corporation System and method for mobile communication device application advisement
US20110047620A1 (en) 2008-10-21 2011-02-24 Lookout, Inc., A California Corporation System and method for server-coupled malware prevention
US9438622B1 (en) 2008-11-03 2016-09-06 Fireeye, Inc. Systems and methods for analyzing malicious PDF network content
US9954890B1 (en) 2008-11-03 2018-04-24 Fireeye, Inc. Systems and methods for analyzing PDF documents
US20100115621A1 (en) 2008-11-03 2010-05-06 Stuart Gresley Staniford Systems and Methods for Detecting Malicious Network Content
US8850571B2 (en) 2008-11-03 2014-09-30 Fireeye, Inc. Systems and methods for detecting malicious network content
US9118715B2 (en) 2008-11-03 2015-08-25 Fireeye, Inc. Systems and methods for detecting malicious PDF network content
US20120222121A1 (en) 2008-11-03 2012-08-30 Stuart Gresley Staniford Systems and Methods for Detecting Malicious PDF Network Content
US8990939B2 (en) 2008-11-03 2015-03-24 Fireeye, Inc. Systems and methods for scheduling analysis of network content for malware
US8997219B2 (en) 2008-11-03 2015-03-31 Fireeye, Inc. Systems and methods for detecting malicious PDF network content
US20110247072A1 (en) 2008-11-03 2011-10-06 Stuart Gresley Staniford Systems and Methods for Detecting Malicious PDF Network Content
US20130291109A1 (en) 2008-11-03 2013-10-31 Fireeye, Inc. Systems and Methods for Scheduling Analysis of Network Content for Malware
US20150180886A1 (en) 2008-11-03 2015-06-25 Fireeye, Inc. Systems and Methods for Scheduling Analysis of Network Content for Malware
US20100132038A1 (en) 2008-11-26 2010-05-27 Zaitsev Oleg V System and Method for Computer Malware Detection
US20100154056A1 (en) 2008-12-17 2010-06-17 Symantec Corporation Context-Aware Real-Time Computer-Protection Systems and Methods
US20100180344A1 (en) 2009-01-10 2010-07-15 Kaspersky Labs ZAO Systems and Methods For Malware Classification
US20110302587A1 (en) 2009-01-16 2011-12-08 Sony Computer Entertainment Inc. Information processing device and information processing method
US20100220863A1 (en) 2009-02-27 2010-09-02 ATMELCorporation Key Recovery Mechanism for Cryptographic Systems
US20100235831A1 (en) 2009-03-12 2010-09-16 Arend Erich Dittmer Method for dynamic configuration of virtual machine
US20100287260A1 (en) 2009-03-13 2010-11-11 Docusign, Inc. Systems and methods for document management transformation and security
US20100251104A1 (en) 2009-03-27 2010-09-30 Litera Technology Llc. System and method for reflowing content in a structured portable document format (pdf) file
US20110099620A1 (en) 2009-04-09 2011-04-28 Angelos Stavrou Malware Detector
US8516590B1 (en) 2009-04-25 2013-08-20 Dasient, Inc. Malicious advertisement detection and remediation
US8555391B1 (en) 2009-04-25 2013-10-08 Dasient, Inc. Adaptive scanning
US8370938B1 (en) 2009-04-25 2013-02-05 Dasient, Inc. Mitigating malware
US20100281102A1 (en) 2009-05-02 2010-11-04 Chinta Madhav Methods and systems for launching applications into existing isolation environments
US20120066698A1 (en) 2009-05-20 2012-03-15 Nec Corporation Dynamic data flow tracking method, dynamic data flow tracking program, and dynamic data flow tracking apparatus
US20100299754A1 (en) 2009-05-20 2010-11-25 International Business Machines Corporation Identifying Security Breaches Caused by Web-Enabled Software Applications
US20100306173A1 (en) 2009-05-31 2010-12-02 Shahar Frank Handling temporary files of a virtual machine
US8233882B2 (en) 2009-06-26 2012-07-31 Vmware, Inc. Providing security in mobile devices via a virtualization software layer
US20110004737A1 (en) 2009-07-02 2011-01-06 Kenneth Greenebaum Method and apparatus for protected content data processing
US8266091B1 (en) 2009-07-21 2012-09-11 Symantec Corporation Systems and methods for emulating the behavior of a user in a computer-human interaction environment
US8522348B2 (en) 2009-07-29 2013-08-27 Northwestern University Matching with a large vulnerability signature ruleset for high performance network defense
US20110025504A1 (en) 2009-07-31 2011-02-03 Lyon Geoff M USB Hosted Sensor Module
US20110289582A1 (en) 2009-08-03 2011-11-24 Barracuda Networks, Inc. Method for detecting malicious javascript
US8789178B2 (en) 2009-08-03 2014-07-22 Barracuda Networks, Inc. Method for detecting malicious javascript
US20110041179A1 (en) 2009-08-11 2011-02-17 F-Secure Oyj Malware detection
US20110055907A1 (en) 2009-09-03 2011-03-03 Mcafee, Inc. Host state monitoring
US8881234B2 (en) 2009-09-03 2014-11-04 Mcafee, Inc. Host state monitoring
US20120117652A1 (en) 2009-09-30 2012-05-10 Jayaraman Manni Network-Based Binary File Extraction and Analysis for Malware Detection
US8935779B2 (en) 2009-09-30 2015-01-13 Fireeye, Inc. Network-based binary file extraction and analysis for malware detection
US8832829B2 (en) 2009-09-30 2014-09-09 Fireeye, Inc. Network-based binary file extraction and analysis for malware detection
US20110078794A1 (en) 2009-09-30 2011-03-31 Jayaraman Manni Network-Based Binary File Extraction and Analysis for Malware Detection
US20110145934A1 (en) 2009-10-13 2011-06-16 Miron Abramovici Autonomous distributed programmable logic for monitoring and securing electronic systems
US8458452B1 (en) 2009-10-26 2013-06-04 James P. Morgan System and method for encryption and decryption of data transferred between computer systems
US8713681B2 (en) 2009-10-27 2014-04-29 Mandiant, Llc System and method for detecting executable machine instructions in a data stream
US20140237600A1 (en) 2009-10-27 2014-08-21 Peter J Silberman System and method for detecting executable machine instructions in a data stream
US20110099635A1 (en) 2009-10-27 2011-04-28 Silberman Peter J System and method for detecting executable machine instructions in a data stream
US10019573B2 (en) 2009-10-27 2018-07-10 Fireeye, Inc. System and method for detecting executable machine instructions in a data stream
US20110113231A1 (en) 2009-11-12 2011-05-12 Daniel Kaminsky System and method for providing secure reception and viewing of transmitted data over a network
WO2011084431A2 (en) 2009-12-15 2011-07-14 Mcafee, Inc. Systems and methods for behavioral sandboxing
US20110145918A1 (en) 2009-12-15 2011-06-16 Jaeyeon Jung Sensitive data tracking using dynamic taint analysis
US20110167494A1 (en) 2009-12-31 2011-07-07 Bowen Brian M Methods, systems, and media for detecting covert malware
US8307435B1 (en) 2010-02-18 2012-11-06 Symantec Corporation Software object corruption detection
US20110219449A1 (en) 2010-03-04 2011-09-08 St Neitzel Michael Malware detection method, system and computer program product
US20110219450A1 (en) 2010-03-08 2011-09-08 Raytheon Company System And Method For Malware Detection
WO2011112348A1 (en) 2010-03-08 2011-09-15 Raytheon Company System and method for host-level malware detection
US20110225624A1 (en) 2010-03-15 2011-09-15 Symantec Corporation Systems and Methods for Providing Network Access Control in Virtual Environments
US20110225655A1 (en) 2010-03-15 2011-09-15 F-Secure Oyj Malware protection
US20110265182A1 (en) 2010-04-27 2011-10-27 Microsoft Corporation Malware investigation by analyzing computer memory
US20110307956A1 (en) 2010-06-11 2011-12-15 M86 Security, Inc. System and method for analyzing malicious code using a static analyzer
US20110307954A1 (en) 2010-06-11 2011-12-15 M86 Security, Inc. System and method for improving coverage for web code
US20110307955A1 (en) 2010-06-11 2011-12-15 M86 Security, Inc. System and method for detecting malicious content
US8260914B1 (en) 2010-06-22 2012-09-04 Narus, Inc. Detecting DNS fast-flux anomalies
US8627476B1 (en) 2010-07-05 2014-01-07 Symantec Corporation Altering application behavior based on content provider reputation
US8584234B1 (en) 2010-07-07 2013-11-12 Symantec Corporation Secure network cache content
US8370939B2 (en) 2010-07-23 2013-02-05 Kaspersky Lab, Zao Protection against malware on web resources
US20120023593A1 (en) 2010-07-26 2012-01-26 Puder George System and method for filtering internet content & blocking undesired websites by secure network appliance
US20120079596A1 (en) 2010-08-26 2012-03-29 Verisign, Inc. Method and system for automatic detection and analysis of malware
US20120054869A1 (en) 2010-08-31 2012-03-01 Chui-Tin Yen Method and apparatus for detecting botnets
US20120084859A1 (en) 2010-09-30 2012-04-05 Microsoft Corporation Realtime multiple engine selection and combining
US20120096553A1 (en) 2010-10-19 2012-04-19 Manoj Kumar Srivastava Social Engineering Protection Appliance
US8479291B1 (en) 2010-10-28 2013-07-02 Symantec Corporation Systems and methods for identifying polymorphic malware
US20120110667A1 (en) 2010-11-01 2012-05-03 Zubrilin Sergey A System and Method for Server-Based Antivirus Scan of Data Downloaded From a Network
US20120124426A1 (en) 2010-11-12 2012-05-17 Microsoft Corporation Debugging in a cluster processing network
US20120121154A1 (en) 2010-11-15 2012-05-17 Siemens Corporation Method and System for Propagation of Myocardial Infarction from Delayed Enhanced Cardiac Imaging to Cine Magnetic Resonance Imaging Using Hybrid Image Registration
US8682054B2 (en) 2010-11-15 2014-03-25 Siemens Aktiengesellschaft Method and system for propagation of myocardial infarction from delayed enhanced cardiac imaging to cine magnetic resonance imaging using hybrid image registration
WO2012075336A1 (en) 2010-12-01 2012-06-07 Sourcefire, Inc. Detecting malicious software through contextual convictions, generic signatures and machine learning techniques
US20120210423A1 (en) 2010-12-01 2012-08-16 Oliver Friedrichs Method and apparatus for detecting malicious software through contextual convictions, generic signatures and machine learning techniques
US8682812B1 (en) 2010-12-23 2014-03-25 Narus, Inc. Machine learning based botnet detection using real-time extracted traffic features
US8479276B1 (en) 2010-12-29 2013-07-02 Emc Corporation Malware detection using risk analysis based on file system and network activity
US20120174196A1 (en) 2010-12-30 2012-07-05 Suresh Bhogavilli Active validation for ddos and ssl ddos attacks
US20120174218A1 (en) 2010-12-30 2012-07-05 Everis Inc. Network Communication System With Improved Security
US20120198279A1 (en) 2011-02-02 2012-08-02 Salesforce.Com, Inc. Automated Testing on Mobile Devices
US20120255015A1 (en) 2011-03-30 2012-10-04 Sahita Ravi L Method and apparatus for transparently instrumenting an application program
US20120255017A1 (en) 2011-03-31 2012-10-04 Mcafee, Inc. System and method for providing a secured operating system execution environment
US20120260342A1 (en) 2011-04-05 2012-10-11 Government Of The United States, As Represented By The Secretary Of The Air Force Malware Target Recognition
US8510842B2 (en) 2011-04-13 2013-08-13 International Business Machines Corporation Pinpointing security vulnerabilities in computer software applications
US20120266244A1 (en) 2011-04-13 2012-10-18 Microsoft Corporation Detecting Script-Based Malware using Emulation and Heuristics
US20120266245A1 (en) 2011-04-15 2012-10-18 Raytheon Company Multi-Nodal Malware Analysis
WO2012145066A1 (en) 2011-04-18 2012-10-26 Fireeye, Inc. Electronic message analysis for malware detection
US8806647B1 (en) 2011-04-25 2014-08-12 Twitter, Inc. Behavioral scanning of mobile applications
US20120278886A1 (en) 2011-04-27 2012-11-01 Michael Luna Detection and filtering of malware based on traffic observations made in a distributed mobile traffic management system
US8695096B1 (en) 2011-05-24 2014-04-08 Palo Alto Networks, Inc. Automatic signature generation for malicious PDF files
US20120330801A1 (en) 2011-06-27 2012-12-27 Raytheon Company Distributed Malware Detection
US20140351935A1 (en) 2011-09-14 2014-11-27 Beijing Qihoo Technology Company Limited Method, apparatus and virtual machine for detecting malicious program
US20130074185A1 (en) 2011-09-15 2013-03-21 Raytheon Company Providing a Network-Accessible Malware Analysis
US20130097706A1 (en) 2011-09-16 2013-04-18 Veracode, Inc. Automated behavioral and static analysis using an instrumented sandbox and machine learning classification for mobile security
US8739280B2 (en) 2011-09-29 2014-05-27 Hewlett-Packard Development Company, L.P. Context-sensitive taint analysis
US20130086684A1 (en) 2011-09-30 2013-04-04 David S. Mohler Contextual virtual machines for application quarantine and assessment method and system
US20130117852A1 (en) 2011-10-10 2013-05-09 Global Dataguard, Inc. Detecting Emergent Behavior in Communications Networks
US20130097699A1 (en) 2011-10-18 2013-04-18 Mcafee, Inc. System and method for detecting a malicious command and control channel
US20140169762A1 (en) 2011-10-21 2014-06-19 Mitsubishi Electric Corporation Video image information playback method and video image information playback device
US8782792B1 (en) 2011-10-27 2014-07-15 Symantec Corporation Systems and methods for detecting malware on mobile platforms
US20130111587A1 (en) 2011-10-27 2013-05-02 Microsoft Corporation Detecting Software Vulnerabilities in an Isolated Computing Environment
WO2013067505A1 (en) 2011-11-03 2013-05-10 Cyphort, Inc. Systems and methods for virtualization and emulation assisted malware detection
US20130117855A1 (en) 2011-11-09 2013-05-09 Electronics And Telecommunications Research Institute Apparatus for automatically inspecting security of applications and method thereof
US20140328204A1 (en) 2011-11-14 2014-11-06 Alcatel Lucent Apparatus, method and computer program for routing data packets
US20130232576A1 (en) 2011-11-18 2013-09-05 Vinsula, Inc. Systems and methods for cyber-threat detection
US20130139264A1 (en) 2011-11-28 2013-05-30 Matthew D. Brinkley Application sandboxing using a dynamic optimization framework
US20130160127A1 (en) 2011-12-14 2013-06-20 Korea Internet & Security Agency System and method for detecting malicious code of pdf document type
US20130160125A1 (en) 2011-12-14 2013-06-20 Nikolay Vladimirovich Likhachev Method and system for rapid signature search over encrypted content
US20130167236A1 (en) 2011-12-15 2013-06-27 Avira Holding GmbH Method and system for automatically generating virus descriptions
US20130160130A1 (en) 2011-12-20 2013-06-20 Kirill Mendelev Application security testing
US20130160131A1 (en) 2011-12-20 2013-06-20 Matias Madou Application security testing
US8214905B1 (en) 2011-12-21 2012-07-03 Kaspersky Lab Zao System and method for dynamically allocating computing resources for processing security information
US8365297B1 (en) 2011-12-28 2013-01-29 Kaspersky Lab Zao System and method for detecting malware targeting the boot process of a computer using boot process emulation
US20130174214A1 (en) 2011-12-29 2013-07-04 Imation Corp. Management Tracking Agent for Removable Media
US20130185795A1 (en) 2012-01-12 2013-07-18 Arxceo Corporation Methods and systems for providing network protection by progressive degradation of service
US20130185798A1 (en) 2012-01-13 2013-07-18 Accessdata Group, Llc Identifying software execution behavior
US20130185789A1 (en) 2012-01-15 2013-07-18 Lenovo (Singapore) Pte. Ltd. Method and apparatus for protecting a password of a computer having a non-volatile memory
US20130191915A1 (en) 2012-01-25 2013-07-25 Damballa, Inc. Method and system for detecting dga-based malware
US20130196649A1 (en) 2012-01-27 2013-08-01 Qualcomm Incorporated Mobile device to detect unexpected behaviour
US9519782B2 (en) 2012-02-24 2016-12-13 Fireeye, Inc. Detecting malicious network content
US20130227691A1 (en) 2012-02-24 2013-08-29 Ashar Aziz Detecting Malicious Network Content
US9275229B2 (en) 2012-03-15 2016-03-01 Mandiant, Llc System to bypass a compromised mass storage device driver stack and method thereof
US20130247186A1 (en) 2012-03-15 2013-09-19 Aaron LeMasters System to Bypass a Compromised Mass Storage Device Driver Stack and Method Thereof
US8726392B1 (en) 2012-03-29 2014-05-13 Symantec Corporation Systems and methods for combining static and dynamic code analysis
US20130298243A1 (en) 2012-05-01 2013-11-07 Taasera, Inc. Systems and methods for orchestrating runtime operational integrity
GB2490431B (en) 2012-05-15 2014-03-26 F Secure Corp Foiling a document exploit attack
US20140032875A1 (en) 2012-07-27 2014-01-30 James Butler Physical Memory Forensics System and Method
US9268936B2 (en) 2012-07-27 2016-02-23 Mandiant, Llc Physical memory forensics system and method
US20140053260A1 (en) 2012-08-15 2014-02-20 Qualcomm Incorporated Adaptive Observation of Behavioral Features on a Mobile Device
US20140053261A1 (en) 2012-08-15 2014-02-20 Qualcomm Incorporated On-Line Behavioral Analysis Engine in Mobile Device with Multiple Analyzer Model Providers
US20140130158A1 (en) 2012-11-07 2014-05-08 Microsoft Corporation Identification of malware detection signature candidate code
US20140137180A1 (en) 2012-11-13 2014-05-15 Bitdefender IPR Management Ltd. Hypervisor-Based Enterprise Endpoint Protection
US20140179360A1 (en) 2012-12-21 2014-06-26 Verizon Patent And Licensing, Inc. Short message service validation engine
US8713631B1 (en) 2012-12-25 2014-04-29 Kaspersky Lab Zao System and method for detecting malicious code executed by virtual machine
US20140181131A1 (en) 2012-12-26 2014-06-26 David Ross Timeline wrinkling system and method
US9633134B2 (en) 2012-12-26 2017-04-25 Fireeye, Inc. Timeline wrinkling system and method
US20140189687A1 (en) 2012-12-28 2014-07-03 Robert Jung System and Method to Create a Number of Breakpoints in a Virtual Machine Via Virtual Machine Trapping Events
US20140189882A1 (en) 2012-12-28 2014-07-03 Robert Jung System and method for the programmatic runtime de-obfuscation of obfuscated software utilizing virtual machine introspection and manipulation of virtual machine guest memory permissions
US9459901B2 (en) 2012-12-28 2016-10-04 Fireeye, Inc. System and method for the programmatic runtime de-obfuscation of obfuscated software utilizing virtual machine introspection and manipulation of virtual machine guest memory permissions
US9690935B2 (en) 2012-12-31 2017-06-27 Fireeye, Inc. Identification of obfuscated computer items using visual algorithms
US20140189866A1 (en) 2012-12-31 2014-07-03 Jason Shiffer Identification of obfuscated computer items using visual algorithms
US9225740B1 (en) 2013-02-23 2015-12-29 Fireeye, Inc. Framework for iterative analysis of mobile software applications
US9367681B1 (en) 2013-02-23 2016-06-14 Fireeye, Inc. Framework for efficient security coverage of mobile software applications using symbolic execution to reach regions of interest within an application
US9824209B1 (en) 2013-02-23 2017-11-21 Fireeye, Inc. Framework for efficient security coverage of mobile software applications that is usable to harden in the field code
US9792196B1 (en) 2013-02-23 2017-10-17 Fireeye, Inc. Framework for efficient security coverage of mobile software applications
US9159035B1 (en) 2013-02-23 2015-10-13 Fireeye, Inc. Framework for computer application analysis of sensitive information tracking
US9009822B1 (en) 2013-02-23 2015-04-14 Fireeye, Inc. Framework for multi-phase analysis of mobile applications
US10019338B1 (en) 2013-02-23 2018-07-10 Fireeye, Inc. User interface with real-time visual playback along with synchronous textual analysis log display and event/time index for anomalous behavior detection in applications
US9195829B1 (en) 2013-02-23 2015-11-24 Fireeye, Inc. User interface with real-time visual playback along with synchronous textual analysis log display and event/time index for anomalous behavior detection in applications
US8990944B1 (en) 2013-02-23 2015-03-24 Fireeye, Inc. Systems and methods for automatically detecting backdoors
US9009823B1 (en) 2013-02-23 2015-04-14 Fireeye, Inc. Framework for efficient security coverage of mobile software applications installed on mobile devices
US9594905B1 (en) 2013-02-23 2017-03-14 Fireeye, Inc. Framework for efficient security coverage of mobile software applications using machine learning
US10181029B1 (en) 2013-02-23 2019-01-15 Fireeye, Inc. Security cloud service framework for hardening in the field code of mobile software applications
US9176843B1 (en) 2013-02-23 2015-11-03 Fireeye, Inc. Framework for efficient security coverage of mobile software applications
US20180121316A1 (en) 2013-02-23 2018-05-03 Fireeye, Inc. Framework For Efficient Security Coverage Of Mobile Software Applications
US20140245440A1 (en) * 2013-02-28 2014-08-28 Trustees Of Boston Univeristy Software Inspection System
US10198574B1 (en) 2013-03-13 2019-02-05 Fireeye, Inc. System and method for analysis of a memory dump associated with a potentially malicious content suspect
US9565202B1 (en) 2013-03-13 2017-02-07 Fireeye, Inc. System and method for detecting exfiltration content
US9626509B1 (en) 2013-03-13 2017-04-18 Fireeye, Inc. Malicious content analysis with multi-version application support within single operating environment
US9104867B1 (en) 2013-03-13 2015-08-11 Fireeye, Inc. Malicious content analysis using simulated user interaction without user involvement
US9912698B1 (en) 2013-03-13 2018-03-06 Fireeye, Inc. Malicious content analysis using simulated user interaction without user involvement
US9355247B1 (en) 2013-03-13 2016-05-31 Fireeye, Inc. File extraction from memory dump for malicious content analysis
US9934381B1 (en) 2013-03-13 2018-04-03 Fireeye, Inc. System and method for detecting malicious activity based on at least one environmental property
US10025927B1 (en) 2013-03-13 2018-07-17 Fireeye, Inc. Malicious content analysis with multi-version application support within single operating environment
US9641546B1 (en) 2013-03-14 2017-05-02 Fireeye, Inc. Electronic device for aggregation, correlation and consolidation of analysis attributes
US9311479B1 (en) * 2013-03-14 2016-04-12 Fireeye, Inc. Correlation and consolidation of analytic data for holistic view of a malware attack
US10122746B1 (en) 2013-03-14 2018-11-06 Fireeye, Inc. Correlation and consolidation of analytic data for holistic view of malware attack
US9430646B1 (en) 2013-03-14 2016-08-30 Fireeye, Inc. Distributed systems and methods for automatically detecting unknown bots and botnets
US10200384B1 (en) 2013-03-14 2019-02-05 Fireeye, Inc. Distributed systems and methods for automatically detecting unknown bots and botnets
US20140344926A1 (en) 2013-03-15 2014-11-20 Sean Cunningham System and method employing structured intelligence to verify and contain threats at endpoints
US10033748B1 (en) 2013-03-15 2018-07-24 Fireeye, Inc. System and method employing structured intelligence to verify and contain threats at endpoints
US9413781B2 (en) 2013-03-15 2016-08-09 Fireeye, Inc. System and method employing structured intelligence to verify and contain threats at endpoints
US9497213B2 (en) 2013-03-15 2016-11-15 Fireeye, Inc. System and method to manage sinkholes
US20140282843A1 (en) * 2013-03-15 2014-09-18 Mcafee, Inc. Creating and managing a network security tag
US9824211B2 (en) 2013-03-15 2017-11-21 Fireeye, Inc. System and method to visualize user sessions
US20140283037A1 (en) 2013-03-15 2014-09-18 Michael Sikorski System and Method to Extract and Utilize Disassembly Features to Classify Software Intent
US9251343B1 (en) 2013-03-15 2016-02-02 Fireeye, Inc. Detecting bootkits resident on compromised computers
US20140283063A1 (en) 2013-03-15 2014-09-18 Matthew Thompson System and Method to Manage Sinkholes
US20140280245A1 (en) 2013-03-15 2014-09-18 Mandiant Corporation System and method to visualize user sessions
US20140337836A1 (en) 2013-05-10 2014-11-13 Fireeye, Inc. Optimized resource allocation for virtual machines within a malware content detection system
US9495180B2 (en) 2013-05-10 2016-11-15 Fireeye, Inc. Optimized resource allocation for virtual machines within a malware content detection system
US10033753B1 (en) 2013-05-13 2018-07-24 Fireeye, Inc. System and method for detecting malicious activity and classifying a network communication based on different indicator types
US9635039B1 (en) 2013-05-13 2017-04-25 Fireeye, Inc. Classifying sets of malicious indicators for detecting command and control communications associated with malware
US10133863B2 (en) 2013-06-24 2018-11-20 Fireeye, Inc. Zero-day discovery system
US9536091B2 (en) 2013-06-24 2017-01-03 Fireeye, Inc. System and method for detecting time-bomb malware
US10083302B1 (en) 2013-06-24 2018-09-25 Fireeye, Inc. System and method for detecting time-bomb malware
US20140380473A1 (en) 2013-06-24 2014-12-25 Fireeye, Inc. Zero-day discovery system
US20140380474A1 (en) 2013-06-24 2014-12-25 Fireeye, Inc. System and Method for Detecting Time-Bomb Malware
US20150007312A1 (en) 2013-06-28 2015-01-01 Vinay Pidathala System and method for detecting malicious links in electronic messages
US9888016B1 (en) 2013-06-28 2018-02-06 Fireeye, Inc. System and method for detecting phishing using password prediction
US9888019B1 (en) 2013-06-28 2018-02-06 Fireeye, Inc. System and method for detecting malicious links in electronic messages
US9300686B2 (en) 2013-06-28 2016-03-29 Fireeye, Inc. System and method for detecting malicious links in electronic messages
US9426071B1 (en) 2013-08-22 2016-08-23 Fireeye, Inc. Storing network bidirectional flow data and metadata with efficient processing technique
US9876701B1 (en) 2013-08-22 2018-01-23 Fireeye, Inc. Arrangement for efficient search and retrieval of indexes used to locate captured packets
US20160173508A1 (en) 2013-09-27 2016-06-16 Emc Corporation Dynamic malicious application detection in storage systems
US9910988B1 (en) 2013-09-30 2018-03-06 Fireeye, Inc. Malware analysis in accordance with an analysis plan
US20180013770A1 (en) 2013-09-30 2018-01-11 Fireeye, Inc. System, Apparatus And Method For Using Malware Analysis Results To Drive Adaptive Instrumentation Of Virtual Machines To Improve Exploit Detection
US20150096022A1 (en) 2013-09-30 2015-04-02 Michael Vincent Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses
US10089461B1 (en) 2013-09-30 2018-10-02 Fireeye, Inc. Page replacement code injection
US9912691B2 (en) 2013-09-30 2018-03-06 Fireeye, Inc. Fuzzy hash of behavioral results
US20150096023A1 (en) 2013-09-30 2015-04-02 Fireeye, Inc. Fuzzy hash of behavioral results
US20150096025A1 (en) * 2013-09-30 2015-04-02 Fireeye, Inc. System, Apparatus and Method for Using Malware Analysis Results to Drive Adaptive Instrumentation of Virtual Machines to Improve Exploit Detection
US20150096024A1 (en) 2013-09-30 2015-04-02 Fireeye, Inc. Advanced persistent threat (apt) detection center
US10192052B1 (en) 2013-09-30 2019-01-29 Fireeye, Inc. System, apparatus and method for classifying a file as malicious using static scanning
US10218740B1 (en) 2013-09-30 2019-02-26 Fireeye, Inc. Fuzzy hash of behavioral results
US9294501B2 (en) 2013-09-30 2016-03-22 Fireeye, Inc. Fuzzy hash of behavioral results
US9171160B2 (en) * 2013-09-30 2015-10-27 Fireeye, Inc. Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses
US20160261612A1 (en) 2013-09-30 2016-09-08 Fireeye, Inc. Fuzzy hash of behavioral results
US9736179B2 (en) 2013-09-30 2017-08-15 Fireeye, Inc. System, apparatus and method for using malware analysis results to drive adaptive instrumentation of virtual machines to improve exploit detection
US9690936B1 (en) 2013-09-30 2017-06-27 Fireeye, Inc. Multistage system and method for analyzing obfuscated content for malware
US9628507B2 (en) 2013-09-30 2017-04-18 Fireeye, Inc. Advanced persistent threat (APT) detection center
US9921978B1 (en) 2013-11-08 2018-03-20 Fireeye, Inc. System and method for enhanced security of storage devices
US9189627B1 (en) * 2013-11-21 2015-11-17 Fireeye, Inc. System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection
US9560059B1 (en) 2013-11-21 2017-01-31 Fireeye, Inc. System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection
US9756074B2 (en) 2013-12-26 2017-09-05 Fireeye, Inc. System and method for IPS and VM-based detection of suspicious objects
US9747446B1 (en) 2013-12-26 2017-08-29 Fireeye, Inc. System and method for run-time object classification
US9306974B1 (en) 2013-12-26 2016-04-05 Fireeye, Inc. System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits
US20150186645A1 (en) * 2013-12-26 2015-07-02 Fireeye, Inc. System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits
US9292686B2 (en) 2014-01-16 2016-03-22 Fireeye, Inc. Micro-virtualization architecture for threat-aware microvisor deployment in a node of a network environment
US20150199513A1 (en) 2014-01-16 2015-07-16 Fireeye, Inc. Threat-aware microvisor
US9507935B2 (en) 2014-01-16 2016-11-29 Fireeye, Inc. Exploit detection system with threat-aware microvisor
US20150199531A1 (en) 2014-01-16 2015-07-16 Fireeye, Inc. Exploit detection system with threat-aware microvisor
US20150199532A1 (en) 2014-01-16 2015-07-16 Fireeye, Inc. Micro-virtualization architecture for threat-aware microvisor deployment in a node of a network environment
US9740857B2 (en) 2014-01-16 2017-08-22 Fireeye, Inc. Threat-aware microvisor
US9946568B1 (en) 2014-01-16 2018-04-17 Fireeye, Inc. Micro-virtualization architecture for threat-aware module deployment in a node of a network environment
US20150220735A1 (en) * 2014-02-05 2015-08-06 Fireeye, Inc. Detection efficacy of virtual machine-based analysis with application specific events
US9262635B2 (en) 2014-02-05 2016-02-16 Fireeye, Inc. Detection efficacy of virtual machine-based analysis with application specific events
US9916440B1 (en) 2014-02-05 2018-03-13 Fireeye, Inc. Detection efficacy of virtual machine-based analysis with application specific events
US9674298B1 (en) 2014-02-20 2017-06-06 Fireeye, Inc. Efficient access to sparse packets in large repositories of stored network traffic
US9537972B1 (en) 2014-02-20 2017-01-03 Fireeye, Inc. Efficient access to sparse packets in large repositories of stored network traffic
US20170013018A1 (en) * 2014-03-19 2017-01-12 Nippon Telegraph And Telephone Corporation Analysis rule adjustment device, analysis rule adjustment system, analysis rule adjustment method, and analysis rule adjustment program
US9241010B1 (en) 2014-03-20 2016-01-19 Fireeye, Inc. System and method for network behavior detection
US10242185B1 (en) 2014-03-21 2019-03-26 Fireeye, Inc. Dynamic guest image creation and rollback
US9787700B1 (en) 2014-03-28 2017-10-10 Fireeye, Inc. System and method for offloading packet processing and static analysis operations
US9591015B1 (en) * 2014-03-28 2017-03-07 Fireeye, Inc. System and method for offloading packet processing and static analysis operations
US9223972B1 (en) 2014-03-31 2015-12-29 Fireeye, Inc. Dynamically remote tuning of a malware content detection system
US9432389B1 (en) * 2014-03-31 2016-08-30 Fireeye, Inc. System, apparatus and method for detecting a malicious attack based on static analysis of a multi-flow object
US9973531B1 (en) 2014-06-06 2018-05-15 Fireeye, Inc. Shellcode detection
US9438623B1 (en) 2014-06-06 2016-09-06 Fireeye, Inc. Computer exploit detection using heap spray pattern matching
US9594912B1 (en) 2014-06-06 2017-03-14 Fireeye, Inc. Return-oriented programming detection
US20170098074A1 (en) 2014-06-11 2017-04-06 Nippon Telegraph And Telephone Corporation Malware determination device, malware determination system, malware determination method, and program
US20150372980A1 (en) 2014-06-24 2015-12-24 Fireeye, Inc. Intrusion prevention and remedy system
US10084813B2 (en) 2014-06-24 2018-09-25 Fireeye, Inc. Intrusion prevention and remedy system
US9398028B1 (en) 2014-06-26 2016-07-19 Fireeye, Inc. System, device and method for detecting a malicious attack based on communcations between remotely hosted virtual machines and malicious web servers
US9838408B1 (en) 2014-06-26 2017-12-05 Fireeye, Inc. System, device and method for detecting a malicious attack based on direct communications between remotely hosted virtual machines and malicious web servers
US9661009B1 (en) 2014-06-26 2017-05-23 Fireeye, Inc. Network-based malware detection
US20160006756A1 (en) 2014-07-01 2016-01-07 Fireeye, Inc. Trusted threat-aware microvisor
US9680862B2 (en) 2014-07-01 2017-06-13 Fireeye, Inc. Trusted threat-aware microvisor
US20160004869A1 (en) 2014-07-01 2016-01-07 Fireeye, Inc. Verification of trusted threat-aware microvisor
US10002252B2 (en) 2014-07-01 2018-06-19 Fireeye, Inc. Verification of trusted threat-aware microvisor
US20160044000A1 (en) 2014-08-05 2016-02-11 Fireeye, Inc. System and method to communicate sensitive information via one or more untrusted intermediate nodes with resilience to disconnected network topology
US9912644B2 (en) 2014-08-05 2018-03-06 Fireeye, Inc. System and method to communicate sensitive information via one or more untrusted intermediate nodes with resilience to disconnected network topology
US10027696B1 (en) 2014-08-22 2018-07-17 Fireeye, Inc. System and method for determining a threat based on correlation of indicators of compromise from other sources
US9363280B1 (en) 2014-08-22 2016-06-07 Fireeye, Inc. System and method of detecting delivery of malware using cross-customer data
US9609007B1 (en) 2014-08-22 2017-03-28 Fireeye, Inc. System and method of detecting delivery of malware based on indicators of compromise from different sources
US9773112B1 (en) 2014-09-29 2017-09-26 Fireeye, Inc. Exploit detection of malware and malware families
US10027689B1 (en) 2014-09-29 2018-07-17 Fireeye, Inc. Interactive infection visualization for improved exploit detection and signature generation for malware and malware families
US9781144B1 (en) 2014-09-30 2017-10-03 Fireeye, Inc. Determining duplicate objects for malware analysis using environmental/context information
US9690933B1 (en) 2014-12-22 2017-06-27 Fireeye, Inc. Framework for classifying an object as malicious with machine learning for deploying updated predictive models
US9467460B1 (en) * 2014-12-23 2016-10-11 Fireeye, Inc. Modularized database architecture using vertical partitioning for a state machine
US9787706B1 (en) 2014-12-23 2017-10-10 Fireeye, Inc. Modular architecture for analysis database
US10075455B2 (en) 2014-12-26 2018-09-11 Fireeye, Inc. Zero-day rotating guest image profile
US20160191547A1 (en) 2014-12-26 2016-06-30 Fireeye, Inc. Zero-Day Rotating Guest Image Profile
US20160188880A1 (en) * 2014-12-27 2016-06-30 Mcafee, Inc. Outbreak pathology inference
US9934376B1 (en) 2014-12-29 2018-04-03 Fireeye, Inc. Malware detection appliance architecture
US20160191550A1 (en) 2014-12-29 2016-06-30 Fireeye, Inc. Microvisor-based malware detection endpoint architecture
US9838417B1 (en) 2014-12-30 2017-12-05 Fireeye, Inc. Intelligent context aware user interaction for malware detection
US20160232352A1 (en) 2015-02-06 2016-08-11 Qualcomm Incorporated Methods and Systems for Detecting Fake User Interactions with a Mobile Device for Improved Malware Protection
US20160232353A1 (en) 2015-02-09 2016-08-11 Qualcomm Incorporated Determining Model Protection Level On-Device based on Malware Detection in Similar Devices
US20160253498A1 (en) 2015-02-27 2016-09-01 Qualcomm Incorporated Methods and Systems for On-Device High-Granularity Classification of Device Behaviors using Multi-Label Models
US20160277272A1 (en) 2015-03-18 2016-09-22 Arista Networks, Inc. System and method for continuous measurement of transit latency in individual data switches and multi-device topologies
US10148693B2 (en) 2015-03-25 2018-12-04 Fireeye, Inc. Exploit detection system
US9690606B1 (en) 2015-03-25 2017-06-27 Fireeye, Inc. Selective system call monitoring
US20160285914A1 (en) * 2015-03-25 2016-09-29 Fireeye, Inc. Exploit detection system
US9438613B1 (en) 2015-03-30 2016-09-06 Fireeye, Inc. Dynamic content activation for automated analysis of embedded objects
US20160335110A1 (en) 2015-03-31 2016-11-17 Fireeye, Inc. Selective virtualization for security threat detection
US9483644B1 (en) 2015-03-31 2016-11-01 Fireeye, Inc. Methods for detecting file altering malware in VM based analysis
US9846776B1 (en) 2015-03-31 2017-12-19 Fireeye, Inc. System and method for detecting file altering behaviors pertaining to a malicious attack
US20160292419A1 (en) 2015-03-31 2016-10-06 Juniper Networks, Inc. Multi-file malware analysis
US9912681B1 (en) 2015-03-31 2018-03-06 Fireeye, Inc. Injection of content processing delay in an endpoint
US10104102B1 (en) 2015-04-13 2018-10-16 Fireeye, Inc. Analytic-based security with learning adaptability
US9654485B1 (en) 2015-04-13 2017-05-16 Fireeye, Inc. Analytics-based security monitoring system and method
US9594904B1 (en) * 2015-04-23 2017-03-14 Fireeye, Inc. Detecting malware based on reflection
US20160337390A1 (en) 2015-05-11 2016-11-17 Qualcomm Incorporated Methods and Systems for Behavior-Specific Actuation for Real-Time Whitelisting
US10216927B1 (en) 2015-06-30 2019-02-26 Fireeye, Inc. System and method for protecting memory pages associated with a process using a virtualization layer
US10176321B2 (en) 2015-09-22 2019-01-08 Fireeye, Inc. Leveraging behavior-based rules for malware family classification
US20170083703A1 (en) * 2015-09-22 2017-03-23 Fireeye, Inc. Leveraging behavior-based rules for malware family classification
US10033759B1 (en) 2015-09-28 2018-07-24 Fireeye, Inc. System and method of threat detection under hypervisor control
US10033747B1 (en) 2015-09-29 2018-07-24 Fireeye, Inc. System and method for detecting interpreter-based exploit attacks
US10210329B1 (en) 2015-09-30 2019-02-19 Fireeye, Inc. Method to detect application execution hijacking using memory protection
US20170093902A1 (en) 2015-09-30 2017-03-30 Symantec Corporation Detection of security incidents with low confidence security events
US9825989B1 (en) 2015-09-30 2017-11-21 Fireeye, Inc. Cyber attack early warning system
US9825976B1 (en) 2015-09-30 2017-11-21 Fireeye, Inc. Detection and classification of exploit kits
US20180048660A1 (en) 2015-11-10 2018-02-15 Fireeye, Inc. Launcher for setting analysis environment variations for malware detection
US10108446B1 (en) 2015-12-11 2018-10-23 Fireeye, Inc. Late load technique for deploying a virtualization layer underneath a running operating system
US10133866B1 (en) 2015-12-30 2018-11-20 Fireeye, Inc. System and method for triggering analysis of an object for malware in response to modification of that object
US10050998B1 (en) 2015-12-30 2018-08-14 Fireeye, Inc. Malicious message analysis system
US9824216B1 (en) 2015-12-31 2017-11-21 Fireeye, Inc. Susceptible environment detection system
US20170257388A1 (en) 2016-01-06 2017-09-07 New York University System, method and computer-accessible medium for network intrusion detection
US10169585B1 (en) 2016-06-22 2019-01-01 Fireeye, Inc. System and methods for advanced malware detection through placement of transition events
US10121000B1 (en) 2016-06-28 2018-11-06 Fireeye, Inc. System and method to detect premium attacks on electronic networks and electronic devices
US20180033009A1 (en) 2016-07-27 2018-02-01 Intuit Inc. Method and system for facilitating the identification and prevention of potentially fraudulent activity in a financial system
US10191861B1 (en) 2016-09-06 2019-01-29 Fireeye, Inc. Technique for implementing memory views using a layered virtualization architecture
US10025691B1 (en) 2016-09-09 2018-07-17 Fireeye, Inc. Verification of complex software code using a modularized architecture
US20180191736A1 (en) 2017-01-05 2018-07-05 Korea Internet & Security Agency Method and apparatus for collecting cyber incident information
US10735468B1 (en) 2017-02-14 2020-08-04 Ca, Inc. Systems and methods for evaluating security services
US20180288077A1 (en) 2017-03-30 2018-10-04 Fireeye, Inc. Attribute-controlled malware detection
US20190253435A1 (en) 2018-02-14 2019-08-15 Cisco Technology, Inc. Autonomous domain generation algorithm (dga) detector
US20190272376A1 (en) * 2018-03-02 2019-09-05 Cisco Technology, Inc. Dynamic routing of files to a malware analysis system
US11558401B1 (en) 2018-03-30 2023-01-17 Fireeye Security Holdings Us Llc Multi-vector malware detection data sharing system for improved detection

Non-Patent Citations (61)

* Cited by examiner, † Cited by third party
Title
"Mining Specification of Malicious Behavior"—Jha et al., UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-.
"Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper", ("NetDetector Whitepaper"), (2003).
"When Virtual is Better Than Real", IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.sp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., "Network Intrusion Detection & Response System", ("Adetoye"), (Sep. 2003).
Apostolopoulos, George; hassapis, Constantinos; "V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation", 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, "Scanning electronic documents for personally identifiable information", Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, "The Nepenthes Platform: An Efficient Approach to collect Malware", Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Bayer, et al., "Dynamic Analysis of Malicious Code", J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , "extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives", available at http://seclists.org/honeypots/2003/q2/319 ("Boubalos"), (Jun. 5, 2003).
Chaudet, C. , et al., "Optimal Positioning of Active and Passive Monitoring Devices", International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., "When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science", University of Michigan ("Chen") (2001).
Cisco "Intrusion Prevention for the Cisco ASA 5500-x Series" Data Sheet (2012).
Cohen, M.I. , "PyFlag—An advanced network forensic framework", Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., "Vigilante: End-to-End Containment of Internet Worms", SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Didier Stevens, "Malicious PDF Documents Explained", Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14.
Distler, "Malware Analysis: An Introduction", SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., "ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay", Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, ("Dunlap"), (Dec. 9, 2002).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: "Microsoft's HoneyMonkeys Show Patching Windows Works", Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-d/1035069? [retrieved on Jun. 1, 2016].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. "Kernel-based behavior analysis for android malware detection." Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , "Designing Network Security", ("Kaeo"), (Nov. 2003).
Kevin A Roundy et al: "Hybrid Analysis and Control of Malware", Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Khaled Salah et al: "Using Cloud Computing to Implement a Security Overlay Network", Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013).
Kim, H. , et al., "Autograph: Toward Automated, Distributed Worm Signature Detection", Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., "Operating System Support for Virtual Machines", ("King"), (2003).
Kreibich, C. , et al., "Honeycomb-Creating Intrusion Detection Signatures Using Honeypots", 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J., "Botnets, Detection and Mitigation: DNS-Based Techniques", NU Security Day, (2005), 23 pages.
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. "Detecting environment-sensitive malware." Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Marchette, David J., "Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint", ("Marchette"), (2001).
Moore, D. , et al., "Internet Quarantine: Requirements for Containing Self-Propagating Code", INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ""Analyzing and exploiting network behaviors of malware."", Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , "SANDBOXII: Internet", Virus Bulletin Conference, ("Natvig"), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., "Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software", Iin Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Nojiri, D. , et al., "Cooperation Response Strategies for Large Scale Attack Mitigation", DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) ("Sailer").
Silicon Defense, "Worm Containment in the Internal Network", (Mar. 2003), pp. 1-25.
Singh, S. , et al., "Automated Worm Fingerprinting", Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Thomas H. Ptacek, and Timothy N. Newsham , "Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection", Secure Networks, ("Ptacek"), (Jan. 1998).
U.S. Appl. No. 16/353,982, filed Mar. 14, 2019 Final Office Action dated Oct. 15, 2021.
U.S. Appl. No. 16/353,982, filed Mar. 14, 2019 Non-Final Office Action dated Jun. 24, 2021.
U.S. Appl. No. 16/353,982, filed Mar. 14, 2019 Non-Final Office Action dated Mar. 3, 2022.
U.S. Appl. No. 16/353,982, filed Mar. 14, 2019 Notice of Allowance dated Sep. 1, 2022.
Venezia, Paul , "NetDetector Captures Intrusions", InfoWorld Issue 27, ("Venezia"), (Jul. 14, 2003).
Vladimir Getov: "Security as a Service in Smart Clouds—Opportunities and Concerns", Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., "Dns-Based Detection of Scanning Works in an Enterprise Network", Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., "Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code", ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: "Memory behavior-based automatic malware unpacking in stealth debugging environment", Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.

Also Published As

Publication number Publication date
US11558401B1 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
US11271955B2 (en) Platform and method for retroactive reclassification employing a cybersecurity-based global data store
US11936666B1 (en) Risk analyzer for ascertaining a risk of harm to a network and generating alerts regarding the ascertained risk
US10445502B1 (en) Susceptible environment detection system
US20190207966A1 (en) Platform and Method for Enhanced Cyber-Attack Detection and Response Employing a Global Data Store
US10872151B1 (en) System and method for triggering analysis of an object for malware in response to modification of that object
US10523609B1 (en) Multi-vector malware detection and analysis
US11876836B1 (en) System and method for automatically prioritizing rules for cyber-threat detection and mitigation
US11240262B1 (en) Malware detection verification and enhancement by coordinating endpoint and malware detection systems
US11550911B2 (en) Multi-representational learning models for static analysis of source code
US10601848B1 (en) Cyber-security system and method for weak indicator detection and correlation to generate strong indicators
US11856011B1 (en) Multi-vector malware detection data sharing system for improved detection
US10432649B1 (en) System and method for classifying an object based on an aggregated behavior results
US11240275B1 (en) Platform and method for performing cybersecurity analyses employing an intelligence hub with a modular architecture
US11122061B2 (en) Method and server for determining malicious files in network traffic
KR101811325B1 (en) Detection of malicious scripting language code in a network environment
US11615184B2 (en) Building multi-representational learning models for static analysis of source code
US11374946B2 (en) Inline malware detection
US11636208B2 (en) Generating models for performing inline malware detection
US20230344861A1 (en) Combination rule mining for malware signature generation
WO2021015941A1 (en) Inline malware detection
US20230336586A1 (en) System and Method for Surfacing Cyber-Security Threats with a Self-Learning Recommendation Engine
US20220245249A1 (en) Specific file detection baked into machine learning pipelines
US20230325501A1 (en) Heidi: ml on hypervisor dynamic analysis data for malware classification
US20230344838A1 (en) Detecting microsoft .net malware using machine learning on .net structure
US20230412630A1 (en) Methods and systems for asset risk determination and utilization for threat mitigation

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE