US11804130B2 - Vehicle identification method and apparatus, primary device, and secondary device - Google Patents

Vehicle identification method and apparatus, primary device, and secondary device Download PDF

Info

Publication number
US11804130B2
US11804130B2 US17/361,084 US202117361084A US11804130B2 US 11804130 B2 US11804130 B2 US 11804130B2 US 202117361084 A US202117361084 A US 202117361084A US 11804130 B2 US11804130 B2 US 11804130B2
Authority
US
United States
Prior art keywords
secondary device
vehicle
low
frequency signal
identity information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/361,084
Other versions
US20220013004A1 (en
Inventor
Fuxi LI
Wei Ye
Yuantao SUN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alipay Hangzhou Information Technology Co Ltd
Original Assignee
Alipay Hangzhou Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alipay Hangzhou Information Technology Co Ltd filed Critical Alipay Hangzhou Information Technology Co Ltd
Assigned to Alipay (Hangzhou) Information Technology Co., Ltd. reassignment Alipay (Hangzhou) Information Technology Co., Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, Fuxi, SUN, Yuantao, YE, WEI
Publication of US20220013004A1 publication Critical patent/US20220013004A1/en
Application granted granted Critical
Publication of US11804130B2 publication Critical patent/US11804130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/06Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems
    • G07B15/063Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems using wireless information transmission between the vehicle and a fixed station

Definitions

  • Implementations of the present specification relate to the field of Internet technologies, and in particular, to a vehicle identification method and apparatus, a primary device, and a secondary device.
  • vehicle identities are generally automatically identified by using solutions such as electronic toll collection (ETC), vehicle license plate identification, or Bluetooth cards.
  • ETC electronic toll collection
  • vehicle license plate identification e.g., vehicle license plate number
  • Bluetooth cards e.g., Bluetooth cards.
  • the ETC identifies a vehicle (e.g., through a vehicle license plate number), through microwave dedicated short-range communication between an in-vehicle electronic label installed on a vehicle windshield and a microwave antenna on an ETC lane of a toll station.
  • Implementations of the present specification provide a vehicle identification method and apparatus, a primary device, and a secondary device, which improves the accuracy of vehicle identification and the accuracy of detecting the location of a vehicle.
  • the implementations of the present specification provide a vehicle identification method, including: sending, by a primary device, a low-frequency signal with a predetermined radiation range; receiving a response signal sent by a secondary device located on a vehicle responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold; and communicating with the secondary device to obtain identity information of the vehicle on which the secondary device is located.
  • the primary device after sending the low-frequency signal, receives the response signal sent by the secondary device responding to the low-frequency signal, and communicates with the secondary device to obtain the identity information of the vehicle on which the secondary device is located, so that the vehicle can be identified.
  • the response signal is sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, and the signal strength of the low-frequency signal rapidly attenuates as the distance increases, so that the primary device can determine the location of the vehicle on which the secondary device is located solely based on the received response signal. Therefore, the vehicle on which the secondary device is located can be positioned accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
  • the method further includes: before the communicating with the secondary device to obtain the identity information of the vehicle on which the secondary device is located, determining that the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determining that the vehicle on which the secondary device is located is a vehicle to be identified.
  • the communicating with the secondary device to obtain the identity information of the vehicle on which the secondary device is located includes: communicating with the secondary device to receive the identity information of the vehicle on which the secondary device is located that is sent by the secondary device; or communicating with the secondary device to receive an identifier of the secondary device that is sent by the secondary device, and obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
  • the implementations of the present specification provide a vehicle identification method, including: receiving, by a secondary device, a low-frequency signal sent by a primary device; detecting signal strength of the low-frequency signal; sending a response signal to the primary device in response to the signal strength of the low-frequency signal being greater than or equal to a predetermined threshold; and communicating with the primary device to cause the primary device to obtain identity information of a vehicle on which the secondary device is located.
  • the secondary device After receiving the low-frequency signal sent by the primary device, the secondary device detects the signal strength of the low-frequency signal. In response to the signal strength of the low-frequency signal being greater than or equal to the predetermined threshold, the secondary device sends the response signal to the primary device, and communicates with the primary device to cause the primary device to obtain the identity information of the vehicle on which the secondary device is located, so that the primary device can accurately position the vehicle on which the secondary device is located, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
  • the implementations of the present specification provide a vehicle identification method, including: sending, by a primary device located on a vehicle, a low-frequency signal with a predetermined radiation range; receiving a response signal sent by a secondary device responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold; and communicating with the secondary device to cause the secondary device to obtain identity information of the vehicle on which the primary device is located.
  • the primary device after sending the low-frequency signal, receives the response signal sent by the secondary device responding to the low-frequency signal, and communicates with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located, so that the vehicle can be identified.
  • the response signal is sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, and the signal strength of the low-frequency signal rapidly attenuates as the distance increases, so that the primary device can determine the distance between the secondary device and the vehicle on which the primary device is located solely based on the received response signal. Therefore, the vehicle on which the primary device is located can be positioned accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
  • the method further includes: before the communicating with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located, determining that the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determining that the vehicle on which the primary device is located is a vehicle to be identified.
  • the communicating with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located includes: communicating with the secondary device to send the identity information of the vehicle on which the primary device is located to the secondary device; or communicating with the secondary device to send an identifier of the primary device to the secondary device, to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located based on the identifier of the primary device.
  • the implementations of the present specification provide a vehicle identification apparatus, including: a sending module, configured to send a low-frequency signal with a predetermined radiation range; a receiving module, configured to receive a response signal sent by a secondary device located on a vehicle responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold; and an acquisition module, configured to communicate with the secondary device to obtain identity information of a vehicle on which the secondary device is located.
  • the apparatus further includes: a determining module, configured to: before the acquisition module obtains the identity information of the vehicle on which the secondary device is located, determine whether the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine whether the vehicle on which the secondary device is located is a vehicle to be identified.
  • a determining module configured to: before the acquisition module obtains the identity information of the vehicle on which the secondary device is located, determine whether the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine whether the vehicle on which the secondary device is located is a vehicle to be identified.
  • the acquisition module is configured to communicate with the secondary device to receive the identity information of the vehicle on which the secondary device is located that is sent by the secondary device; or communicate with the secondary device to receive an identifier of the secondary device that is sent by the secondary device, and obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
  • the implementations of the present specification provide a vehicle identification apparatus, including: a receiving module, configured to receive a low-frequency signal sent by a primary device; a detection module, configured to detect signal strength of the low-frequency signal; a sending module, configured to send a response signal to the primary device in response to the signal strength of the low-frequency signal being greater than or equal to a predetermined threshold; and a communication module, configured to communicate with the primary device to cause the primary device to obtain identity information of a vehicle on which the secondary device is located.
  • the implementations of the present specification provide a vehicle identification apparatus, including: a sending module, configured to send a low-frequency signal with a predetermined radiation range; a receiving module, configured to receive a response signal sent by a secondary device responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold; and a communication module, configured to communicate with the secondary device to cause the secondary device to obtain identity information of a vehicle on which a primary device is located.
  • the apparatus further includes: a determining module, configured to, before the communication module communicates with the secondary device, determine whether the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine whether the vehicle on which the primary device is located is a vehicle to be identified.
  • a determining module configured to, before the communication module communicates with the secondary device, determine whether the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine whether the vehicle on which the primary device is located is a vehicle to be identified.
  • the communication module is configured to communicate with the secondary device to send the identity information of the vehicle on which the primary device is located to the secondary device; or communicate with the secondary device to send an identifier of the primary device to the secondary device, to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located based on the identifier of the primary device.
  • the implementations of the present specification provide a primary device, including: at least one processor; and at least one memory communicatively connected to the processor.
  • the memory stores program instructions executable by the processor, and invocable by the processor to perform the method provided in the first aspect.
  • the implementations of the present specification provide a non-transient computer-readable storage medium.
  • the non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the method provided in the first aspect.
  • the implementations of the present specification provide a secondary device, including: at least one processor; and at least one memory communicatively connected to the processor.
  • the memory stores program instructions executable by the processor, and invocable by the processor to perform the method provided in the second aspect.
  • the implementations of the present specification provide a non-transient computer-readable storage medium.
  • the non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the method provided in the second aspect.
  • the implementations of the present specification provide a primary device, including: at least one processor; and at least one memory communicatively connected to the processor.
  • the memory stores program instructions executable by the processor, and invocable by the processor to perform the method provided in the third aspect.
  • the implementations of the present specification provide a non-transient computer-readable storage medium.
  • the non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the method provided in the third aspect.
  • FIG. 1 is a flowchart illustrating an implementation of a vehicle identification method according to the present specification.
  • FIG. 2 is a schematic diagram illustrating installation locations of a primary device and a secondary device according to an implementation of the present specification.
  • FIG. 3 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification.
  • FIG. 4 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification.
  • FIG. 5 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification.
  • FIG. 6 is a schematic diagram illustrating installation locations of a primary device and a secondary device according to another implementation of the present specification.
  • FIG. 7 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification.
  • FIG. 8 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification.
  • FIG. 9 is a schematic structural diagram illustrating an implementation of a vehicle identification apparatus according to the present specification.
  • FIG. 10 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification.
  • FIG. 11 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification.
  • FIG. 12 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification.
  • FIG. 13 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification.
  • FIG. 14 is a schematic structural diagram illustrating an implementation of a primary device according to the present specification.
  • the implementations of the present specification provide a vehicle identification method, which can improve the accuracy of vehicle identification and the accuracy of detecting the location of a vehicle as well as having relatively high generality.
  • FIG. 1 is a flowchart illustrating an implementation of a vehicle identification method according to the present specification. As shown in FIG. 1 , the vehicle identification method can include the following steps.
  • Step 102 A primary device sends a low-frequency signal with a predetermined radiation range.
  • the primary device is a device that actively sends the low-frequency signal and corresponds to a secondary device.
  • the secondary device is usually in a sleep state, and makes a response after receiving the low-frequency signal sent by the primary device.
  • the magnetic field signal dominates in a low-frequency signal, and the radiation range of the low-frequency signal is easy to control, a radius is usually 3 meters.
  • the primary device can communicate with the secondary device by controlling the radiation range of the low-frequency signal sent by the primary device. For example, only a secondary device within the radiation range can receive the low-frequency signal, while a secondary device outside the radiation range cannot receive the low-frequency signal or can only receive a low-frequency signal with very weak signal strength.
  • the radiation range of the low-frequency signal can include a radiation angle and a radiation radius of the low-frequency signal.
  • the primary device can be installed at a certain fixed location on a roadside, as shown in FIG. 2 .
  • the secondary device can be installed on a vehicle. Therefore, in some implementations, the radiation angle and the radiation radius of the low-frequency signal can be determined based on the location of the primary device relative to a lane that needs to be detected, the width of the lane, and/or the length of the vehicle, etc., so that only a secondary device included in a vehicle travelling in the lane that needs to be detected by the primary device can receive the low-frequency signal.
  • the radiation range can be predetermined or dynamically determined.
  • the radiation range can be determined with different values for different scenarios or use environments.
  • the radiation range can be pre-determined with different values of radiation angle and radiation radius for different use environments.
  • the radiation range being predetermined is used as an illustrative example, which does not limit the scope of the disclosure.
  • FIG. 2 is a schematic diagram illustrating installation locations of a primary device and a secondary device according to an implementation of the present specification.
  • Step 104 Receive a response signal sent by the secondary device located on a vehicle responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a determined threshold.
  • the determined threshold can be self-determined based on an implementation requirement, system performance, etc.
  • the predetermined threshold is not limited in this implementation.
  • the determined threshold can be predetermined or dynamically determined and can be determined with different values for different use environment and scenarios.
  • the secondary device being located on the vehicle includes the scenarios that the secondary device is integrated in the vehicle as an integral part of the vehicle, coupled electrically and/or mechanically to the vehicle, or carried on the vehicle, or any other scenarios that the secondary device is located on the vehicle.
  • the secondary device is “woken up” from the sleep state only when the vehicle on which the secondary device is located enters or is within the radiation range.
  • the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal.
  • the secondary device sends the response signal to the primary device, so that the primary device can determine that the distance between the vehicle on which the secondary device is located and the primary device is less than the radiation radius of the low-frequency signal solely based on the received response signal. Therefore, the location of the vehicle on which the secondary device is located can be determined accurately.
  • the signal strength is configured to attenuate or decrease based on the determined radiation range. For example, the signal strength decreases to a level that is below the determined threshold at an edge of the radiation range.
  • the determined threshold is determined based on the determined radiation range. In some implementations, the determined threshold is determined based on the signal strength of the low-frequency signal at the edge of the determined radiation range. For example, the determined threshold is equal to a signal strength at the edge of the radiation range.
  • Step 106 Communicate with the secondary device to obtain identity information of the vehicle on which the secondary device is located.
  • the identity information of the vehicle can include one or a combination of a vehicle license plate number, an engine number, and a frame number. Certainly, the identity information of the vehicle can further include other information that can uniquely identify the vehicle. Specific information included in the identity information of the vehicle is not limited in this implementation.
  • the communicating with the secondary device to obtain the identity information of the vehicle on which the secondary device is located can be: communicating with the secondary device to receive the identity information of the vehicle on which the secondary device is located that is sent by the secondary device; or communicating with the secondary device to receive an identifier of the secondary device that is sent by the secondary device, and obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
  • the identity information of the vehicle can be pre-stored in the secondary device.
  • the secondary device can directly send the identity information of the vehicle on which the secondary device is located to the primary device, and the primary device receives the identity information of the vehicle that is sent by the secondary device.
  • a user when the secondary device is used for the first time, a user can submit the identifier of the secondary device and the identity information of the vehicle on which the secondary device is located to a server.
  • the secondary device In a process in which the primary device communicates with the secondary device, the secondary device only needs to send the identifier of the secondary device to the primary device, and the primary device receives the identifier of the secondary device and then obtains the identity information of the vehicle on which the secondary device is located from the server based on the identifier of the secondary device.
  • the primary device can communicate with the server to send the identity information of the vehicle to the server, so that the server can obtain a user account associated with the identity information of the vehicle and then perform an operation such as deducting a fare from the user account, and/or pushing a message to the user account.
  • the primary device after sending the low-frequency signal, receives the response signal sent by the secondary device responding to the low-frequency signal, and communicates with the secondary device to obtain the identity information of the vehicle on which the secondary device is located, so that the vehicle can be identified.
  • the response signal is sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, and the signal strength of the low-frequency signal rapidly attenuates as the distance increases, so that the primary device can determine the location of the vehicle on which the secondary device is located solely based on the received response signal. Therefore, the location of the vehicle on which the secondary device is located can be determined accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
  • FIG. 3 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification. As shown in FIG. 3 , before step 106 , the method can further include the following step.
  • Step 302 Determine that the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine that the vehicle on which the secondary device is located is a vehicle to be identified.
  • the radiation range of the low-frequency signal can include the radiation angle and the radiation radius of the low-frequency signal
  • that the secondary device falls within the radiation range of the low-frequency signal can be that the distance between the secondary device and the primary device is less than or equal to the radiation radius of the low-frequency signal.
  • the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal, that is, the distance between the secondary device and the primary device is less than or equal to the radiation radius of the low-frequency signal.
  • the secondary device sends the response signal to the primary device, so that the primary device can determine that the secondary device falls within the radiation range of the low-frequency signal solely based on the received response signal and then can determine that the vehicle on which the secondary device is located is located within the radiation range of the low-frequency signal.
  • the primary device can determine that the vehicle within the radiation range of the low-frequency signal is the vehicle to be identified, so that the location of the vehicle on which the secondary device is located can be determined accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
  • FIG. 4 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification. As shown in FIG. 4 , the vehicle identification method can include the following steps.
  • Step 402 A secondary device receives a low-frequency signal sent by a primary device.
  • the primary device is a device that actively sends the low-frequency signal and corresponds to the secondary device.
  • the secondary device is usually in a sleep state.
  • the primary device can be installed at a certain fixed location on a roadside, as shown in FIG. 2 .
  • a radiation range of the low-frequency signal sent by the primary device is predetermined.
  • the secondary device can be installed on a vehicle, and the secondary device can receive the low-frequency signal sent by the primary device after entering the radiation range of the low-frequency signal.
  • Step 404 Detect signal strength of the low-frequency signal.
  • Step 406 Send a response signal to the primary device in response to the signal strength of the low-frequency signal being greater than or equal to a predetermined threshold.
  • the predetermined threshold can be self-determined based on an implementation requirement, system performance, etc.
  • the predetermined threshold is not limited in this implementation.
  • the secondary device After receiving the low-frequency signal, the secondary device detects the signal strength of the low-frequency signal. In response to the signal strength of the low-frequency signal being greater than or equal to the predetermined threshold, the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal. In this case, the secondary device sends the response signal to the primary device, so that the primary device can determine the location of the vehicle on which the secondary device is located solely based on the received response signal. Therefore, the vehicle on which the secondary device is located can be positioned accurately.
  • Step 408 Communicate with the primary device to cause the primary device to obtain identity information of the vehicle on which the secondary device is located.
  • the identity information of the vehicle can include one or a combination of a vehicle license plate number, an engine number, and a frame number. Certainly, the identity information of the vehicle can further include other information that can uniquely identify the vehicle. Specific information included in the identity information of the vehicle is not limited in this implementation.
  • the communicating with the primary device to cause the primary device to obtain the identity information of the vehicle on which the secondary device is located can be: communicating with the primary device to send the identity information of the vehicle on which the secondary device is located to the primary device; or communicating with the primary device to send an identifier of the secondary device to the primary device, to cause the primary device to obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
  • the secondary device After receiving the low-frequency signal sent by the primary device, the secondary device detects the signal strength of the low-frequency signal. In response to the signal strength of the low-frequency signal being greater than or equal to the predetermined threshold, the secondary device sends the response signal to the primary device, and communicates with the primary device to cause the primary device to obtain the identity information of the vehicle on which the secondary device is located, so that the primary device can accurately determine the location of the vehicle on which the secondary device is located, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
  • FIG. 5 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification. As shown in FIG. 5 , the vehicle identification method can include the following steps.
  • Step 502 A primary device located on a vehicle sends a low-frequency signal with a predetermined radiation range.
  • the radiation range of the low-frequency signal can include a radiation angle and a radiation radius of the low-frequency signal.
  • the primary device can be installed on a vehicle, and the secondary device can be installed at a certain fixed location on a roadside, as shown in FIG. 6 . Therefore, in some implementations, the radiation angle and the radiation radius of the low-frequency signal can be determined based on the installation location of the secondary device, so that the radiation range of the low-frequency signal sent by the primary device can cover the secondary device when the vehicle in which the primary device is installed travels on a road on which the secondary device is installed.
  • FIG. 6 is a schematic diagram illustrating installation locations of a primary device and a secondary device according to another implementation of the present specification.
  • Step 504 Receive a response signal sent by the secondary device responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold.
  • the predetermined threshold can be self-determined based on an implementation requirement, system performance, etc.
  • the predetermined threshold is not limited in this implementation.
  • the secondary device is “woken up” from a sleep state only when the secondary device enters the radiation range of the low-frequency signal.
  • the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal.
  • the secondary device sends the response signal to the primary device, so that the primary device can determine that the distance between the vehicle on which the primary device is located and the secondary device is less than or equal to the radiation radius of the low-frequency signal solely based on the received response signal.
  • Step 506 Communicate with the secondary device to cause the secondary device to obtain identity information of the vehicle on which the primary device is located.
  • the communicating with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located can be: communicating with the secondary device to send the identity information of the vehicle on which the primary device is located to the secondary device; or communicating with the secondary device to send an identifier of the primary device to the secondary device, to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located based on the identifier of the primary device.
  • the identity information of the vehicle can be pre-stored in the primary device.
  • the primary device can directly send the identity information of the vehicle on which the primary device is located to the secondary device, and the secondary device receives the identity information of the vehicle that is sent by the primary device.
  • a user when the primary device is used for the first time, a user can submit the identifier of the primary device and the identity information of the vehicle on which the primary device is located to a server.
  • the primary device In a process in which the primary device communicates with the secondary device, the primary device only needs to send the identifier of the primary device to the secondary device, and the secondary device receives the identifier of the primary device and then obtains the identity information of the vehicle on which the primary device is located from the server based on the identifier of the primary device.
  • the secondary device can communicate with the server and send the identity information of the vehicle to the server, so that the server can obtain a user account associated with the identity information of the vehicle and then perform an operation such as deducting a fare from the user account, and/or pushing a message to the user account.
  • the primary device after sending the low-frequency signal, receives the response signal sent by the secondary device responding to the low-frequency signal, and communicates with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located, so that the vehicle can be identified.
  • the response signal is sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, and the signal strength of the low-frequency signal rapidly attenuates as the distance increases, so that the primary device can determine the distance between the secondary device and the vehicle on which the primary device is located solely based on the received response signal. Therefore, the location of the vehicle on which the primary device is located can be determined accurately, thereby alleviating the interference from vehicles following up and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
  • FIG. 7 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification. As shown in FIG. 7 , in the implementation shown in FIG. 5 in the present specification, before step 506 , the method can further include the following step.
  • Step 702 Determine that the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine that the vehicle on which the primary device is located is a vehicle to be identified.
  • the radiation range of the low-frequency signal can include the radiation angle and the radiation radius of the low-frequency signal
  • that the secondary device falls within the radiation range of the low-frequency signal can be that the distance between the secondary device and the primary device is less than or equal to the radiation radius of the low-frequency signal.
  • the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal, that is, the distance between the secondary device and the primary device is less than or equal to the radiation radius of the low-frequency signal.
  • the secondary device sends the response signal to the primary device, so that the primary device can determine that the secondary device falls within the radiation range of the low-frequency signal solely based on the received response signal and then can determine that the vehicle on which the primary device is located is the vehicle to be identified. Therefore, the location of the vehicle on which the primary device is located can be determined accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
  • FIG. 8 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification. As shown in FIG. 8 , the vehicle identification method can include the following steps.
  • Step 802 A secondary device receives a low-frequency signal sent by a primary device.
  • the primary device is a device that actively sends the low-frequency signal and corresponds to the secondary device.
  • the secondary device is usually in a sleep state.
  • the primary device can be installed in a vehicle, as shown in FIG. 6 .
  • a radiation range of the low-frequency signal sent by the primary device is predetermined.
  • the secondary device can be installed on a certain fixed location on a roadside, and the secondary device can receive the low-frequency signal sent by the primary device after entering the radiation range of the low-frequency signal.
  • Step 804 Detect signal strength of the low-frequency signal.
  • Step 806 Send a response signal to the primary device in response to the signal strength of the low-frequency signal being greater than or equal to a predetermined threshold.
  • the predetermined threshold can be self-determined based on an implementation requirement, system performance, etc.
  • the predetermined threshold is not limited in this implementation.
  • the secondary device After receiving the low-frequency signal, the secondary device detects the signal strength of the low-frequency signal. In response to the signal strength of the low-frequency signal being greater than or equal to the predetermined threshold, the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal. In this case, the secondary device sends the response signal to the primary device, so that the primary device can determine the distance between the secondary device and the vehicle on which the primary device is located is less than or equal to the radiation radius of the low-frequency signal solely based on the received response signal. Therefore, the vehicle on which the primary device is located can be positioned accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified.
  • Step 808 Communicate with the primary device to obtain identity information of the vehicle on which the primary device is located.
  • the identity information of the vehicle can include one or a combination of a vehicle license plate number, an engine number, and a frame number. Certainly, the identity information of the vehicle can further include other information that can uniquely identify the vehicle. Specific information included in the identity information of the vehicle is not limited in this implementation.
  • the communicating with the primary device to obtain the identity information of the vehicle on which the primary device is located can be: communicating with the primary device to receive the identity information of the vehicle on which the primary device is located that is sent by the primary device; or communicating with the primary device to receive an identifier of the primary device that is sent by the primary device, to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located based on the identifier of the primary device.
  • the secondary device After receiving the low-frequency signal sent by the primary device, the secondary device detects the signal strength of the low-frequency signal. In response to the signal strength of the low-frequency signal being greater than or equal to the predetermined threshold, the secondary device sends the response signal to the primary device, and communicates with the primary device to obtain the identity information of the vehicle on which the primary device is located, so that the vehicle can be identified. In addition, the primary device can determine that the distance between the secondary device and the vehicle on which the primary device is located is less than or equal to the radiation radius of the low-frequency signal based on the response signal, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
  • FIG. 2 and FIG. 6 in the present specification provide two types of installation locations of a primary device and a secondary device.
  • the methods in FIG. 2 and FIG. 6 can be combined, that is, both a primary device and a secondary device are disposed at fixed locations on a roadside and both a primary device and a secondary device are disposed in a vehicle.
  • a principle that magnetic field strength rapidly attenuates as the distance increases is mainly used, and signal strength of a magnetic field signal can approach 0 outside 3 m. Therefore, the location of a vehicle can be determined based on signal strength of a low-frequency signal.
  • signal strength attenuates very slightly within a short distance (for example, 10 m), and therefore, the location of a vehicle cannot be determined based on signal strength.
  • the vehicle identification method provided in the implementations of the present specification has relatively low implementation costs and relatively high accuracy of determining the location of a vehicle (at a centimeter level), thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
  • FIG. 9 is a schematic structural diagram illustrating an implementation of a vehicle identification apparatus according to the present specification.
  • the vehicle identification apparatus can include a sending module 91 , a receiving module 92 , and an acquisition module 93 .
  • the sending module 91 is configured to send a low-frequency signal with a predetermined radiation range.
  • the receiving module 92 is configured to receive a response signal sent by a secondary device located on a vehicle responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold.
  • the acquisition module 93 is configured to communicate with the secondary device to obtain identity information of the vehicle on which the secondary device is located.
  • the acquisition module 93 is configured to communicate with the secondary device to receive the identity information of the vehicle on which the secondary device is located that is sent by the secondary device; or communicate with the secondary device to receive an identifier of the secondary device that is sent by the secondary device, and obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
  • the vehicle identification apparatus provided in the implementation shown in FIG. 9 is configured to perform the technical solutions of the method implementation shown in FIG. 1 in the present specification.
  • FIG. 10 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification. Compared with the vehicle identification apparatus shown in FIG. 9 , the vehicle identification apparatus shown in FIG. 10 can further include a determining module 94 .
  • the determining module 94 is configured to: before the acquisition module 93 obtains the identity information of the vehicle on which the secondary device is located, determine whether the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine whether the vehicle on which the secondary device is located is a vehicle to be identified.
  • the vehicle identification apparatus provided in the implementation shown in FIG. 10 is configured to perform the technical solutions of the method implementations shown in FIG. 1 to FIG. 3 in the present specification.
  • FIG. 11 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification.
  • the vehicle identification apparatus can include a receiving module 1101 , a detection module 1102 , a sending module 1103 , and a communication module 1104 .
  • the receiving module 1101 is configured to receive a low-frequency signal sent by a primary device.
  • the detection module 1102 is configured to detect signal strength of the low-frequency signal.
  • the sending module 1103 is configured to send a response signal to the primary device in response to the signal strength of the low-frequency signal being greater than or equal to a predetermined threshold.
  • the communication module 1104 is configured to communicate with the primary device to cause the primary device to obtain identity information of a vehicle on which the secondary device is located.
  • the vehicle identification apparatus provided in the implementation shown in FIG. 11 is configured to perform the technical solutions of the method implementation shown in FIG. 4 in the present specification.
  • FIG. 12 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification.
  • the vehicle identification apparatus can include a sending module 1201 , a receiving module 1202 , and a communication module 1203 .
  • the sending module 1201 is configured to send a low-frequency signal with a predetermined radiation range.
  • the receiving module 1202 is configured to receive a response signal sent by a secondary device responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold.
  • the communication module 1203 is configured to communicate with the secondary device to cause the secondary device to obtain identity information of a vehicle on which the primary device is located.
  • the communication module 1203 is configured to communicate with the secondary device to send the identity information of the vehicle on which the primary device is located to the secondary device; or communicate with the secondary device to send an identifier of the primary device to the secondary device, to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located based on the identifier of the primary device.
  • the vehicle identification apparatus provided in the implementation shown in FIG. 12 is configured to perform the technical solutions of the method implementation shown in FIG. 5 in the present specification.
  • FIG. 13 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification. Compared with the vehicle identification apparatus shown in FIG. 12 , the vehicle identification apparatus shown in FIG. 13 can further include a determining module 1204 .
  • the determining module 1204 is configured to: before the communication module 1203 communicates with the secondary device, determine whether the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine whether the vehicle on which the primary device is located is a vehicle to be identified.
  • the vehicle identification apparatus provided in the implementation shown in FIG. 13 is configured to perform the technical solutions of the method implementations shown in FIG. 5 to FIG. 7 in the present specification.
  • FIG. 14 is a schematic structural diagram illustrating an implementation of a primary device according to the present specification.
  • the primary device can include at least one processor; and at least one memory communicatively connected to the processor.
  • the memory stores program instructions executable by the processor, and invocable by the processor to perform the vehicle identification methods provided in the implementations shown in FIG. 1 to FIG. 3 in the present specification.
  • the primary device can be a device that actively sends a low-frequency signal.
  • the specific form of the primary device is not limited in this implementation.
  • FIG. 14 is a block diagram illustrating an example primary device adapted to implement the implementations of the present specification.
  • the primary device shown in FIG. 14 is only an example, and should not constitute any limitation on the functions and use scope of the implementations of the present specification.
  • the primary device is represented as a common computing device.
  • Components of the primary device can include but are not limited to one or more processors 410 , a communication interface 420 , a memory 430 , and a communication bus 440 connecting different components (including the memory 430 , the communication interface 420 , and the processing unit 410 ).
  • the communication bus 440 represents one or more of several types of bus structures, including a memory bus or a memory controller, a peripheral bus, a graphics acceleration port, or a local bus that uses any one of multiple bus structures.
  • the communication bus 440 can include but is not limited to an industry standard architecture (ISA) bus, a micro channel architecture (MCA) bus, an enhanced ISA bus, a video electronics standards association (VESA) local bus, and a peripheral component interconnection (PCI) bus.
  • ISA industry standard architecture
  • MCA micro channel architecture
  • VESA video electronics standards association
  • PCI peripheral component interconnection
  • the primary device typically includes multiple computer system readable media. These media can be any available media that can be accessed by the primary device, including volatile and non-volatile media, removable and non-removable media.
  • the memory 430 can include a computer system readable medium in a form of a volatile memory, such as a random access memory (RAM) and/or a cache memory.
  • the memory 430 can include at least one program product.
  • the program product has a group of program modules (for example, at least one program module) configured to perform the functions of the implementations shown in FIG. 1 to FIG. 3 in the present specification.
  • a program/utility tool having a group of program modules can be stored in the memory 430 .
  • the program module includes but is not limited to an operating system, one or more application programs, other program modules, and program data. Any one or a certain combination of these examples may include an implementation of a network environment.
  • the program module usually performs the functions and/or methods in the implementations described in FIG. 1 to FIG. 3 in the present specification.
  • the processor 410 runs the program stored in the memory 430 , to perform various functional applications and data processing, for example, implement the vehicle identification methods provided in the implementations shown in FIG. 1 to FIG. 3 in the present specification.
  • the implementations of the present specification further provide a secondary device, including: at least one processor; and at least one memory communicatively connected to the processor.
  • the memory stores program instructions executable by the processor, and invocable by the processor to perform the vehicle identification method provided in the implementation shown in FIG. 4 in the present specification.
  • the secondary device corresponds to a primary device, is usually in a sleep state, and makes a response after receiving a low-frequency signal.
  • the secondary device can be implemented by using the structure shown in FIG. 14 . Details are omitted herein for simplicity.
  • the implementations of the present specification further provide a primary device, including: at least one processor; and at least one memory communicatively connected to the processor.
  • the memory stores program instructions executable by the processor, and invocable by the processor to perform the vehicle identification methods provided in the implementations shown in FIG. 5 to FIG. 7 in the present specification.
  • the primary device can be a device that actively sends a low-frequency signal.
  • a specific form of the primary device is not limited in this implementation.
  • the primary device can be implemented by using the structure shown in FIG. 14 . Details are omitted herein for simplicity.
  • the implementations of the present specification provide a non-transient computer-readable storage medium.
  • the non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the vehicle identification methods provided in the implementations shown in FIG. 1 to FIG. 3 in the present specification.
  • the implementations of the present specification provide a non-transient computer-readable storage medium.
  • the non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the vehicle identification method provided in the implementation shown in FIG. 4 in the present specification.
  • the implementations of the present specification provide a non-transient computer-readable storage medium.
  • the non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the vehicle identification methods provided in the implementations shown in FIG. 5 to FIG. 7 in the present specification.
  • the non-transient computer-readable storage medium can be any combination of one or more computer-readable media.
  • the computer-readable media can be computer-readable signal media or computer-readable storage media.
  • the computer-readable storage medium can be but is limited to an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof.
  • a more specific example (non-exhaustive list) of the computer-readable storage medium includes an electrical connection having one or more leads, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable erasable programmable read-only memory (EPROM) or a flash memory, an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination thereof.
  • the computer-readable storage medium can be any tangible medium that includes or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium can include a data signal propagated in a baseband or as a part of a carrier, and the data signal includes computer-readable program code.
  • the propagated data signal can be in various forms, including but not limited to an electromagnetic signal, an optical signal, or any suitable combination thereof.
  • the computer-readable signal medium can be any computer-readable medium other than the computer-readable storage medium, and the computer-readable medium can send, propagate, or transmit a program used by or in combination with an instruction execution system, apparatus, or device.
  • Program code included in the computer-readable medium can be transmitted by using any suitable medium, including but not limited to a wireless medium, a wire, an optical cable, a radio frequency (RF) medium, or any suitable combination thereof.
  • a wireless medium including but not limited to a wireless medium, a wire, an optical cable, a radio frequency (RF) medium, or any suitable combination thereof.
  • RF radio frequency
  • Computer program code used to perform the operations of the present specification can be written in one or more programming languages or a combination thereof.
  • the programming languages include an object-oriented programming language such as Java, Smalltalk, or C++, and also include a conventional procedural programming language such as “C” language or a similar programming language.
  • the program code can be completely executed in a user computer, partially completely in a user computer, executed as an independent software package, partially executed in a user computer and partially executed in a remote computer, or completely executed in a remote computer or server.
  • the remote computer can be connected to a user computer via any type of network, including a local area network (LAN) or a wide area network (WAN), or can be connected to an external computer (via, for example, the Internet by using an Internet service provider).
  • LAN local area network
  • WAN wide area network
  • references terms such as “an implementation”, “some implementations”, “an example”, “a specific example”, and “some examples” mean that specific features, structures, materials, or characteristics described with reference to the implementations or examples are included in at least one implementation or example of the present specification.
  • example expressions of the terms are not necessarily specific to the same implementation or example.
  • the described specific features, structures, materials, or characteristics can be combined in a proper way in any one or more of the implementations or examples.
  • a person skilled in the art can integrate or combine different implementations or examples and features of different implementations or examples described in the present specification, provided that they do not conflict with each other.
  • first and second are merely intended for description, and shall not be understood as an indication or implication of relative importance or an implicit indication of the number of indicated technical features. Therefore, a feature limited by “first” or “second” can explicitly or implicitly include at least one such feature. In the description of the present specification, “multiple” means at least two, for example, two or three, unless otherwise specifically limited.
  • the word “if” used herein can be explained as “while”, “when”, “in response to determining”, or “in response to detection”.
  • phrases “if determining” or “if detecting (a stated condition or event)” can be explained as “when determining”, “in response to determining”, “when detecting (the stated condition or event)”, or “in response to detecting (the stated condition or event)”.
  • the terminal in the implementations of the present specification can include but is not limited to a personal computer (PC), a personal digital assistant (PDA), a wireless handheld device, a tablet computer (tablet computer), a mobile phone, an MP3 player, an MP4 player, etc.
  • PC personal computer
  • PDA personal digital assistant
  • wireless handheld device a wireless handheld device
  • tablet computer tablet computer
  • mobile phone an MP3 player, an MP4 player, etc.
  • the disclosed system, apparatus, and method can be implemented in other ways.
  • the described apparatus implementations are merely examples.
  • the unit division is merely logical function division and can be other division during actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features may be ignored or may not be performed.
  • the displayed or discussed mutual couplings or direct couplings or communication connections can be implemented by using some interfaces.
  • the indirect couplings or communication connections between the apparatuses or units can be implemented in electronic, mechanical, or other forms.
  • functional units in the implementations of the present specification can be integrated into one processing unit, or each of the units can exist alone physically, or two or more units can be integrated into one unit.
  • the integrated unit can be implemented in a form of hardware, or can be implemented in a form of hardware in combination with a software functional unit.
  • the integrated unit implemented in a form of a software functional unit can be stored in a computer-readable storage medium.
  • the software functional unit is stored in a storage medium and includes several instructions for instructing a computer apparatus (which can be a personal computer, a server, a network apparatus, etc.) or a processor (processor) to perform some of the steps of the methods described in the implementations of the present specification.
  • the storage medium includes any medium that can store program code, such as a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disc.

Abstract

Implementations of the present specification provide a vehicle identification method and apparatus, a primary device, and a secondary device. In the vehicle identification method, after sending a low-frequency signal, the primary device receives a response signal sent by the secondary device for the low-frequency signal, and communicates with the secondary device to obtain identity information of a vehicle on which the secondary device is located, so that the vehicle can be identified. The response signal is sent from the secondary device after the secondary device receives the low-frequency signal and detects that the signal strength of the low-frequency signal is greater than or equal to a predetermined threshold, and the signal strength of the low-frequency signal rapidly attenuates as the distance increases, so that the primary device can determine the location of the vehicle on which the secondary device is located solely based on the received response signal.

Description

BACKGROUND Technical Field
Implementations of the present specification relate to the field of Internet technologies, and in particular, to a vehicle identification method and apparatus, a primary device, and a secondary device.
Description of the Related Art
Currently, vehicle identities are generally automatically identified by using solutions such as electronic toll collection (ETC), vehicle license plate identification, or Bluetooth cards. For example, the ETC identifies a vehicle (e.g., through a vehicle license plate number), through microwave dedicated short-range communication between an in-vehicle electronic label installed on a vehicle windshield and a microwave antenna on an ETC lane of a toll station.
BRIEF SUMMARY
Implementations of the present specification provide a vehicle identification method and apparatus, a primary device, and a secondary device, which improves the accuracy of vehicle identification and the accuracy of detecting the location of a vehicle.
According to a first aspect, the implementations of the present specification provide a vehicle identification method, including: sending, by a primary device, a low-frequency signal with a predetermined radiation range; receiving a response signal sent by a secondary device located on a vehicle responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold; and communicating with the secondary device to obtain identity information of the vehicle on which the secondary device is located.
In the vehicle identification method, after sending the low-frequency signal, the primary device receives the response signal sent by the secondary device responding to the low-frequency signal, and communicates with the secondary device to obtain the identity information of the vehicle on which the secondary device is located, so that the vehicle can be identified. The response signal is sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, and the signal strength of the low-frequency signal rapidly attenuates as the distance increases, so that the primary device can determine the location of the vehicle on which the secondary device is located solely based on the received response signal. Therefore, the vehicle on which the secondary device is located can be positioned accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
In an implementation, the method further includes: before the communicating with the secondary device to obtain the identity information of the vehicle on which the secondary device is located, determining that the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determining that the vehicle on which the secondary device is located is a vehicle to be identified.
In an implementation, the communicating with the secondary device to obtain the identity information of the vehicle on which the secondary device is located includes: communicating with the secondary device to receive the identity information of the vehicle on which the secondary device is located that is sent by the secondary device; or communicating with the secondary device to receive an identifier of the secondary device that is sent by the secondary device, and obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
According to a second aspect, the implementations of the present specification provide a vehicle identification method, including: receiving, by a secondary device, a low-frequency signal sent by a primary device; detecting signal strength of the low-frequency signal; sending a response signal to the primary device in response to the signal strength of the low-frequency signal being greater than or equal to a predetermined threshold; and communicating with the primary device to cause the primary device to obtain identity information of a vehicle on which the secondary device is located.
In the vehicle identification method, after receiving the low-frequency signal sent by the primary device, the secondary device detects the signal strength of the low-frequency signal. In response to the signal strength of the low-frequency signal being greater than or equal to the predetermined threshold, the secondary device sends the response signal to the primary device, and communicates with the primary device to cause the primary device to obtain the identity information of the vehicle on which the secondary device is located, so that the primary device can accurately position the vehicle on which the secondary device is located, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
According to a third aspect, the implementations of the present specification provide a vehicle identification method, including: sending, by a primary device located on a vehicle, a low-frequency signal with a predetermined radiation range; receiving a response signal sent by a secondary device responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold; and communicating with the secondary device to cause the secondary device to obtain identity information of the vehicle on which the primary device is located.
In the vehicle identification method, after sending the low-frequency signal, the primary device receives the response signal sent by the secondary device responding to the low-frequency signal, and communicates with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located, so that the vehicle can be identified. The response signal is sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, and the signal strength of the low-frequency signal rapidly attenuates as the distance increases, so that the primary device can determine the distance between the secondary device and the vehicle on which the primary device is located solely based on the received response signal. Therefore, the vehicle on which the primary device is located can be positioned accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
In an implementation, the method further includes: before the communicating with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located, determining that the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determining that the vehicle on which the primary device is located is a vehicle to be identified.
In an implementation, the communicating with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located includes: communicating with the secondary device to send the identity information of the vehicle on which the primary device is located to the secondary device; or communicating with the secondary device to send an identifier of the primary device to the secondary device, to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located based on the identifier of the primary device.
According to a fourth aspect, the implementations of the present specification provide a vehicle identification apparatus, including: a sending module, configured to send a low-frequency signal with a predetermined radiation range; a receiving module, configured to receive a response signal sent by a secondary device located on a vehicle responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold; and an acquisition module, configured to communicate with the secondary device to obtain identity information of a vehicle on which the secondary device is located.
In an implementation, the apparatus further includes: a determining module, configured to: before the acquisition module obtains the identity information of the vehicle on which the secondary device is located, determine whether the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine whether the vehicle on which the secondary device is located is a vehicle to be identified.
In an implementation, the acquisition module is configured to communicate with the secondary device to receive the identity information of the vehicle on which the secondary device is located that is sent by the secondary device; or communicate with the secondary device to receive an identifier of the secondary device that is sent by the secondary device, and obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
According to a fifth aspect, the implementations of the present specification provide a vehicle identification apparatus, including: a receiving module, configured to receive a low-frequency signal sent by a primary device; a detection module, configured to detect signal strength of the low-frequency signal; a sending module, configured to send a response signal to the primary device in response to the signal strength of the low-frequency signal being greater than or equal to a predetermined threshold; and a communication module, configured to communicate with the primary device to cause the primary device to obtain identity information of a vehicle on which the secondary device is located.
According to a sixth aspect, the implementations of the present specification provide a vehicle identification apparatus, including: a sending module, configured to send a low-frequency signal with a predetermined radiation range; a receiving module, configured to receive a response signal sent by a secondary device responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold; and a communication module, configured to communicate with the secondary device to cause the secondary device to obtain identity information of a vehicle on which a primary device is located.
In an implementation, the apparatus further includes: a determining module, configured to, before the communication module communicates with the secondary device, determine whether the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine whether the vehicle on which the primary device is located is a vehicle to be identified.
In an implementation, the communication module is configured to communicate with the secondary device to send the identity information of the vehicle on which the primary device is located to the secondary device; or communicate with the secondary device to send an identifier of the primary device to the secondary device, to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located based on the identifier of the primary device.
According to a seventh aspect, the implementations of the present specification provide a primary device, including: at least one processor; and at least one memory communicatively connected to the processor. The memory stores program instructions executable by the processor, and invocable by the processor to perform the method provided in the first aspect.
According to an eighth aspect, the implementations of the present specification provide a non-transient computer-readable storage medium. The non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the method provided in the first aspect.
According to a ninth aspect, the implementations of the present specification provide a secondary device, including: at least one processor; and at least one memory communicatively connected to the processor. The memory stores program instructions executable by the processor, and invocable by the processor to perform the method provided in the second aspect.
According to a tenth aspect, the implementations of the present specification provide a non-transient computer-readable storage medium. The non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the method provided in the second aspect.
According to an eleventh aspect, the implementations of the present specification provide a primary device, including: at least one processor; and at least one memory communicatively connected to the processor. The memory stores program instructions executable by the processor, and invocable by the processor to perform the method provided in the third aspect.
According to a twelfth aspect, the implementations of the present specification provide a non-transient computer-readable storage medium. The non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the method provided in the third aspect.
It should be understood that the fourth, seventh, and eighth aspects of the implementations of the present specification are consistent with the technical solutions of the first aspect of the implementations of the present specification, and beneficial effects obtained by all the aspects and corresponding feasible implementations are similar. Details are omitted for simplicity.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
To describe the technical solutions in the implementations of the present specification more clearly, the following briefly describes the accompanying drawings needed for describing the implementations. Clearly, the accompanying drawings in the following description show merely some implementations of the present specification, and a person of ordinary skill in the art can still derive other drawings from these accompanying drawings without creative efforts.
FIG. 1 is a flowchart illustrating an implementation of a vehicle identification method according to the present specification.
FIG. 2 is a schematic diagram illustrating installation locations of a primary device and a secondary device according to an implementation of the present specification.
FIG. 3 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification.
FIG. 4 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification.
FIG. 5 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification.
FIG. 6 is a schematic diagram illustrating installation locations of a primary device and a secondary device according to another implementation of the present specification.
FIG. 7 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification.
FIG. 8 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification.
FIG. 9 is a schematic structural diagram illustrating an implementation of a vehicle identification apparatus according to the present specification.
FIG. 10 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification.
FIG. 11 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification.
FIG. 12 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification.
FIG. 13 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification.
FIG. 14 is a schematic structural diagram illustrating an implementation of a primary device according to the present specification.
DETAILED DESCRIPTION
To make the technical solutions in the present specification more comprehensible, the following describes the implementations of the present specification in detail with reference to the accompanying drawings.
It should be clear that the described implementations are merely some rather than all of the implementations of the present specification. All other implementations obtained by a person of ordinary skill in the art based on the implementations of the present specification without creative efforts shall fall within the protection scope of the present specification.
The terms used in the implementations of the present specification are merely used to describe example implementations, and are not intended to limit the present specification. The singular forms “a”, “the”, and “this” used in the implementations and the appended claims of the present specification are also intended to include plural forms, unless otherwise specified in the context clearly.
In existing technologies, vehicles are mostly automatically identified using solutions such as ETC, vehicle license plate identification, or Bluetooth cards. These solutions have their respective disadvantages, such as high costs, poor generality, and vulnerability to interference or high misidentification rates.
Therefore, the implementations of the present specification provide a vehicle identification method, which can improve the accuracy of vehicle identification and the accuracy of detecting the location of a vehicle as well as having relatively high generality.
FIG. 1 is a flowchart illustrating an implementation of a vehicle identification method according to the present specification. As shown in FIG. 1 , the vehicle identification method can include the following steps.
Step 102: A primary device sends a low-frequency signal with a predetermined radiation range.
In some implementations, the primary device is a device that actively sends the low-frequency signal and corresponds to a secondary device. The secondary device is usually in a sleep state, and makes a response after receiving the low-frequency signal sent by the primary device.
The magnetic field signal dominates in a low-frequency signal, and the radiation range of the low-frequency signal is easy to control, a radius is usually 3 meters. The primary device can communicate with the secondary device by controlling the radiation range of the low-frequency signal sent by the primary device. For example, only a secondary device within the radiation range can receive the low-frequency signal, while a secondary device outside the radiation range cannot receive the low-frequency signal or can only receive a low-frequency signal with very weak signal strength.
The radiation range of the low-frequency signal can include a radiation angle and a radiation radius of the low-frequency signal. In this implementation, the primary device can be installed at a certain fixed location on a roadside, as shown in FIG. 2 . In this case, the secondary device can be installed on a vehicle. Therefore, in some implementations, the radiation angle and the radiation radius of the low-frequency signal can be determined based on the location of the primary device relative to a lane that needs to be detected, the width of the lane, and/or the length of the vehicle, etc., so that only a secondary device included in a vehicle travelling in the lane that needs to be detected by the primary device can receive the low-frequency signal. The radiation range can be predetermined or dynamically determined. The radiation range can be determined with different values for different scenarios or use environments. For example, the radiation range can be pre-determined with different values of radiation angle and radiation radius for different use environments. In the description herein, the radiation range being predetermined is used as an illustrative example, which does not limit the scope of the disclosure. FIG. 2 is a schematic diagram illustrating installation locations of a primary device and a secondary device according to an implementation of the present specification.
Step 104: Receive a response signal sent by the secondary device located on a vehicle responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a determined threshold.
For example, in some implementations, the determined threshold can be self-determined based on an implementation requirement, system performance, etc. The predetermined threshold is not limited in this implementation. The determined threshold can be predetermined or dynamically determined and can be determined with different values for different use environment and scenarios.
The secondary device being located on the vehicle includes the scenarios that the secondary device is integrated in the vehicle as an integral part of the vehicle, coupled electrically and/or mechanically to the vehicle, or carried on the vehicle, or any other scenarios that the secondary device is located on the vehicle.
As the distance increases, the signal strength of the low-frequency signal, e.g., the magnetic field signal, rapidly attenuates, and can approach 0 outside 3 m. Therefore, after the radiation range of the low-frequency signal is predetermined, the secondary device is “woken up” from the sleep state only when the vehicle on which the secondary device is located enters or is within the radiation range. When detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal. In this case, the secondary device sends the response signal to the primary device, so that the primary device can determine that the distance between the vehicle on which the secondary device is located and the primary device is less than the radiation radius of the low-frequency signal solely based on the received response signal. Therefore, the location of the vehicle on which the secondary device is located can be determined accurately.
In some implementation, the signal strength is configured to attenuate or decrease based on the determined radiation range. For example, the signal strength decreases to a level that is below the determined threshold at an edge of the radiation range. In some implementations, the determined threshold is determined based on the determined radiation range. In some implementations, the determined threshold is determined based on the signal strength of the low-frequency signal at the edge of the determined radiation range. For example, the determined threshold is equal to a signal strength at the edge of the radiation range.
Step 106: Communicate with the secondary device to obtain identity information of the vehicle on which the secondary device is located.
In this implementation, the identity information of the vehicle can include one or a combination of a vehicle license plate number, an engine number, and a frame number. Certainly, the identity information of the vehicle can further include other information that can uniquely identify the vehicle. Specific information included in the identity information of the vehicle is not limited in this implementation.
For example, the communicating with the secondary device to obtain the identity information of the vehicle on which the secondary device is located can be: communicating with the secondary device to receive the identity information of the vehicle on which the secondary device is located that is sent by the secondary device; or communicating with the secondary device to receive an identifier of the secondary device that is sent by the secondary device, and obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
That is, in an implementation, the identity information of the vehicle can be pre-stored in the secondary device. In a process in which the primary device communicates with the secondary device, the secondary device can directly send the identity information of the vehicle on which the secondary device is located to the primary device, and the primary device receives the identity information of the vehicle that is sent by the secondary device.
In an implementation, when the secondary device is used for the first time, a user can submit the identifier of the secondary device and the identity information of the vehicle on which the secondary device is located to a server. In a process in which the primary device communicates with the secondary device, the secondary device only needs to send the identifier of the secondary device to the primary device, and the primary device receives the identifier of the secondary device and then obtains the identity information of the vehicle on which the secondary device is located from the server based on the identifier of the secondary device.
Further, after obtaining the identity information of the vehicle, the primary device can communicate with the server to send the identity information of the vehicle to the server, so that the server can obtain a user account associated with the identity information of the vehicle and then perform an operation such as deducting a fare from the user account, and/or pushing a message to the user account.
In the vehicle identification method, after sending the low-frequency signal, the primary device receives the response signal sent by the secondary device responding to the low-frequency signal, and communicates with the secondary device to obtain the identity information of the vehicle on which the secondary device is located, so that the vehicle can be identified. The response signal is sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, and the signal strength of the low-frequency signal rapidly attenuates as the distance increases, so that the primary device can determine the location of the vehicle on which the secondary device is located solely based on the received response signal. Therefore, the location of the vehicle on which the secondary device is located can be determined accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
FIG. 3 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification. As shown in FIG. 3 , before step 106, the method can further include the following step.
Step 302: Determine that the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine that the vehicle on which the secondary device is located is a vehicle to be identified.
In this implementation, because the radiation range of the low-frequency signal can include the radiation angle and the radiation radius of the low-frequency signal, that the secondary device falls within the radiation range of the low-frequency signal can be that the distance between the secondary device and the primary device is less than or equal to the radiation radius of the low-frequency signal.
For example, when detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal, that is, the distance between the secondary device and the primary device is less than or equal to the radiation radius of the low-frequency signal. In this case, the secondary device sends the response signal to the primary device, so that the primary device can determine that the secondary device falls within the radiation range of the low-frequency signal solely based on the received response signal and then can determine that the vehicle on which the secondary device is located is located within the radiation range of the low-frequency signal. It can be understood that because the radiation range of the low-frequency signal is determined based on the location of the primary device relative to the lane that needs to be detected, the width of the lane, and/or the length of the vehicle, etc., the primary device can determine that the vehicle within the radiation range of the low-frequency signal is the vehicle to be identified, so that the location of the vehicle on which the secondary device is located can be determined accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
FIG. 4 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification. As shown in FIG. 4 , the vehicle identification method can include the following steps.
Step 402: A secondary device receives a low-frequency signal sent by a primary device.
The primary device is a device that actively sends the low-frequency signal and corresponds to the secondary device. The secondary device is usually in a sleep state. In this implementation, the primary device can be installed at a certain fixed location on a roadside, as shown in FIG. 2 . A radiation range of the low-frequency signal sent by the primary device is predetermined. The secondary device can be installed on a vehicle, and the secondary device can receive the low-frequency signal sent by the primary device after entering the radiation range of the low-frequency signal.
Step 404: Detect signal strength of the low-frequency signal.
Step 406: Send a response signal to the primary device in response to the signal strength of the low-frequency signal being greater than or equal to a predetermined threshold.
During specific implementation, the predetermined threshold can be self-determined based on an implementation requirement, system performance, etc. The predetermined threshold is not limited in this implementation.
For example, after receiving the low-frequency signal, the secondary device detects the signal strength of the low-frequency signal. In response to the signal strength of the low-frequency signal being greater than or equal to the predetermined threshold, the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal. In this case, the secondary device sends the response signal to the primary device, so that the primary device can determine the location of the vehicle on which the secondary device is located solely based on the received response signal. Therefore, the vehicle on which the secondary device is located can be positioned accurately.
Step 408: Communicate with the primary device to cause the primary device to obtain identity information of the vehicle on which the secondary device is located.
In this implementation, the identity information of the vehicle can include one or a combination of a vehicle license plate number, an engine number, and a frame number. Certainly, the identity information of the vehicle can further include other information that can uniquely identify the vehicle. Specific information included in the identity information of the vehicle is not limited in this implementation.
In some implementations, the communicating with the primary device to cause the primary device to obtain the identity information of the vehicle on which the secondary device is located can be: communicating with the primary device to send the identity information of the vehicle on which the secondary device is located to the primary device; or communicating with the primary device to send an identifier of the secondary device to the primary device, to cause the primary device to obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
In the vehicle identification method, after receiving the low-frequency signal sent by the primary device, the secondary device detects the signal strength of the low-frequency signal. In response to the signal strength of the low-frequency signal being greater than or equal to the predetermined threshold, the secondary device sends the response signal to the primary device, and communicates with the primary device to cause the primary device to obtain the identity information of the vehicle on which the secondary device is located, so that the primary device can accurately determine the location of the vehicle on which the secondary device is located, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
FIG. 5 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification. As shown in FIG. 5 , the vehicle identification method can include the following steps.
Step 502: A primary device located on a vehicle sends a low-frequency signal with a predetermined radiation range.
For example, the radiation range of the low-frequency signal can include a radiation angle and a radiation radius of the low-frequency signal. In this implementation, the primary device can be installed on a vehicle, and the secondary device can be installed at a certain fixed location on a roadside, as shown in FIG. 6 . Therefore, in some implementations, the radiation angle and the radiation radius of the low-frequency signal can be determined based on the installation location of the secondary device, so that the radiation range of the low-frequency signal sent by the primary device can cover the secondary device when the vehicle in which the primary device is installed travels on a road on which the secondary device is installed. FIG. 6 is a schematic diagram illustrating installation locations of a primary device and a secondary device according to another implementation of the present specification.
Step 504: Receive a response signal sent by the secondary device responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold.
For example, in some implementations, the predetermined threshold can be self-determined based on an implementation requirement, system performance, etc. The predetermined threshold is not limited in this implementation.
As the distance increases, the signal strength of the low-frequency signal, e.g., a magnetic field signal, rapidly attenuates, and can approach 0 outside 3 m. Therefore, after the radiation range of the low-frequency signal is determined, the secondary device is “woken up” from a sleep state only when the secondary device enters the radiation range of the low-frequency signal. When detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal. In this case, the secondary device sends the response signal to the primary device, so that the primary device can determine that the distance between the vehicle on which the primary device is located and the secondary device is less than or equal to the radiation radius of the low-frequency signal solely based on the received response signal.
Step 506: Communicate with the secondary device to cause the secondary device to obtain identity information of the vehicle on which the primary device is located.
For example, the communicating with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located can be: communicating with the secondary device to send the identity information of the vehicle on which the primary device is located to the secondary device; or communicating with the secondary device to send an identifier of the primary device to the secondary device, to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located based on the identifier of the primary device.
That is, in an implementation, the identity information of the vehicle can be pre-stored in the primary device. In a process in which the primary device communicates with the secondary device, the primary device can directly send the identity information of the vehicle on which the primary device is located to the secondary device, and the secondary device receives the identity information of the vehicle that is sent by the primary device.
In an implementation, when the primary device is used for the first time, a user can submit the identifier of the primary device and the identity information of the vehicle on which the primary device is located to a server. In a process in which the primary device communicates with the secondary device, the primary device only needs to send the identifier of the primary device to the secondary device, and the secondary device receives the identifier of the primary device and then obtains the identity information of the vehicle on which the primary device is located from the server based on the identifier of the primary device.
Further, after obtaining the identity information of the vehicle, the secondary device can communicate with the server and send the identity information of the vehicle to the server, so that the server can obtain a user account associated with the identity information of the vehicle and then perform an operation such as deducting a fare from the user account, and/or pushing a message to the user account.
In the vehicle identification method, after sending the low-frequency signal, the primary device receives the response signal sent by the secondary device responding to the low-frequency signal, and communicates with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located, so that the vehicle can be identified. The response signal is sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, and the signal strength of the low-frequency signal rapidly attenuates as the distance increases, so that the primary device can determine the distance between the secondary device and the vehicle on which the primary device is located solely based on the received response signal. Therefore, the location of the vehicle on which the primary device is located can be determined accurately, thereby alleviating the interference from vehicles following up and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
FIG. 7 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification. As shown in FIG. 7 , in the implementation shown in FIG. 5 in the present specification, before step 506, the method can further include the following step.
Step 702: Determine that the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine that the vehicle on which the primary device is located is a vehicle to be identified.
In this implementation, because the radiation range of the low-frequency signal can include the radiation angle and the radiation radius of the low-frequency signal, that the secondary device falls within the radiation range of the low-frequency signal can be that the distance between the secondary device and the primary device is less than or equal to the radiation radius of the low-frequency signal.
For example, when detecting that the signal strength of the low-frequency signal is greater than or equal to the predetermined threshold, the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal, that is, the distance between the secondary device and the primary device is less than or equal to the radiation radius of the low-frequency signal. In this case, the secondary device sends the response signal to the primary device, so that the primary device can determine that the secondary device falls within the radiation range of the low-frequency signal solely based on the received response signal and then can determine that the vehicle on which the primary device is located is the vehicle to be identified. Therefore, the location of the vehicle on which the primary device is located can be determined accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
FIG. 8 is a flowchart illustrating another implementation of a vehicle identification method according to the present specification. As shown in FIG. 8 , the vehicle identification method can include the following steps.
Step 802: A secondary device receives a low-frequency signal sent by a primary device.
The primary device is a device that actively sends the low-frequency signal and corresponds to the secondary device. The secondary device is usually in a sleep state. In this implementation, the primary device can be installed in a vehicle, as shown in FIG. 6 . A radiation range of the low-frequency signal sent by the primary device is predetermined. The secondary device can be installed on a certain fixed location on a roadside, and the secondary device can receive the low-frequency signal sent by the primary device after entering the radiation range of the low-frequency signal.
Step 804: Detect signal strength of the low-frequency signal.
Step 806: Send a response signal to the primary device in response to the signal strength of the low-frequency signal being greater than or equal to a predetermined threshold.
In some implementations, the predetermined threshold can be self-determined based on an implementation requirement, system performance, etc. The predetermined threshold is not limited in this implementation.
For example, after receiving the low-frequency signal, the secondary device detects the signal strength of the low-frequency signal. In response to the signal strength of the low-frequency signal being greater than or equal to the predetermined threshold, the secondary device determines that the secondary device falls within the radiation range of the low-frequency signal. In this case, the secondary device sends the response signal to the primary device, so that the primary device can determine the distance between the secondary device and the vehicle on which the primary device is located is less than or equal to the radiation radius of the low-frequency signal solely based on the received response signal. Therefore, the vehicle on which the primary device is located can be positioned accurately, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified.
Step 808: Communicate with the primary device to obtain identity information of the vehicle on which the primary device is located.
In this implementation, the identity information of the vehicle can include one or a combination of a vehicle license plate number, an engine number, and a frame number. Certainly, the identity information of the vehicle can further include other information that can uniquely identify the vehicle. Specific information included in the identity information of the vehicle is not limited in this implementation.
For example, the communicating with the primary device to obtain the identity information of the vehicle on which the primary device is located can be: communicating with the primary device to receive the identity information of the vehicle on which the primary device is located that is sent by the primary device; or communicating with the primary device to receive an identifier of the primary device that is sent by the primary device, to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located based on the identifier of the primary device.
In the vehicle identification method, after receiving the low-frequency signal sent by the primary device, the secondary device detects the signal strength of the low-frequency signal. In response to the signal strength of the low-frequency signal being greater than or equal to the predetermined threshold, the secondary device sends the response signal to the primary device, and communicates with the primary device to obtain the identity information of the vehicle on which the primary device is located, so that the vehicle can be identified. In addition, the primary device can determine that the distance between the secondary device and the vehicle on which the primary device is located is less than or equal to the radiation radius of the low-frequency signal based on the response signal, thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
FIG. 2 and FIG. 6 in the present specification provide two types of installation locations of a primary device and a secondary device. Alternatively, the methods in FIG. 2 and FIG. 6 can be combined, that is, both a primary device and a secondary device are disposed at fixed locations on a roadside and both a primary device and a secondary device are disposed in a vehicle.
In the vehicle identification method provided in the implementations of the present specification, a principle that magnetic field strength rapidly attenuates as the distance increases is mainly used, and signal strength of a magnetic field signal can approach 0 outside 3 m. Therefore, the location of a vehicle can be determined based on signal strength of a low-frequency signal. However, for ETC and Bluetooth cards, signal strength attenuates very slightly within a short distance (for example, 10 m), and therefore, the location of a vehicle cannot be determined based on signal strength.
The vehicle identification method provided in the implementations of the present specification has relatively low implementation costs and relatively high accuracy of determining the location of a vehicle (at a centimeter level), thereby alleviating interference from vehicles following and bypassing the vehicle to be identified and improving the accuracy of vehicle identification.
The above describes the example implementations of the present specification. Other implementations fall within the scope of the appended claims. In some cases, the actions or steps described in the claims can be performed based on sequences different from the sequences in the implementations and can still achieve the desired results. In addition, the process depicted in the accompanying drawing does not necessarily require the shown particular order or sequence to achieve the desired results. In some implementations, multi-task processing and parallel processing are allowed or may be advantageous.
FIG. 9 is a schematic structural diagram illustrating an implementation of a vehicle identification apparatus according to the present specification. As shown in FIG. 9 , the vehicle identification apparatus can include a sending module 91, a receiving module 92, and an acquisition module 93.
The sending module 91 is configured to send a low-frequency signal with a predetermined radiation range.
The receiving module 92 is configured to receive a response signal sent by a secondary device located on a vehicle responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold.
The acquisition module 93 is configured to communicate with the secondary device to obtain identity information of the vehicle on which the secondary device is located. In this implementation, the acquisition module 93 is configured to communicate with the secondary device to receive the identity information of the vehicle on which the secondary device is located that is sent by the secondary device; or communicate with the secondary device to receive an identifier of the secondary device that is sent by the secondary device, and obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
The vehicle identification apparatus provided in the implementation shown in FIG. 9 is configured to perform the technical solutions of the method implementation shown in FIG. 1 in the present specification. For the implementation principle and technical effect of the apparatus, references can be further made to related descriptions in the method implementation.
FIG. 10 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification. Compared with the vehicle identification apparatus shown in FIG. 9 , the vehicle identification apparatus shown in FIG. 10 can further include a determining module 94.
The determining module 94 is configured to: before the acquisition module 93 obtains the identity information of the vehicle on which the secondary device is located, determine whether the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine whether the vehicle on which the secondary device is located is a vehicle to be identified.
The vehicle identification apparatus provided in the implementation shown in FIG. 10 is configured to perform the technical solutions of the method implementations shown in FIG. 1 to FIG. 3 in the present specification. For an implementation principle and a technical effect of the apparatus, references can be further made to related descriptions in the method implementations.
FIG. 11 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification. As shown in FIG. 11 , the vehicle identification apparatus can include a receiving module 1101, a detection module 1102, a sending module 1103, and a communication module 1104.
The receiving module 1101 is configured to receive a low-frequency signal sent by a primary device.
The detection module 1102 is configured to detect signal strength of the low-frequency signal.
The sending module 1103 is configured to send a response signal to the primary device in response to the signal strength of the low-frequency signal being greater than or equal to a predetermined threshold.
The communication module 1104 is configured to communicate with the primary device to cause the primary device to obtain identity information of a vehicle on which the secondary device is located.
The vehicle identification apparatus provided in the implementation shown in FIG. 11 is configured to perform the technical solutions of the method implementation shown in FIG. 4 in the present specification. For an implementation principle and a technical effect of the apparatus, references can be further made to related descriptions in the method implementation.
FIG. 12 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification. As shown in FIG. 12 , the vehicle identification apparatus can include a sending module 1201, a receiving module 1202, and a communication module 1203.
The sending module 1201 is configured to send a low-frequency signal with a predetermined radiation range.
The receiving module 1202 is configured to receive a response signal sent by a secondary device responding to the low-frequency signal, the response signal being sent by the secondary device in response to the secondary device receiving the low-frequency signal and detecting that signal strength of the low-frequency signal is greater than or equal to a predetermined threshold.
The communication module 1203 is configured to communicate with the secondary device to cause the secondary device to obtain identity information of a vehicle on which the primary device is located. In this implementation, the communication module 1203 is configured to communicate with the secondary device to send the identity information of the vehicle on which the primary device is located to the secondary device; or communicate with the secondary device to send an identifier of the primary device to the secondary device, to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located based on the identifier of the primary device.
The vehicle identification apparatus provided in the implementation shown in FIG. 12 is configured to perform the technical solutions of the method implementation shown in FIG. 5 in the present specification. For an implementation principle and a technical effect of the apparatus, references can be further made to related descriptions in the method implementation.
FIG. 13 is a schematic structural diagram illustrating another implementation of a vehicle identification apparatus according to the present specification. Compared with the vehicle identification apparatus shown in FIG. 12 , the vehicle identification apparatus shown in FIG. 13 can further include a determining module 1204.
The determining module 1204 is configured to: before the communication module 1203 communicates with the secondary device, determine whether the secondary device falls within the radiation range of the low-frequency signal based on the response signal, and determine whether the vehicle on which the primary device is located is a vehicle to be identified.
The vehicle identification apparatus provided in the implementation shown in FIG. 13 is configured to perform the technical solutions of the method implementations shown in FIG. 5 to FIG. 7 in the present specification. For the implementation principle and technical effect of the apparatus, references can be further made to related descriptions in the method implementations.
FIG. 14 is a schematic structural diagram illustrating an implementation of a primary device according to the present specification. As shown in FIG. 14 , the primary device can include at least one processor; and at least one memory communicatively connected to the processor. The memory stores program instructions executable by the processor, and invocable by the processor to perform the vehicle identification methods provided in the implementations shown in FIG. 1 to FIG. 3 in the present specification.
The primary device can be a device that actively sends a low-frequency signal. The specific form of the primary device is not limited in this implementation.
FIG. 14 is a block diagram illustrating an example primary device adapted to implement the implementations of the present specification. The primary device shown in FIG. 14 is only an example, and should not constitute any limitation on the functions and use scope of the implementations of the present specification.
As shown in FIG. 14 , the primary device is represented as a common computing device. Components of the primary device can include but are not limited to one or more processors 410, a communication interface 420, a memory 430, and a communication bus 440 connecting different components (including the memory 430, the communication interface 420, and the processing unit 410).
The communication bus 440 represents one or more of several types of bus structures, including a memory bus or a memory controller, a peripheral bus, a graphics acceleration port, or a local bus that uses any one of multiple bus structures. For example, the communication bus 440 can include but is not limited to an industry standard architecture (ISA) bus, a micro channel architecture (MCA) bus, an enhanced ISA bus, a video electronics standards association (VESA) local bus, and a peripheral component interconnection (PCI) bus.
The primary device typically includes multiple computer system readable media. These media can be any available media that can be accessed by the primary device, including volatile and non-volatile media, removable and non-removable media.
The memory 430 can include a computer system readable medium in a form of a volatile memory, such as a random access memory (RAM) and/or a cache memory. The memory 430 can include at least one program product. The program product has a group of program modules (for example, at least one program module) configured to perform the functions of the implementations shown in FIG. 1 to FIG. 3 in the present specification.
A program/utility tool having a group of program modules (at least one program module) can be stored in the memory 430. The program module includes but is not limited to an operating system, one or more application programs, other program modules, and program data. Any one or a certain combination of these examples may include an implementation of a network environment. The program module usually performs the functions and/or methods in the implementations described in FIG. 1 to FIG. 3 in the present specification.
The processor 410 runs the program stored in the memory 430, to perform various functional applications and data processing, for example, implement the vehicle identification methods provided in the implementations shown in FIG. 1 to FIG. 3 in the present specification.
The implementations of the present specification further provide a secondary device, including: at least one processor; and at least one memory communicatively connected to the processor. The memory stores program instructions executable by the processor, and invocable by the processor to perform the vehicle identification method provided in the implementation shown in FIG. 4 in the present specification.
The secondary device corresponds to a primary device, is usually in a sleep state, and makes a response after receiving a low-frequency signal. For example the secondary device can be implemented by using the structure shown in FIG. 14 . Details are omitted herein for simplicity.
The implementations of the present specification further provide a primary device, including: at least one processor; and at least one memory communicatively connected to the processor. The memory stores program instructions executable by the processor, and invocable by the processor to perform the vehicle identification methods provided in the implementations shown in FIG. 5 to FIG. 7 in the present specification.
The primary device can be a device that actively sends a low-frequency signal. A specific form of the primary device is not limited in this implementation. For example, the primary device can be implemented by using the structure shown in FIG. 14 . Details are omitted herein for simplicity.
The implementations of the present specification provide a non-transient computer-readable storage medium. The non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the vehicle identification methods provided in the implementations shown in FIG. 1 to FIG. 3 in the present specification.
The implementations of the present specification provide a non-transient computer-readable storage medium. The non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the vehicle identification method provided in the implementation shown in FIG. 4 in the present specification.
The implementations of the present specification provide a non-transient computer-readable storage medium. The non-transient computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to perform the vehicle identification methods provided in the implementations shown in FIG. 5 to FIG. 7 in the present specification.
The non-transient computer-readable storage medium can be any combination of one or more computer-readable media. The computer-readable media can be computer-readable signal media or computer-readable storage media. For example, the computer-readable storage medium can be but is limited to an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof. A more specific example (non-exhaustive list) of the computer-readable storage medium includes an electrical connection having one or more leads, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable erasable programmable read-only memory (EPROM) or a flash memory, an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination thereof. In the present document, the computer-readable storage medium can be any tangible medium that includes or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
The computer-readable signal medium can include a data signal propagated in a baseband or as a part of a carrier, and the data signal includes computer-readable program code. The propagated data signal can be in various forms, including but not limited to an electromagnetic signal, an optical signal, or any suitable combination thereof. Alternatively, the computer-readable signal medium can be any computer-readable medium other than the computer-readable storage medium, and the computer-readable medium can send, propagate, or transmit a program used by or in combination with an instruction execution system, apparatus, or device.
Program code included in the computer-readable medium can be transmitted by using any suitable medium, including but not limited to a wireless medium, a wire, an optical cable, a radio frequency (RF) medium, or any suitable combination thereof.
Computer program code used to perform the operations of the present specification can be written in one or more programming languages or a combination thereof. The programming languages include an object-oriented programming language such as Java, Smalltalk, or C++, and also include a conventional procedural programming language such as “C” language or a similar programming language. The program code can be completely executed in a user computer, partially completely in a user computer, executed as an independent software package, partially executed in a user computer and partially executed in a remote computer, or completely executed in a remote computer or server. In a case involving a remote computer, the remote computer can be connected to a user computer via any type of network, including a local area network (LAN) or a wide area network (WAN), or can be connected to an external computer (via, for example, the Internet by using an Internet service provider).
The above describes the example implementations of the present specification. Other implementations fall within the scope of the appended claims. In some cases, the actions or steps described in the claims can be performed based on sequences different from the sequences in the implementations and can still achieve the desired results. In addition, the process depicted in the accompanying drawing does not necessarily require the shown particular order or sequence to achieve the desired results. In some implementations, multi-task processing and parallel processing are allowed or may be advantageous.
In the description of the present specification, descriptions of reference terms such as “an implementation”, “some implementations”, “an example”, “a specific example”, and “some examples” mean that specific features, structures, materials, or characteristics described with reference to the implementations or examples are included in at least one implementation or example of the present specification. In the present specification, example expressions of the terms are not necessarily specific to the same implementation or example. In addition, the described specific features, structures, materials, or characteristics can be combined in a proper way in any one or more of the implementations or examples. In addition, a person skilled in the art can integrate or combine different implementations or examples and features of different implementations or examples described in the present specification, provided that they do not conflict with each other.
In addition, the terms “first” and “second” are merely intended for description, and shall not be understood as an indication or implication of relative importance or an implicit indication of the number of indicated technical features. Therefore, a feature limited by “first” or “second” can explicitly or implicitly include at least one such feature. In the description of the present specification, “multiple” means at least two, for example, two or three, unless otherwise specifically limited.
Descriptions about any process or method described in a flowchart or in another way herein can be understood as indicating that one or more modules, segments, or parts of code of an executable instruction used to implement a specific logical function or a step of a process are included, the scope of example implementations of the present specification includes other implementations, and functions can be performed in a sequence other than a shown or discussed sequence, including in a basically simultaneous way or a reverse sequence based on the functions. This should be understood by a person skilled in the technical field to which the implementations of the present specification belong.
Depending on the context, for example, the word “if” used herein can be explained as “while”, “when”, “in response to determining”, or “in response to detection”. Similarly, depending on the context, phrases “if determining” or “if detecting (a stated condition or event)” can be explained as “when determining”, “in response to determining”, “when detecting (the stated condition or event)”, or “in response to detecting (the stated condition or event)”.
It should be noted that the terminal in the implementations of the present specification can include but is not limited to a personal computer (PC), a personal digital assistant (PDA), a wireless handheld device, a tablet computer (tablet computer), a mobile phone, an MP3 player, an MP4 player, etc.
In the implementations provided in the present specification, it should be understood that the disclosed system, apparatus, and method can be implemented in other ways. For example, the described apparatus implementations are merely examples. For example, the unit division is merely logical function division and can be other division during actual implementation. For example, multiple units or components can be combined or integrated into another system, or some features may be ignored or may not be performed. In addition, the displayed or discussed mutual couplings or direct couplings or communication connections can be implemented by using some interfaces. The indirect couplings or communication connections between the apparatuses or units can be implemented in electronic, mechanical, or other forms.
In addition, functional units in the implementations of the present specification can be integrated into one processing unit, or each of the units can exist alone physically, or two or more units can be integrated into one unit. The integrated unit can be implemented in a form of hardware, or can be implemented in a form of hardware in combination with a software functional unit.
The integrated unit implemented in a form of a software functional unit can be stored in a computer-readable storage medium. The software functional unit is stored in a storage medium and includes several instructions for instructing a computer apparatus (which can be a personal computer, a server, a network apparatus, etc.) or a processor (processor) to perform some of the steps of the methods described in the implementations of the present specification. The storage medium includes any medium that can store program code, such as a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disc.
The above descriptions are merely example implementations of the present specification, but are not intended to limit the present specification. Any modification, equivalent replacement, improvement, etc., made without departing from the spirit and principle of the present specification shall fall within the protection scope of the present specification.
The various embodiments described above can be combined to provide further embodiments. Aspects of the embodiments can be modified, if necessary, to employ concepts of the various embodiments to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims (20)

The invention claimed is:
1. A vehicle identification method, comprising:
sending, by a primary device, a low-frequency signal with a determined radiation range having a radiation radius;
receiving, by a secondary device located on a vehicle, the low-frequency signal;
detecting, by the secondary device, that signal strength of the low-frequency signal is greater than or equal to a threshold that is determined at least partially based on a determined signal strength of the low-frequency signal within the radiation radius of the determined radiation range;
after having received the low-frequency signal, automatically sending, by the secondary device, a response signal responding to the low-frequency signal based on the detecting that the signal strength of the low-frequency signal is greater than or equal to the threshold;
receiving, by the primary device, the response signal sent by the secondary device;
determining, by the primary device, that the secondary device is within the radiation radius based on the receiving the response signal from the secondary device; and
establishing a communication link, by the primary device, with the secondary device to obtain identity information of the vehicle on which the secondary device is located in response to the determining that the secondary device is within the radiation radius based on the receiving the response signal, the identity information different from the response signal.
2. The method according to claim 1, comprising:
before the communicating with the secondary device to obtain the identity information of the vehicle on which the secondary device is located,
determining that the vehicle on which the secondary device is located is a vehicle to be identified.
3. The method according to claim 1, wherein the obtaining the identity information of the vehicle on which the secondary device is located includes:
communicating with the secondary device to receive the identity information of the vehicle on which the secondary device is located; or
communicating with the secondary device to receive an identifier of the secondary device that is sent by the secondary device, and obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
4. The method according to claim 1, comprising:
communicating, by the secondary device, with the primary device to cause the primary device to obtain identity information of the vehicle on which the secondary device is located.
5. The method according to claim 1, wherein the radiation range includes a radiation angle.
6. The method according to claim 1, wherein the determined threshold is determined at least partially based on the radiation angle of the radiation range.
7. The method according to claim 1, wherein the determined threshold is determined based on a signal strength of the low-frequency signal at an edge of the radiation range.
8. A vehicle identification method, comprising:
sending, by a primary device located on a vehicle, a low-frequency signal with a determined radiation range having a radiation radius;
receiving, by a secondary device located outside the vehicle, the low-frequency signal;
detecting, by the secondary device, that signal strength of the low-frequency signal is greater than or equal to a threshold that is determined at least partially based on a determined signal strength of the low-frequency signal within the radiation radius of the determined radiation range;
after having received the low-frequency signal, automatically sending, by the secondary device, a response signal responding to the low-frequency signal based on the detecting that the signal strength of the low-frequency signal is greater than or equal to the threshold;
receiving, by the primary device, the response signal sent by the secondary device;
determining, by the primary device, that the secondary device is within the radiation radius based on the receiving the response signal from the secondary device; and
establishing a communication link, by the primary device, with the secondary device to cause the secondary device to obtain identity information of the vehicle on which the primary device is located in response to the determining that the secondary device is within the radiation radius based on the receiving the response signal, the identity information different from the response signal.
9. The method according to claim 8, comprising:
before the communicating with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located,
determining that the vehicle on which the primary device is located is a vehicle to be identified.
10. The method according to claim 8, wherein the causing the secondary device to obtain the identity information of the vehicle on which the primary device is located includes:
communicating with the secondary device to send the identity information of the vehicle to the secondary device; or
communicating with the secondary device to send an identifier of the primary device to the secondary device, to cause the secondary device to obtain the identity information of the vehicle based on the identifier of the primary device.
11. An electronic system, comprising:
one or more processors; and
one or more memories communicatively coupled to the processor, the one or more memories storing executable instructions, which when executed by the one or more processors enable the one or more processors to implement acts including:
sending, by a primary device, a low-frequency signal with a determined radiation range having a radiation radius;
receiving, by a secondary device located on a vehicle, the low-frequency signal;
detecting, by the secondary device, that signal strength of the low-frequency signal is greater than or equal to a threshold that is determined at least partially based on a determined signal strength of the low-frequency signal within the radiation radius of the determined radiation range;
after having received the low-frequency signal, automatically sending, by the secondary device, a response signal responding to the low-frequency signal based on the detecting that the signal strength of the low-frequency signal is greater than or equal to the threshold;
receiving, by the primary device, the response signal sent by the secondary device;
determining, by the primary device, that the secondary device is within the radiation radius based on the receiving the response signal from the secondary device; and
establishing a communication link, by the primary device, with the secondary device to obtain identity information of the vehicle on which the secondary device is located in response to the determining that the secondary device is within the radiation radius based on the receiving the response signal, the identity information different from the response signal.
12. The system according to claim 11, wherein the acts include:
before the communicating with the secondary device to obtain the identity information of the vehicle on which the secondary device is located,
determining that the vehicle on which the secondary device is located is a vehicle to be identified.
13. The system according to claim 11, wherein the obtaining the identity information of the vehicle on which the secondary device is located includes:
communicating with the secondary device to receive the identity information of the vehicle on which the secondary device is located; or
communicating with the secondary device to is sent by the secondary device, and obtain the identity information of the vehicle on which the secondary device is located based on the identifier of the secondary device.
14. The system according to claim 11, wherein the radiation range includes a radiation angle.
15. The system according to claim 11, wherein the determined threshold is determined at least partially based on the radiation angle of the radiation range.
16. The system according to claim 11, wherein the determined threshold is determined based on a signal strength of the low-frequency signal at an edge of the radiation range.
17. An electronic system, comprising:
one or more processors; and
one or more memories communicatively coupled to the processor, the one or more memories storing executable instructions, which when executed by the one or more processors enable the one or more processors to implement acts including:
sending, by a primary device located on a vehicle, a low-frequency signal with a determined radiation range having a radiation radius;
receiving, by a secondary device located outside the vehicle, the low-frequency signal;
detecting, by the secondary device, that signal strength of the low-frequency signal is greater than or equal to a threshold that is determined at least partially based on a determined signal strength of the low-frequency signal within the radiation radius of the determined radiation range;
after having received the low-frequency signal, automatically sending, by the secondary device, a response signal responding to the low-frequency signal based on the detecting that the signal strength of the low-frequency signal is greater than or equal to the threshold;
receiving, by the primary device, the response signal sent by the secondary device;
determining, by the primary device, that the secondary device is within the radiation radius based on the receiving the response signal from the secondary device; and
establishing a communication link, by the primary device, with the secondary device to cause the secondary device to obtain identity information of the vehicle on which the primary device is located in response to determining that the secondary device is within the radiation radius based on the receiving the response signal, the identity information different from the response signal.
18. The system according to claim 17, wherein the acts include:
before the communicating with the secondary device to cause the secondary device to obtain the identity information of the vehicle on which the primary device is located,
determining that the vehicle on which the primary device is located is a vehicle to be identified.
19. The method according to claim 8, wherein the determined threshold is determined based on a signal strength of the low-frequency signal at an edge of the radiation range.
20. The system according to claim 17, wherein the determined threshold is determined based on a signal strength of the low-frequency signal at an edge of the radiation range.
US17/361,084 2020-07-08 2021-06-28 Vehicle identification method and apparatus, primary device, and secondary device Active US11804130B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010652284.8A CN111815962A (en) 2020-07-08 2020-07-08 Vehicle identity identification method and device, master device and slave device
CN202010652284.8 2020-07-08

Publications (2)

Publication Number Publication Date
US20220013004A1 US20220013004A1 (en) 2022-01-13
US11804130B2 true US11804130B2 (en) 2023-10-31

Family

ID=72842893

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/361,084 Active US11804130B2 (en) 2020-07-08 2021-06-28 Vehicle identification method and apparatus, primary device, and secondary device

Country Status (3)

Country Link
US (1) US11804130B2 (en)
CN (1) CN111815962A (en)
WO (1) WO2022007634A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111815962A (en) * 2020-07-08 2020-10-23 支付宝(杭州)信息技术有限公司 Vehicle identity identification method and device, master device and slave device

Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325146A (en) * 1979-12-20 1982-04-13 Lennington John W Non-synchronous object identification system
US5471212A (en) * 1994-04-26 1995-11-28 Texas Instruments Incorporated Multi-stage transponder wake-up, method and structure
US5809142A (en) * 1996-08-14 1998-09-15 Texas Instruments Incorporated Method and system for calculating a user account balance in a recognition system
US6339384B1 (en) * 2000-11-13 2002-01-15 Robert Valdes-Rodriguez Toll booth credit device
US20050226201A1 (en) * 1999-05-28 2005-10-13 Afx Technology Group International, Inc. Node-to node messaging transceiver network with dynamec routing and configuring
US20060015233A1 (en) * 2004-07-14 2006-01-19 United Parcel Service Of America, Inc. Wirelessly enabled trailer locking/unlocking
US20070200669A1 (en) * 2006-02-24 2007-08-30 Denso International America, Inc. Apparatus for automatically initiating sequence of vehicle functions
US20070200672A1 (en) * 2006-02-24 2007-08-30 Denso International America, Inc. Apparatus for automatically initiating sequence of vehicle functions
US20070285237A1 (en) * 2006-06-09 2007-12-13 Intelleflex Corporation Rf device comparing dac output to incoming signal for selectively performing an action
US20070290802A1 (en) * 2006-06-09 2007-12-20 Intelleflex Corporation System, method and computer program product for calibrating interrogator signal strength and/or tag response range setting
CN101150856A (en) 2007-11-02 2008-03-26 新科电子集团有限公司 Method for navigation device to locate mobile phone
US20080221761A1 (en) * 2007-03-06 2008-09-11 Denso Corporation Vehicle control system and component units therefor
US20090140887A1 (en) * 2007-11-29 2009-06-04 Breed David S Mapping Techniques Using Probe Vehicles
US20090191922A1 (en) * 2008-01-29 2009-07-30 Motorola, Inc. Method of operating a portable hands-free phone accessory
US20100127820A1 (en) * 2007-01-31 2010-05-27 Herbert Froitzheim Quality adjustment of a receiving circuit
US20100203834A1 (en) * 2007-06-28 2010-08-12 Telecom Italia S.P.A. Method and system for detecting a moving vehicle within a predetermined area
US20100289623A1 (en) * 2009-05-13 2010-11-18 Roesner Bruce B Interrogating radio frequency identification (rfid) tags
US20110163857A1 (en) * 2003-04-09 2011-07-07 Visible Assets, Inc. Energy Harvesting for Low Frequency Inductive Tagging
US20130099943A1 (en) * 2011-10-19 2013-04-25 Balu Subramanya Directional speed and distance sensor
US20130185001A1 (en) * 2012-01-18 2013-07-18 Xerox Corporation Vehicle emissions testing and toll collection system
US20130231760A1 (en) * 2012-03-02 2013-09-05 Qualcomm Incorporated Real-time event feedback
US8543285B2 (en) * 2001-10-17 2013-09-24 United Toll Systems, Inc. Multilane vehicle information capture system
US8587454B1 (en) * 2008-11-18 2013-11-19 Rich Dearworth System and method for providing electronic toll collection to users of wireless mobile devices
US20140049420A1 (en) * 2012-08-14 2014-02-20 Jenoptik Robot Gmbh Method for Classifying Moving Vehicles
US20140074667A1 (en) * 2012-09-11 2014-03-13 Michael D. Smith System and Method for Inventory Control of Mobile Assets
US20140240091A1 (en) * 2013-02-25 2014-08-28 GM Global Technology Operations LLC Vehicle integration of ble nodes to enable passive entry and passive start features
US20140240088A1 (en) * 2011-03-22 2014-08-28 Jamie Robinette Apparatus and method for locating, tracking, controlling and recognizing tagged objects using active rfid technology
US20150070191A1 (en) * 2013-09-11 2015-03-12 Michael Westick Automated Asset Tracking System and Method
US20150221140A1 (en) * 2014-02-04 2015-08-06 Gilbert Eid Parking and tollgate payment processing based on vehicle remote identification
US20150248801A1 (en) * 2012-09-20 2015-09-03 Continental Automotive Gmbh Access Arrangement for a Vehicle
US20150350748A1 (en) * 2014-05-27 2015-12-03 International Business Machines Corporation Cooperative task execution in instrumented roadway systems
US20150356498A1 (en) * 2014-06-06 2015-12-10 Andres E. Casanova Wirelessly managing parking
US20150382155A1 (en) * 2014-06-27 2015-12-31 Mobile Safety Assure, LLC System and Method for Reporting Use of a Mobile Communication Device While Driving
US20160226149A1 (en) * 2014-06-17 2016-08-04 China United Network Communications Group Company Limited Omni-directional ceiling antenna
US20160358396A1 (en) * 2015-06-03 2016-12-08 Nxp B.V. Nfc based secure car key
US20170026910A1 (en) * 2015-07-22 2017-01-26 GM Global Technology Operations LLC Time of flight based passive entry/passive start system
US20170048680A1 (en) * 2015-08-14 2017-02-16 Yu-Nien Chen Control system, control device, and mobile device for vehicle
US20170064627A1 (en) * 2015-09-02 2017-03-02 Motorola Mobility Llc RFID Contextual Location Determination and Sensing
US20170249635A1 (en) * 2016-02-26 2017-08-31 Magna Mirrors Of America, Inc. Transaction authorization system for vehicle
CN107516422A (en) 2015-04-29 2017-12-26 石立公 Locomotive electronic ID security protection system and its method based on double source positioning
US20180038935A1 (en) * 2015-03-31 2018-02-08 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Radio wave arrival angle detection device, vehicle detection system, radio wave arrival angle detection method, and vehicle erroneous detection prevention method
US20180075287A1 (en) * 2016-09-14 2018-03-15 General Motors Llc Identifying a vehicle using a mobile device
US20180276925A1 (en) * 2015-12-10 2018-09-27 Panasonic Intellectual Property Management Co., Ltd. On-vehicle device, mobile device, and vehicle wireless communication system
US20180302859A1 (en) * 2017-04-13 2018-10-18 Ford Global Technologies, Llc Reducing power consumption for phone as a key (paak) vehicle system
CN108961836A (en) 2017-05-24 2018-12-07 福特全球技术公司 The method and apparatus that low frequency for surrounding vehicles positions
US20190035168A1 (en) * 2016-02-26 2019-01-31 Mitsubishi Heavy Industries Machinery Systems, Ltd. Toll collection system and soundness determination method
US20190057557A1 (en) * 2017-08-16 2019-02-21 Fangsong WANG Systems and methods for electronic toll collection via mobile communication devices
US20190065951A1 (en) * 2017-08-31 2019-02-28 Micron Technology, Inc. Cooperative learning neural networks and systems
US20190084359A1 (en) * 2017-09-21 2019-03-21 Ford Global Technologies, Llc Systems and methods for vehicle tpms localization
US20190084383A1 (en) * 2017-09-21 2019-03-21 Honda Motor Co., Ltd. Methods and systems for controlling a transparency of a window of a vehicle
US10299081B1 (en) * 2018-03-30 2019-05-21 Motorola Mobility Llc Gesture profiles and location correlation
CN109862522A (en) 2019-03-25 2019-06-07 大陆汽车电子(长春)有限公司 Positioning system, mark equipment and server
US20190297457A1 (en) 2017-02-10 2019-09-26 Apple Inc. Enhanced automotive passive entry
US20190351870A1 (en) * 2018-05-17 2019-11-21 Volkswagen Aktiengesellschaft Defense of a relay station attack
US20200250896A1 (en) * 2015-12-02 2020-08-06 Citifyd, Inc. Vehicle parking and mass transport beacon system
US20200294401A1 (en) * 2017-09-04 2020-09-17 Nng Software Developing And Commercial Llc. A Method and Apparatus for Collecting and Using Sensor Data from a Vehicle
US20200349783A1 (en) * 2017-11-20 2020-11-05 Robert Bosch (Australia) Pty Ltd Method and system for relay attack prevention
US20210081687A1 (en) * 2017-08-17 2021-03-18 Honda Motor Co., Ltd. System and method for providing rear seat monitoring within a vehicle
US20210142599A1 (en) * 2017-05-31 2021-05-13 Kabushiki Kaisha Tokai Rika Denki Seisakusho Portable machine
US20210150836A1 (en) * 2018-06-21 2021-05-20 Volkswagen Aktiengesellschaft Method for calibrating a radio-based keyless access system of a motor vehicle, access system, and motor vehicle
US11164017B2 (en) * 2017-06-05 2021-11-02 Citifyd, Inc. Parking objects detection system
US20220024412A1 (en) * 2018-12-10 2022-01-27 Robert Bosch (Australia) Pty. Ltd. Method and System for Relay Attack Prevention Using Subzones
US20220050192A1 (en) * 2018-12-11 2022-02-17 Continental Automotive France Method for determining the distance between an authentication device and a vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4060542B2 (en) * 2001-03-22 2008-03-12 株式会社東芝 Roadside wireless device, in-vehicle device, and wireless communication method
CN1253837C (en) * 2003-02-26 2006-04-26 陶显芳 Distributed vehicle radio inquiry method and vehicle household registration network management systems
CN101089914A (en) * 2007-07-06 2007-12-19 上海强领智能科技发展有限公司 Visual intelligent traffic management system and its implementing method
CN103400500B (en) * 2013-08-09 2016-01-20 江苏中科易正电子科技有限公司 Vehicle information data acquisition device and method
CN104269058B (en) * 2014-09-29 2017-01-11 中国科学院自动化研究所 Intelligent traffic information collection system and method based on wireless sensor network
KR20160054921A (en) * 2014-11-07 2016-05-17 한국건설기술연구원 Interval detector using received signal strength indicator (rssi), and travel time estimating system and method having the same
CN111815962A (en) * 2020-07-08 2020-10-23 支付宝(杭州)信息技术有限公司 Vehicle identity identification method and device, master device and slave device

Patent Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325146A (en) * 1979-12-20 1982-04-13 Lennington John W Non-synchronous object identification system
US5471212A (en) * 1994-04-26 1995-11-28 Texas Instruments Incorporated Multi-stage transponder wake-up, method and structure
US5809142A (en) * 1996-08-14 1998-09-15 Texas Instruments Incorporated Method and system for calculating a user account balance in a recognition system
US20050226201A1 (en) * 1999-05-28 2005-10-13 Afx Technology Group International, Inc. Node-to node messaging transceiver network with dynamec routing and configuring
US6339384B1 (en) * 2000-11-13 2002-01-15 Robert Valdes-Rodriguez Toll booth credit device
US8543285B2 (en) * 2001-10-17 2013-09-24 United Toll Systems, Inc. Multilane vehicle information capture system
US20110163857A1 (en) * 2003-04-09 2011-07-07 Visible Assets, Inc. Energy Harvesting for Low Frequency Inductive Tagging
US20060015233A1 (en) * 2004-07-14 2006-01-19 United Parcel Service Of America, Inc. Wirelessly enabled trailer locking/unlocking
US20070200672A1 (en) * 2006-02-24 2007-08-30 Denso International America, Inc. Apparatus for automatically initiating sequence of vehicle functions
US20070200669A1 (en) * 2006-02-24 2007-08-30 Denso International America, Inc. Apparatus for automatically initiating sequence of vehicle functions
US20070285237A1 (en) * 2006-06-09 2007-12-13 Intelleflex Corporation Rf device comparing dac output to incoming signal for selectively performing an action
US20070290802A1 (en) * 2006-06-09 2007-12-20 Intelleflex Corporation System, method and computer program product for calibrating interrogator signal strength and/or tag response range setting
US20100127820A1 (en) * 2007-01-31 2010-05-27 Herbert Froitzheim Quality adjustment of a receiving circuit
US20080221761A1 (en) * 2007-03-06 2008-09-11 Denso Corporation Vehicle control system and component units therefor
US20100203834A1 (en) * 2007-06-28 2010-08-12 Telecom Italia S.P.A. Method and system for detecting a moving vehicle within a predetermined area
CN101150856A (en) 2007-11-02 2008-03-26 新科电子集团有限公司 Method for navigation device to locate mobile phone
US20090140887A1 (en) * 2007-11-29 2009-06-04 Breed David S Mapping Techniques Using Probe Vehicles
US20090191922A1 (en) * 2008-01-29 2009-07-30 Motorola, Inc. Method of operating a portable hands-free phone accessory
US8587454B1 (en) * 2008-11-18 2013-11-19 Rich Dearworth System and method for providing electronic toll collection to users of wireless mobile devices
US20100289623A1 (en) * 2009-05-13 2010-11-18 Roesner Bruce B Interrogating radio frequency identification (rfid) tags
US20140240088A1 (en) * 2011-03-22 2014-08-28 Jamie Robinette Apparatus and method for locating, tracking, controlling and recognizing tagged objects using active rfid technology
US20130099943A1 (en) * 2011-10-19 2013-04-25 Balu Subramanya Directional speed and distance sensor
US20130185001A1 (en) * 2012-01-18 2013-07-18 Xerox Corporation Vehicle emissions testing and toll collection system
US20130231760A1 (en) * 2012-03-02 2013-09-05 Qualcomm Incorporated Real-time event feedback
US20140049420A1 (en) * 2012-08-14 2014-02-20 Jenoptik Robot Gmbh Method for Classifying Moving Vehicles
US20140074667A1 (en) * 2012-09-11 2014-03-13 Michael D. Smith System and Method for Inventory Control of Mobile Assets
US20150248801A1 (en) * 2012-09-20 2015-09-03 Continental Automotive Gmbh Access Arrangement for a Vehicle
US20140240091A1 (en) * 2013-02-25 2014-08-28 GM Global Technology Operations LLC Vehicle integration of ble nodes to enable passive entry and passive start features
US20150070191A1 (en) * 2013-09-11 2015-03-12 Michael Westick Automated Asset Tracking System and Method
US20150221140A1 (en) * 2014-02-04 2015-08-06 Gilbert Eid Parking and tollgate payment processing based on vehicle remote identification
US20150350748A1 (en) * 2014-05-27 2015-12-03 International Business Machines Corporation Cooperative task execution in instrumented roadway systems
US20150356498A1 (en) * 2014-06-06 2015-12-10 Andres E. Casanova Wirelessly managing parking
US20160226149A1 (en) * 2014-06-17 2016-08-04 China United Network Communications Group Company Limited Omni-directional ceiling antenna
US20150382155A1 (en) * 2014-06-27 2015-12-31 Mobile Safety Assure, LLC System and Method for Reporting Use of a Mobile Communication Device While Driving
US20180038935A1 (en) * 2015-03-31 2018-02-08 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Radio wave arrival angle detection device, vehicle detection system, radio wave arrival angle detection method, and vehicle erroneous detection prevention method
CN107516422A (en) 2015-04-29 2017-12-26 石立公 Locomotive electronic ID security protection system and its method based on double source positioning
US20160358396A1 (en) * 2015-06-03 2016-12-08 Nxp B.V. Nfc based secure car key
US20170026910A1 (en) * 2015-07-22 2017-01-26 GM Global Technology Operations LLC Time of flight based passive entry/passive start system
US20170048680A1 (en) * 2015-08-14 2017-02-16 Yu-Nien Chen Control system, control device, and mobile device for vehicle
US20170064627A1 (en) * 2015-09-02 2017-03-02 Motorola Mobility Llc RFID Contextual Location Determination and Sensing
US20200250896A1 (en) * 2015-12-02 2020-08-06 Citifyd, Inc. Vehicle parking and mass transport beacon system
US20180276925A1 (en) * 2015-12-10 2018-09-27 Panasonic Intellectual Property Management Co., Ltd. On-vehicle device, mobile device, and vehicle wireless communication system
US20170249635A1 (en) * 2016-02-26 2017-08-31 Magna Mirrors Of America, Inc. Transaction authorization system for vehicle
US20190035168A1 (en) * 2016-02-26 2019-01-31 Mitsubishi Heavy Industries Machinery Systems, Ltd. Toll collection system and soundness determination method
US20180075287A1 (en) * 2016-09-14 2018-03-15 General Motors Llc Identifying a vehicle using a mobile device
US20190297457A1 (en) 2017-02-10 2019-09-26 Apple Inc. Enhanced automotive passive entry
US20180302859A1 (en) * 2017-04-13 2018-10-18 Ford Global Technologies, Llc Reducing power consumption for phone as a key (paak) vehicle system
CN108961836A (en) 2017-05-24 2018-12-07 福特全球技术公司 The method and apparatus that low frequency for surrounding vehicles positions
US20210142599A1 (en) * 2017-05-31 2021-05-13 Kabushiki Kaisha Tokai Rika Denki Seisakusho Portable machine
US11164017B2 (en) * 2017-06-05 2021-11-02 Citifyd, Inc. Parking objects detection system
US20190057557A1 (en) * 2017-08-16 2019-02-21 Fangsong WANG Systems and methods for electronic toll collection via mobile communication devices
US20210081687A1 (en) * 2017-08-17 2021-03-18 Honda Motor Co., Ltd. System and method for providing rear seat monitoring within a vehicle
US20190065951A1 (en) * 2017-08-31 2019-02-28 Micron Technology, Inc. Cooperative learning neural networks and systems
US20200294401A1 (en) * 2017-09-04 2020-09-17 Nng Software Developing And Commercial Llc. A Method and Apparatus for Collecting and Using Sensor Data from a Vehicle
US20190084383A1 (en) * 2017-09-21 2019-03-21 Honda Motor Co., Ltd. Methods and systems for controlling a transparency of a window of a vehicle
US20190084359A1 (en) * 2017-09-21 2019-03-21 Ford Global Technologies, Llc Systems and methods for vehicle tpms localization
US20200349783A1 (en) * 2017-11-20 2020-11-05 Robert Bosch (Australia) Pty Ltd Method and system for relay attack prevention
US10299081B1 (en) * 2018-03-30 2019-05-21 Motorola Mobility Llc Gesture profiles and location correlation
US20190351870A1 (en) * 2018-05-17 2019-11-21 Volkswagen Aktiengesellschaft Defense of a relay station attack
US20210150836A1 (en) * 2018-06-21 2021-05-20 Volkswagen Aktiengesellschaft Method for calibrating a radio-based keyless access system of a motor vehicle, access system, and motor vehicle
US20220024412A1 (en) * 2018-12-10 2022-01-27 Robert Bosch (Australia) Pty. Ltd. Method and System for Relay Attack Prevention Using Subzones
US20220050192A1 (en) * 2018-12-11 2022-02-17 Continental Automotive France Method for determining the distance between an authentication device and a vehicle
CN109862522A (en) 2019-03-25 2019-06-07 大陆汽车电子(长春)有限公司 Positioning system, mark equipment and server

Also Published As

Publication number Publication date
WO2022007634A1 (en) 2022-01-13
US20220013004A1 (en) 2022-01-13
CN111815962A (en) 2020-10-23

Similar Documents

Publication Publication Date Title
CN110155066B (en) Bump detection and early warning method, device, equipment and system
KR101810305B1 (en) System and method for detecting vehicle crash
CN110071904B (en) Detection method and system of vehicle-mounted terminal, server and storage medium
CN108711197B (en) Method and equipment for adaptively adjusting power of vehicle-mounted unit
US20210158701A1 (en) Electronic device for processing v2x message and operating method thereof
US20220030385A1 (en) Method and apparatus for wireless proximity based component information provision
CN111711921A (en) Method, device and equipment for searching vehicle and storage medium
CN110503732B (en) ETC vehicle transaction method and device based on vehicle detection
US11804130B2 (en) Vehicle identification method and apparatus, primary device, and secondary device
CN112153639A (en) Method and system for authenticating auto-dependent surveillance-broadcast (ADS-B) signals
US10032051B2 (en) Locating an object based on charging/response time
KR20220048920A (en) Tagless automatic payment system and method using beacon
WO2019127074A1 (en) Validation for a digital map
KR102001146B1 (en) A parking management system using a smart device and beacons and the method thereof
US20190232908A1 (en) Systems and methods for accident management for vehicles
US20200082325A1 (en) Moveable asset tracking systems using crowdsourcing measurements
CN109655851A (en) A kind of modification method, device, equipment and storage medium
CN109587639B (en) Method, device and system for judging position relationship between personnel and vehicle
US20200126318A1 (en) Vehicle device, system and method for payment processing using vehicle device
CN112423385A (en) Vehicle searching positioning method, mobile terminal and system based on iBeacon
CN108765604B (en) Shared automobile parking fee settlement method, system and storage medium
CN111932787B (en) Unlocking prompting method and equipment for shared vehicle
CN111615083A (en) Pseudo base station detection method, terminal equipment and storage medium
KR20200124909A (en) System and method of wireless connection for vehicle
CN112581761B (en) Collaborative analysis method, device, equipment and medium for 5G mobile Internet of things node

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: ALIPAY (HANGZHOU) INFORMATION TECHNOLOGY CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, FUXI;YE, WEI;SUN, YUANTAO;REEL/FRAME:056807/0041

Effective date: 20210617

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE