US11820686B2 - Bioelectrochemical reactor with double bioanode, method for anodic regeneration and use of the reactor for microbial electrosynthesis - Google Patents

Bioelectrochemical reactor with double bioanode, method for anodic regeneration and use of the reactor for microbial electrosynthesis Download PDF

Info

Publication number
US11820686B2
US11820686B2 US17/274,308 US201917274308A US11820686B2 US 11820686 B2 US11820686 B2 US 11820686B2 US 201917274308 A US201917274308 A US 201917274308A US 11820686 B2 US11820686 B2 US 11820686B2
Authority
US
United States
Prior art keywords
reactor
bioanodes
compartment
anode
bioelectrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/274,308
Other languages
English (en)
Other versions
US20210340039A1 (en
Inventor
Sylvain Moreau
Théodore BOUCHEZ
Jianghao TIAN
Elie Le Quemener
Alain Bergel
Elise BLANCHET
Benjamin Erable
Luc Etcheverry
Alain HUYARD
Pierre Mauricrace
Nicolas Bernet
Eric Trably
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut National Polytechnique de Toulouse INPT
Suez International SAS
Institut National de Recherche pour lAgriculture lAlimentation et lEnvironnement
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut National Polytechnique de Toulouse INPT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut National Polytechnique de Toulouse INPT filed Critical Centre National de la Recherche Scientifique CNRS
Assigned to INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE, SUEZ GROUPE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, INSTITUT NATIONAL DE RECHERCHE POUR L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT reassignment INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERNET, NICOLAS, BERGEL, ALAIN, BLANCHET, Elise, ERABLE, BENJAMIN, ETCHEVERRY, LUC, Le Quemener, Elie, TIAN, JiangHao, BOUCHEZ, Théodore, HUYARD, Alain, MOREAU, SYLVAIN, TRABLY, ERIC, MAURICRACE, Pierre
Publication of US20210340039A1 publication Critical patent/US20210340039A1/en
Assigned to SUEZ INTERNATIONAL reassignment SUEZ INTERNATIONAL NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: SUEZ GROUPE
Application granted granted Critical
Publication of US11820686B2 publication Critical patent/US11820686B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the bioelectrochemical field, and relates more particularly to electrochemical synthesis systems and methods implementing bioelectrochemical reactors, i.e. electrochemical devices in which at least one of the electrodes, called a bioelectrode, is in contact with microorganisms.
  • bioelectrochemical synthesis devices make it possible in particular, on the basis of organic waste, to produce organic molecules such as organic acids and/or alcohols.
  • bioelectrochemical device which comprises both a bioanode and a biocathode, both the electrolyte of the anode compartment and the electrolyte of the cathode compartment containing microorganisms in suspension or in the form of one or more biofilms (WO2016/051064).
  • the activity of the biocathode is optimized with a view to producing particular chemical species in the electrolyte, such as acetic, lactic and/or propionic acids or alcohols.
  • These syntheses of organic molecules by microbial route, involving in particular electrochemical oxidation-reduction reactions, are performed by virtue of electroactive bacteria present on the surface of the electrode.
  • one of the objectives is to increase the durability of the bioanode, i.e. to maintain its performance (characterized by acceptable yields in particular in an industrial context) over longer periods.
  • the activity of this bioanode decreases considerably after a few weeks of operation.
  • This phenomenon has been defined as the “aging” of the bioanode, probably due to clogging of the biofilm on this electrode.
  • a biofilm composed of electroactive bacteria in particular of the Geobacter genus
  • Other, non-electroactive microorganisms also grow on this biofilm and thus inhibit its electrocatalytic activity. The deposition of insoluble particles further aggravates this effect.
  • Another objective is to improve the stability of the biocathode.
  • a first aim of the invention is therefore to overcome the drawbacks of the prior art by proposing a bioelectrochemical reactor, in particular in a bioelectrochemical synthesis device, and a system ensuring that it operates as stably as possible, and over long periods.
  • Another aim of the invention is to propose a bioelectrochemical reactor whose structure allows the regeneration or restoration of the electrochemical activity of an “aging” bioelectrode, without stopping the operation of the synthesis device.
  • the present invention relates to a bioelectrochemical reactor comprising
  • a “bioelectrode” (“bioanode” or “biocathode”) is an electrode covered, at least partly, with a bacterial biofilm comprising electroactive organisms, i.e. covered, at least over part of its area immersed in the electrolyte, with a bacterial biofilm.
  • the entirety of the immersed area of the bioelectrode is covered with biofilm.
  • only part of the area of the bioelectrode is covered with biofilm.
  • the area covered with biofilm is sufficient to generate the desired activity, in particular in the case of oxidation of organic waste hydrolysates or of bioelectrochemical synthesis.
  • the bioelectrochemical reactor comprises two bioanodes and one biocathode.
  • the invention may relate to any bioelectrochemical reactor comprising more than two bioanodes and a plurality of biocathodes.
  • bioanodes in the anode compartment allows in particular their use in alternation: in particular, when one is “aging”, i.e. when its electrochemical activity decreases, this allows it to be replaced or regenerated.
  • the two bioanodes are electrically connected, generally in parallel. According to one embodiment, these two bioanodes are substantially at the same potential, in particular when their geometry is identical.
  • the inter-membrane compartment is able to collect the ions or molecules produced in the anode and/or cathode compartments.
  • bioelectrode here bioanode or biocathode
  • active area of a bioelectrode is the area exposed to the electrolyte, this area being polarized.
  • the biocathode has greater inertia due to an active area greater than the total active area of the two bioanodes, which makes it possible to ensure a particularly stable cathode potential.
  • the cathode has reached its working potential, the great stability of the potential of the cathode makes it possible, in practice, to better control the anode potential by varying the potential difference between the biocathode and the bioanodes, and without having to use a reference electrode.
  • Such a system thus allows fine control of the anode potential and therefore optimization of the activity of the anode biofilm.
  • the bioanodes are removable, and are thus able to be regenerated separately and/or replaced.
  • the bioanodes are not necessarily removable and may be regenerated according to the methods described in the parallel applications filed on the same day as the present patent application, under the priority of French applications FR 18 58236 and FR 18 58238, which have not yet been published.
  • the bioelectrochemical reactor is a microbial electrosynthesis reactor.
  • the reactor is characterized in that the anode compartment comprises one or more ports for injecting organic carbonaceous substrate, such as organic biowaste hydrolysates, the cathode compartment comprises one or more ports for injecting CO 2 or for introducing an organic or inorganic carbon source and the inter-membrane compartment comprises a device for extracting the molecules synthesized within said reactor.
  • three-dimensional electrode is an electrode whose geometric dimensions of thickness/height/width are such that its thickness corresponds to its smallest dimension and is greater than or equal to 1/10 of each of its other two dimensions.
  • the general form of a “panel” is understood to mean an electrode having a thickness of less than 1/10 of each of its other two dimensions, height and width.
  • Electroactive microorganisms are microorganisms capable of interacting directly with an electrode; here they are typically anaerobic microorganisms.
  • the microorganisms differ depending on the electrode on which they grow as a biofilm, and the characteristics of the electrolyte in which they are immersed. For example, when wastewater or biowaste hydrolysates are injected into the anode electrolyte, an abundant population affiliated with the Geobacter genus is observed. Conversely, in a saline environment, other genera such as Geoalkalibacter or Desulforomonas may become dominant.
  • microorganisms when the microorganisms are located on the anode, they are referred to as anodic electroactive microorganisms, while when the microorganisms are located on the cathode, they are referred to as cathodic or electrotrophic electroactive microorganisms.
  • the reactor may further comprise means for regulating the pH, the temperature, and/or the electrolyte level, preferably in each of the anode and cathode compartments.
  • the present invention also relates to a method for regenerating the activity of the bioanodes of the reactor, such as described above, comprising:
  • the non-colonized anode is the anode removed from the compartment, having undergone cleaning.
  • the method therefore comprises:
  • the anode not colonized by electroactive microorganisms is a new anode.
  • the method for regenerating the activity of the bioanodes of the reactor comprises replacing one of the bioanodes of the anode compartment with an anode not colonized by electroactive microorganisms, such as a “new” anode, the reactor being kept in operation by applying a potential difference between the biocathode and the remaining bioanode in the anode compartment.
  • the reactor according to the invention thus allows the regeneration or restoration of “aging” anode electrochemical activity, without stopping the operation of said reactor.
  • the reactor according to the present invention is advantageously used for the electrosynthesis of organic acids and/or alcohols from organic waste.
  • the organic waste used in the invention is typically chosen from: biowaste hydrolysates, hydrolyzed sludge from wastewater treatment plants, various organic liquid fractions from wastewater treatment plants, municipal wastewater after primary settling, organic industrial waste, agro-food waste, digestates from wastewater treatment plants, or a mixture of a plurality of the above substrates.
  • the electrolyte of the anode compartment thus contains such organic carbonaceous substrates in liquid form, introduced either raw or diluted in a synthetic-based electrolyte.
  • the organic matter content quantified by measuring the COD is advantageously between 0.01 and 200 g/L, preferably between 0.1 and 20 g/L, more preferably between 0.1 and 5 g/L.
  • the biocathode is advantageously conditioned by introducing an inoculum into the cathode electrolyte.
  • the inoculum is prepared from an anaerobic digester sludge, optionally having undergone a pretreatment aimed at inactivating methanogenic microorganisms.
  • this digester sludge may undergo a heat treatment at a temperature and for a period sufficient for the inactivation of methanogenic microorganisms.
  • the pretreatment may also comprise the enrichment of the waste with microorganisms of interest.
  • This step may in particular comprise the addition of hydrogen and carbon dioxide, for example in a closed flask in batch mode.
  • the microorganisms of interest are the microorganisms responsible for bioelectrosynthesis, and comprise for example bacteria capable of using the electrons or hydrogen generated at the cathode to synthesize the desired compounds (such as organic acids or alcohols).
  • the culture resulting from this enrichment may be used directly and introduced into the cathode compartment upon starting the reactor.
  • the electrolyte of the cathode compartment contains an electrolyte and a carbon source, injected in the form of gas: such as CO 2 , biogas, or syngas, and/or introduced in solution in the form of organic carbon: for example acetate, and/or in the form of inorganic carbon: for example a bicarbonate.
  • a carbon source such as CO 2 , biogas, or syngas
  • FIG. 1 is a diagram of a bioelectrochemical reactor, according to the invention, showing the various compartments and the location of the bioelectrodes;
  • FIG. 2 is a diagram showing the possible regulation systems present in a reactor according to the invention (the electrodes not being shown for greater clarity);
  • FIG. 3 is a front view of the biocathode, FIG. 3 A being a profile diagram of the biocathode of FIG. 3 ;
  • FIG. 4 is a front view of a bioanode, FIG. 4 A being a profile diagram of said bioanode of FIG. 4 ;
  • FIG. 5 is a perspective view from above of a reactor according to the invention.
  • FIG. 6 shows the interior of the compartments of the reactor of FIG. 5 ;
  • FIG. 7 presents a graph showing the anodic current density of the reactor of FIG. 5 , as a function of time, before and after regeneration of one of the bioanodes of the anode compartment.
  • the reactor according to the invention generally consists of three compartments separated by ion exchange membranes, namely: an anode compartment 11 containing two bioanodes 12 and 13 that are electrically connected to the outside the reactor, and a cathode compartment 21 comprising the biocathode 22 , an anode compartment 11 being separated from the cathode compartment 21 by an inter-membrane compartment 30 .
  • a cation exchange membrane 31 separates the anode compartment 11 from the inter-membrane compartment 30 and an anion exchange membrane 32 separates the cathode compartment 21 from the inter-membrane compartment 30 .
  • the anode compartment 11 contains an anode electrolyte 14 comprising anodic electroactive microorganisms.
  • the cathode compartment 21 contains a cathode electrolyte 24 comprising cathodic electroactive microorganisms.
  • a potential difference 2 is applied between the biocathode 22 and the two bioanodes 12 and 13 .
  • the anode compartment comprises in particular a port 3 for injecting organic carbonaceous substrate.
  • FIG. 2 Various regulation systems, in said reactor according to the invention, may be incorporated into said reactor and are shown diagrammatically in FIG. 2 . It is possible to have, in particular, a system for regulating the level of the anode liquid 4 a and/or cathode liquid 4 c , a system for regulating the anode pH 5 a and/or cathode pH 5 c , a system for regulating the temperature of the anode compartment 6 a and/or of the cathode compartment 6 c by means, for example, of a heating resistor 7 a and/or 7 c . Finally, a system for regulating the pressure of the gas phase 9 a or 9 c may be provided in each of the electrode, i.e. anode 8 a or cathode 8 c , compartments. Indeed, the reactor is closed by a cover 10 .
  • FIGS. 3 and 3 A One example of the structure of the cathode is shown in FIGS. 3 and 3 A .
  • the biocathode 21 consists of a frame 27 with a size of 30 ⁇ 30 cm defining four housings in the example presented here. These housings incorporate metal baskets 23 with a thickness of between 4 and 5 cm in which carbon granules 25 are placed.
  • the metal frame 27 is connected to a current collector 26 surmounting said frame.
  • FIGS. 4 and 4 A One example of the structure of a bioanode is shown in FIGS. 4 and 4 A (exploded view).
  • the bioanode 12 consists of a metal frame 17 formed of two parallel walls which between them enclose two parallel stainless steel grids 18 housing a carbon fabric 15 between them.
  • This carbon fabric 15 may take the form of a single element or the form of strips of fabric arranged in parallel as shown schematically in FIG. 4 .
  • the assembly is held together, for example, by means of bolts 19 .
  • FIGS. 6 and 7 A more precise description of the bioelectrochemical reactor 1 according to the invention is shown schematically in FIGS. 6 and 7 .
  • the bioelectrochemical reactor 1 shown schematically in FIGS. 5 and 6 , has been designed to replicate industrial conditions.
  • This reactor comprises three compartments separated by two ion exchange membranes: an anode compartment 11 that contains two bioanodes 12 and 13 (which are electrically connected to the outside of the reactor).
  • This compartment is separated by a cation exchange membrane 31 from an inter-membrane compartment 30 which is itself separated by an anion exchange membrane 32 from the cathode compartment 21 that contains the biocathode 22 .
  • the volumes of these three compartments are 5.25 L, 2 L and 5.25 L, respectively.
  • each bioanode 12 , 13 is 30 ⁇ 30 cm and it is less than 1 cm thick.
  • the active areas of these two bioanodes is thus 0.36 m 2 , if the four faces of the two bioanodes are considered.
  • the biocathode 22 comprises a volume of 1.2 L of carbon grains, which have an active area of approximately 3 m 2 , i.e. of the order of 10 times the total active area of the bioanodes.
  • bioelectrodes are connected to a potentiostat (BioLogic®, France, VMP3 not shown, controlled by EC-Lab software), a potential difference of 1.1 V being imposed between the bioanodes and the biocathode.
  • a potentiostat BioLogic®, France, VMP3 not shown, controlled by EC-Lab software
  • Reference electrodes 33 , 34 may be present in the anode 11 and/or cathode 12 compartments, respectively. In an industrial-scale reactor, these reference electrodes may be absent.
  • the cathode electrolyte 24 is BMP medium modified with 30 g/L of NaHCO 3 .
  • the basic anode electrolyte 14 is composed of 12.5 g/L of Na 2 HPO 4 ⁇ 7H 2 O, 3 g/L of KH 2 PO 4 , 0.5 g/L of NaCl, 1 g/L of NH 4 Cl and 30 g/L of NaHCO 3 .
  • the electrolyte of the inter-membrane compartment 30 is composed of 35 g/L of KCI and 32.6 g/L of KH 2 PO 4 .
  • the pH of the anode electrolyte is kept at 7 by automatically injecting a K 2 CO 3 solution into the anode compartment.
  • the biowaste used is hydrolysates, highly loaded with organic matter, for example the COD value of which is between 100 and 150 g/L. These hydrolysates are introduced into the anode electrolyte by injecting a volume of 10 to 20 mL, either daily or when the anode current drops below approximately 0.5 A/m 2 .
  • a device (not shown) for collecting the molecules synthesized may be connected to the inter-membrane compartment.
  • a slight overpressure (for example 20-30 mbar) may be maintained in the gas space of the anode and cathode compartments, preventing air from entering these compartments.
  • the inoculum for the biocathode 22 may be prepared from an anaerobic digester sludge.
  • the preparation consists in applying treatments to, on the one hand, inactivate methanogenic microorganisms which compete with the desired reaction and, on the other hand, to enrich the sludge with microorganisms of interest.
  • the first step consists in heat-treating the inoculum (at 90° C. for 20 minutes) which results in the methanogens being inactivated.
  • the second step consists in enriching the sludge with microorganisms of interest by adding hydrogen and carbon dioxide in a closed flask in batch mode. This operation may be repeated twice.
  • the microorganisms of interest here comprise bacteria capable of using the electrons or hydrogen generated at the cathode to synthesize the desired compounds (organic acids or alcohols).
  • the culture resulting from this enrichment may be used directly and introduced into the cathode compartment 21 upon starting the reactor.
  • the reactor such as described in example 1, was put into operation for a period of 140 days.
  • a potential difference of 0.9 V was applied between, on the one hand, the bioanodes that are electrically connected to each other (arranged in parallel) and, on the other hand, the biocathode.
  • the most commonly used method is to measure the maximum current density that it is capable of producing in the presence of an organic substrate.
  • the current density at the bioanodes was thus tracked as a function of time (see the curve in FIG. 7 showing the current density as a solid line).
  • the frame 17 and the current collector 16 of one of the removable bioanodes were removed from the anode compartment 11 by sliding within one of the slots 20 (see FIG. 6 ) cleaned using a detergent and then dried, the grid 18 made of stainless steel and the carbon fabrics 15 were replaced with new materials.
  • the new, renewed bioanode was then put back in the position closest to the membrane 31 , the other bioanode having been moved into the other slot, closer to the outer wall of the reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
US17/274,308 2018-09-13 2019-09-12 Bioelectrochemical reactor with double bioanode, method for anodic regeneration and use of the reactor for microbial electrosynthesis Active 2040-10-20 US11820686B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1858240 2018-09-13
FR1858240A FR3085972B1 (fr) 2018-09-13 2018-09-13 Reacteur bio-electrochimique a double bio-anode, procede de regeneration anodique et utilisation du reacteur a l'electrosynthese microbienne
PCT/FR2019/052110 WO2020053529A1 (fr) 2018-09-13 2019-09-12 Réacteur bio-électrochimique à double bio-anode, procédé de régénération anodique et utilisation du réacteur à l'électrosynthèse microbienne

Publications (2)

Publication Number Publication Date
US20210340039A1 US20210340039A1 (en) 2021-11-04
US11820686B2 true US11820686B2 (en) 2023-11-21

Family

ID=65201417

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/274,308 Active 2040-10-20 US11820686B2 (en) 2018-09-13 2019-09-12 Bioelectrochemical reactor with double bioanode, method for anodic regeneration and use of the reactor for microbial electrosynthesis

Country Status (5)

Country Link
US (1) US11820686B2 (fr)
EP (1) EP3850127B1 (fr)
CA (1) CA3111054A1 (fr)
FR (1) FR3085972B1 (fr)
WO (1) WO2020053529A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3123347A1 (fr) 2021-05-26 2022-12-02 Suez Groupe Reacteur bio-electrochimique optimise, notamment pour la degradation de la demande chimique en oxygene d’un effluent
CN114409057B (zh) * 2021-12-30 2023-09-19 海南大学 一种利用生物阴极共代谢系统还原降解恩诺沙星的方法
NL2032221B1 (en) * 2022-06-20 2024-01-08 Univ Delft Tech Device for performing a biologically catalysed electrochemical reaction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090317882A1 (en) * 2008-06-20 2009-12-24 The Penn State Research Foundation Electromethanogenic reactor and processes for methane production
US20100270158A1 (en) * 2009-04-22 2010-10-28 The Penn State Research Foundation Desalination devices and methods
US20140069806A1 (en) 2010-10-19 2014-03-13 Matthew Silver Bio-electrochemical systems
CN103922487A (zh) 2014-04-25 2014-07-16 内蒙古科技大学 一种实现污水处理和二氧化碳还原制甲醇的方法
US20180166760A1 (en) * 2015-05-01 2018-06-14 Stc.Unm Biological and Stand-Alone Super-Capacitors for Water Treatment
US20190161869A1 (en) 2016-06-24 2019-05-30 Nederlandse Organisatie Voor Togepast- Natuurwetenschappelijk Onderzoek Tno Electrochemical process and reactor
US20200010345A1 (en) * 2016-12-16 2020-01-09 Fcc Aqualia, S.A. Method of desalination and wastewater treatment in a microbial desalination cell reactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026413B1 (fr) 2014-09-30 2023-05-12 Institut National De Recherche En Sciences Et Tech Pour Lenvironnement Et Lagriculture Irstea Procede et dispositif de regulation de l'activite d'un systeme bioelectrochimique comportant a la fois une bioanode et une biocathode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090317882A1 (en) * 2008-06-20 2009-12-24 The Penn State Research Foundation Electromethanogenic reactor and processes for methane production
US20100270158A1 (en) * 2009-04-22 2010-10-28 The Penn State Research Foundation Desalination devices and methods
US20140069806A1 (en) 2010-10-19 2014-03-13 Matthew Silver Bio-electrochemical systems
CN103922487A (zh) 2014-04-25 2014-07-16 内蒙古科技大学 一种实现污水处理和二氧化碳还原制甲醇的方法
US20180166760A1 (en) * 2015-05-01 2018-06-14 Stc.Unm Biological and Stand-Alone Super-Capacitors for Water Treatment
US20190161869A1 (en) 2016-06-24 2019-05-30 Nederlandse Organisatie Voor Togepast- Natuurwetenschappelijk Onderzoek Tno Electrochemical process and reactor
US20200010345A1 (en) * 2016-12-16 2020-01-09 Fcc Aqualia, S.A. Method of desalination and wastewater treatment in a microbial desalination cell reactor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Anonymous: "Auxiliary electrode—Wikipedia", Sep. 8, 2018 (Sep. 8, 2018).
International Search Reports dated Jan. 3, 2020.
Kong et al. (Bioresource Technology, 2014, 151, 332-339). (Year: 2014). *
Korneel Rabaey et al: "Microbial electrosynthesis—revisiting the electrical route for microbial production", Nature Reviews Microbiology, vol. 8, No. 10, Oct. 1, 2010.

Also Published As

Publication number Publication date
CA3111054A1 (fr) 2020-03-19
US20210340039A1 (en) 2021-11-04
FR3085972A1 (fr) 2020-03-20
EP3850127B1 (fr) 2022-06-01
FR3085972B1 (fr) 2020-09-11
WO2020053529A1 (fr) 2020-03-19
EP3850127A1 (fr) 2021-07-21

Similar Documents

Publication Publication Date Title
US11820686B2 (en) Bioelectrochemical reactor with double bioanode, method for anodic regeneration and use of the reactor for microbial electrosynthesis
Yasri et al. The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells
Bajracharya et al. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode
Lim et al. Bioanode as a limiting factor to biocathode performance in microbial electrolysis cells
US7491453B2 (en) Bio-electrochemically assisted microbial reactor that generates hydrogen gas and methods of generating hydrogen gas
Singh et al. Microbial fuel cells: A green technology for power generation
Rozendal et al. Effects of membrane cation transport on pH and microbial fuel cell performance
Ismail et al. Sustainable power generation in continuous flow microbial fuel cell treating actual wastewater: influence of biocatalyst type on electricity production
Watson et al. Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater
Zhang et al. Effect of dissolved oxygen concentration on nitrogen removal and electricity generation in self pH-buffer microbial fuel cell
NL1034123C2 (nl) Werkwijze voor het verkrijgen van een kathodofiele, waterstof producerende microbiele cultuur, microbiele cultuur verkregen met deze werkwijze en gebruik van deze microbiele cultuur.
Barahoei et al. Salinity reduction of brackish water using a chemical photosynthesis desalination cell
Li et al. Cathodic biofouling control by microbial separators in air-breathing microbial fuel cells
Utesch et al. A novel All‐in‐One electrolysis electrode and bioreactor enable better study of electrochemical effects and electricity‐aided bioprocesses
Mateo et al. The influence of sludge retention time on mixed culture microbial fuel cell start-ups
Al-Mamun Effect of external resistance on microbial electrochemical desalination, sewage treatment, power and resource recovery
EP3075884A1 (fr) Système et procédé d'oxydation d'eau bio-électrochimique
US9673471B2 (en) Production of a biofilm on an electrode for a biocell, electrode and biocell obtained
Li et al. The operation characters of biocathode microbial electrochemical system with microbial separator for domestic wastewater treatment: Power generation, long-term stability, and organic removal
Azuma et al. Catalyst development of microbial fuel cells for renewable-energy production
Elmazouzi et al. Microbial Fuel Cells for Depollution of Stagnant Water and Production of Electrical Energy
Addagada et al. Tricks and tracks in resource recovery from wastewater using bio-electrochemical systems (BES): A systematic review on recent advancements and future directions
CN111370725A (zh) 一种基于生物动态膜的mfc系统及强化产电方法
Ashwaniy et al. Microbial desalination cell: An integrated technology for desalination, wastewater treatment and renewable energy generation
Elakkiya et al. Power Production in Microbial Fuel Cells (MFC): Recent Progress and Future Scope

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUEZ GROUPE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOREAU, SYLVAIN;BOUCHEZ, THEODORE;TIAN, JIANGHAO;AND OTHERS;SIGNING DATES FROM 20210115 TO 20210204;REEL/FRAME:055526/0607

Owner name: INSTITUT NATIONAL DE RECHERCHE POUR L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOREAU, SYLVAIN;BOUCHEZ, THEODORE;TIAN, JIANGHAO;AND OTHERS;SIGNING DATES FROM 20210115 TO 20210204;REEL/FRAME:055526/0607

Owner name: INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOREAU, SYLVAIN;BOUCHEZ, THEODORE;TIAN, JIANGHAO;AND OTHERS;SIGNING DATES FROM 20210115 TO 20210204;REEL/FRAME:055526/0607

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOREAU, SYLVAIN;BOUCHEZ, THEODORE;TIAN, JIANGHAO;AND OTHERS;SIGNING DATES FROM 20210115 TO 20210204;REEL/FRAME:055526/0607

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: SUEZ INTERNATIONAL, FRANCE

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:SUEZ GROUPE;REEL/FRAME:061755/0180

Effective date: 20221018

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE