US11631626B2 - Package structure - Google Patents

Package structure Download PDF

Info

Publication number
US11631626B2
US11631626B2 US17/206,108 US202117206108A US11631626B2 US 11631626 B2 US11631626 B2 US 11631626B2 US 202117206108 A US202117206108 A US 202117206108A US 11631626 B2 US11631626 B2 US 11631626B2
Authority
US
United States
Prior art keywords
circuit board
circuit layer
circuit
layer
conductive lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/206,108
Other versions
US20220108934A1 (en
Inventor
Ra-Min Tain
Po-Hsiang Wang
Chi-Chun Po
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unimicron Technology Corp
Original Assignee
Unimicron Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW110103619A external-priority patent/TWI767543B/en
Application filed by Unimicron Technology Corp filed Critical Unimicron Technology Corp
Priority to US17/206,108 priority Critical patent/US11631626B2/en
Assigned to UNIMICRON TECHNOLOGY CORP. reassignment UNIMICRON TECHNOLOGY CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PO, CHI-CHUN, TAIN, RA-MIN, WANG, PO-HSIANG
Publication of US20220108934A1 publication Critical patent/US20220108934A1/en
Application granted granted Critical
Publication of US11631626B2 publication Critical patent/US11631626B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the disclosure relates to a semiconductor structure, and more particularly to a package structure.
  • the package structure of a new power module has evolved to adopt the solution of double-sided heat dissipation.
  • power modules require thicker conductive leads (a thickness greater than 0.5 mm) for signal transmission because of their higher power.
  • the thickness of a power chip is only about 100 microns, so a conductive spacer is added between the upper and lower circuit boards to maintain the distance between the upper and lower circuit boards to accommodate the conductive leads.
  • the conductive spacer itself also has thermal resistance, which further affects the overall heat dissipation efficiency of the power module.
  • the disclosure provides a package structure capable of having a thinner package thickness and better performance in heat dissipation without adopting conductive spacers.
  • a package structure includes a first circuit board, a second circuit board, at least one electronic component, at least one conductive lead, and a molding compound.
  • the first circuit board includes a first circuit layer and a second circuit layer.
  • the second circuit board includes a third circuit layer and a fourth circuit layer.
  • the second circuit layer and the third circuit layer are located between the first circuit layer and the fourth circuit layer.
  • the electronic component is disposed between the first circuit board and the second circuit board and electrically connected to the second circuit layer and the third circuit layer.
  • the conductive lead contacts at least one of the second circuit layer and the third circuit layer.
  • the conductive lead has a vertical height, and the vertical height is greater than a vertical distance between the second circuit layer and the third circuit layer.
  • the molding compound covers the first circuit board, the second circuit board, the electronic component, and the conductive lead. The molding compound exposes the first circuit layer and the fourth circuit layer, and the conductive lead extends outside the molding compound.
  • the first circuit board further includes a dielectric layer having an upper surface and a lower surface opposite to each other.
  • the first circuit layer is disposed on the upper surface
  • the second circuit layer is disposed on the lower surface.
  • the material of the dielectric layer includes a ceramic material or a thermal interface material (TIM).
  • the second circuit board further includes a dielectric layer having an upper surface and a lower surface opposite to each other.
  • the third circuit layer is disposed on the upper surface
  • the fourth circuit layer is disposed on the lower surface.
  • the material of the dielectric layer includes a ceramic material or a thermal interface material.
  • the first circuit board has a first edge and a second edge opposite to each other.
  • the second circuit board has a third edge and a fourth edge opposite to each other. There is a first horizontal distance between the first edge and the third edge, and there is a second horizontal distance between the second edge and the fourth edge.
  • the size of the first circuit board is the same as the size of the second circuit board.
  • the at least one conductive lead includes a first conductive lead and a second conductive lead.
  • the first conductive lead is relatively adjacent to the first edge of the first circuit board and contacts the second circuit layer.
  • the second conductive lead is relatively adjacent to the fourth edge of the second circuit board and contacts the third circuit layer.
  • the first horizontal distance is equal to the second horizontal distance.
  • the size of the first circuit board is less than the size of the second circuit board.
  • the at least one conductive lead includes a first conductive lead and a second conductive lead.
  • the first conductive lead is relatively adjacent to the third edge of the second circuit board and contacts the third circuit layer.
  • the second conductive lead is relatively adjacent to the fourth edge of the second circuit board and contacts the third circuit layer.
  • the orthographic projection of the first circuit board on the second circuit board does not overlap the orthographic projection of the first conductive lead on the second circuit board and the orthographic projection of the second conductive lead on the second circuit board.
  • the first horizontal distance is greater than the second horizontal distance.
  • the package structure further includes a solder layer disposed between the second circuit layer of the first circuit board and the electronic component and between the electronic component and the third circuit layer of the second circuit board.
  • the package structure further includes a bonding wire electrically connected to the electronic component and the third circuit layer of the second circuit board.
  • the electronic component includes at least one die or at least one package body.
  • the molding compound has a top surface and a bottom surface opposite to each other.
  • the top surface is aligned with a first surface of the first circuit layer that is relatively away from the second circuit layer.
  • the bottom surface is aligned with a second surface of the fourth circuit layer that is relatively away from the third circuit layer.
  • the conductive lead contacts at least one of the second circuit layer of the first circuit board and the third circuit layer of the second circuit board, and the vertical height of the conductive lead is greater than the vertical distance between the second circuit layer and the third circuit layer. Accordingly, in the disclosure, there is no need to adopt conductive spacers to maintain the distance between the first circuit board and the second circuit board, so the package structure in the disclosure may have a thinner package thickness. In addition, since the molding compound exposes the first circuit layer of the first circuit board and the fourth circuit layer of the second circuit board, the package structure in the disclosure may have better performance in heat dissipation.
  • FIG. 1 is a schematic cross-sectional view of a package structure according to an embodiment of the disclosure.
  • FIG. 2 is a schematic cross-sectional view of a package structure according to another embodiment of the disclosure.
  • FIG. 1 is a schematic cross-sectional view of a package structure according to an embodiment of the disclosure.
  • a package structure 100 a includes a first circuit board 110 a , a second circuit board 120 a , at least one conductive lead 130 a , at least one electronic component (two electronic components 140 a and 150 are schematically shown), and a molding compound 160 .
  • the first circuit board 110 a includes a dielectric layer 112 a , a first circuit layer 114 a , and a second circuit layer 116 a .
  • the dielectric layer 112 a has an upper surface 111 and a lower surface 113 opposite to each other.
  • the material of the dielectric layer 112 a may include a ceramic material or a thermal interface material, and for example, the thermal interface material may include an inorganic filler mixed with organic resin, but the disclosure is not limited thereto.
  • the first circuit layer 114 a is disposed on the upper surface 111 of the dielectric layer 112 a and covers the entire upper surface 111 .
  • the second circuit layer 116 a is disposed on the lower surface 113 of the dielectric layer 112 a , and a part of the lower surface 113 is exposed. That is, the second circuit layer 116 a is a patterned circuit layer.
  • the second circuit board 120 a in the embodiment includes a dielectric layer 122 a , a third circuit layer 124 a , and a fourth circuit layer 126 a .
  • the dielectric layer 122 a has an upper surface 121 and a lower surface 123 opposite to each other.
  • the material of the dielectric layer 122 a may include a ceramic material or a thermal interface material, and for example, the thermal interface material may include an inorganic filler mixed with organic resin, but the disclosure is not limited thereto.
  • the third circuit layer 124 a is disposed on the upper surface 121 of the dielectric layer 122 a , and a part of the upper surface 121 is exposed. That is, the third circuit layer 124 a is a patterned circuit layer.
  • the fourth circuit layer 126 a is disposed on the lower surface 123 of the dielectric layer 122 a and covers the entire lower surface 123 .
  • the second circuit layer 116 a of the first circuit board 110 a and the third circuit layer 124 a of the second circuit board 120 a in the embodiment are located between the first circuit layer 114 a and the fourth circuit layer 126 a .
  • the size of the first circuit board 110 a and the size of the second circuit board 120 a are substantially the same.
  • the first circuit board 110 a has a first edge S 1 and a second edge S 2 opposite to each other.
  • the second circuit board 120 a has a third edge S 3 and a fourth edge S 4 opposite to each other.
  • first horizontal distance D 11 between the first edge S 1 and the third edge S 3
  • second horizontal distance D 21 between the second edge S 2 and the fourth edge S 4
  • the first horizontal distance D 11 is substantially equal to the second horizontal distance D 21 .
  • the first circuit board 110 a and the second circuit board 120 a in the embodiment are disposed in a staggered manner.
  • the orthographic projection of the first circuit board 110 a on the second circuit board 120 a partially overlaps the second circuit board 120 a.
  • the electronic components 140 a and 150 in the embodiment are disposed between the first circuit board 110 a and the second circuit board 120 a and electrically connected to the second circuit layer 116 a and the third circuit layer 124 a .
  • the electronic components 140 a and 150 are dies or package bodies, which is not limited in the disclosure.
  • the package structure 100 a in the embodiment further includes a solder layer 145 and a solder layer 155 .
  • the solder layer 145 is disposed between the second circuit layer 116 a of the first circuit board 110 a and the electronic component 140 a and between the electronic component 140 a and the third circuit layer 124 a of the second circuit board 120 a .
  • the solder layer 155 is disposed between the second circuit layer 116 a of the first circuit board 110 a and the electronic component 150 and between the electronic component 150 and the third circuit layer 124 a of the second circuit board 120 a .
  • the electronic components 140 a and 150 in the embodiment are electrically connected to the first circuit board 110 a and the second circuit board 120 a through the solder layers 145 and 155 .
  • the conductive lead 130 a contacts at least one of the second circuit layer 116 a and the third circuit layer 124 a .
  • the conductive lead 130 a in the embodiment includes a first conductive lead 132 a and a second conductive lead 134 a .
  • the first conductive lead 132 a has a vertical height H 1 , there is a vertical distance G 1 between the second circuit layer 116 a and the third circuit layer 124 a , and in particular the vertical height H 1 is greater than the vertical distance G 1 .
  • the vertical height of the second conductive lead 134 a is also greater than the vertical distance G 1 .
  • the conductive lead 132 a is not located between the second circuit layer 116 a of the first circuit board 110 a and the third circuit layer 124 a of the second circuit board 120 a .
  • the first conductive lead 132 a is relatively adjacent to the first edge S 1 of the first circuit board 110 a and directly contacts the second circuit layer 116 a .
  • the second conductive lead 134 a is relatively adjacent to the fourth edge S 4 of the second circuit board 120 a and directly contacts the third circuit layer 124 a .
  • first conductive lead 132 a is electrically connected to the second circuit layer 116 a of the first circuit board 110 a
  • the second conductive lead 134 a is electrically connected to the third circuit layer 124 a of the second circuit board 120 a
  • the first conductive lead 132 a and the second conductive lead 134 a are respectively connected to different circuit boards.
  • the molding compound 160 in the embodiment covers the first circuit board 110 a , the second circuit board 120 a , the electronic components 140 a and 150 , the first conductive lead 132 a , and the second conductive lead 134 a .
  • the molding compound 160 exposes the first circuit layer 114 a and the fourth circuit layer 126 a , and the first conductive lead 132 a and the second conductive lead 134 a extend outside the molding compound 160 .
  • the molding compound 160 has a top surface 162 and a bottom surface 164 opposite to each other. The top surface 162 is aligned with a first surface 115 of the first circuit layer 114 a that is relatively away from the second circuit layer 116 a .
  • the bottom surface 164 is aligned with a second surface 125 of the fourth circuit layer 126 a that is relatively away from the third circuit layer 124 a . That is, the molding compound 160 in the embodiment does not cover the entire first circuit board 110 a and the entire second circuit board 120 a but exposes the first circuit layer 114 a and the fourth circuit layer 126 a , which may effectively improve the performance of the package structure 100 a in heat dissipation. On the other hand, the molding compound 160 does not cover the entire conductive lead 130 a , and the part of the conductive leads 130 a extending outside the molding compound 160 may be adapted to transmit signals.
  • the conductive lead 130 a contacts the second circuit layer 116 a of the first circuit board 110 a and the third circuit layer 124 a of the second circuit board 120 a , and the vertical height H 1 of the first conductive lead 132 a is greater than the vertical distance G 1 between the second circuit layer 116 a and the third circuit layer 124 a . Accordingly, in the embodiment, there is no need to adopt conductive spacers to maintain the distance between the first circuit board 110 a and the second circuit board 120 a , so the package structure 100 a in the embodiment may have a thinner package thickness.
  • the package structure 100 a in the embodiment may have better performance in heat dissipation.
  • FIG. 2 is a schematic cross-sectional view of a package structure according to another embodiment of the disclosure.
  • the package structure 100 b in the embodiment is similar to the package structure 100 a .
  • the difference between the two is in the embodiment, the size of the first circuit board 110 b is less than that of the second circuit board 120 b.
  • the first circuit board 110 b includes a dielectric layer 112 b , a first circuit layer 114 b , and a second circuit layer 116 b located on opposite sides of the dielectric layer 112 b .
  • the second circuit board 120 b includes a dielectric layer 122 b , a third circuit layer 124 b , and a fourth circuit layer 126 b located on opposite sides of the dielectric layer 122 b .
  • first horizontal distance D 12 between a first edge S 1 ′ of the first circuit board 110 b and a third edge S 3 ′ of the second circuit board 120 b
  • second horizontal distance D 22 between a second edge S 2 ′ of the first circuit board 110 b and a fourth edge S 4 ′ of the second circuit board 120 b
  • first horizontal distance D 12 is greater than the second horizontal distance D 22 .
  • the conductive lead 130 b in the embodiment includes a first conductive lead 132 b and a second conductive lead 134 b .
  • the first conductive lead 132 b is relatively adjacent to the third edge S 3 ′ of the second circuit board 120 b and directly contacts the third circuit layer 124 b .
  • the second conductive lead 134 b is relatively adjacent to the fourth edge S 4 ′ of the second circuit board 120 b and directly contacts the third circuit layer 124 b . That is, the first conductive lead 132 b and the second conductive lead 134 b are electrically connected to the same circuit board (i.e., the second circuit board 120 b ).
  • the first conductive lead 132 b has a vertical height H 2 , there is a vertical distance G 2 between the second circuit layer 116 b and the third circuit layer 124 b , and the vertical height H 2 is greater than the vertical distance G 2 .
  • the vertical height of the second conductive lead 134 b is also greater than the vertical distance G 2 . That is, the first conductive lead 132 b and the second conductive lead 134 b are not located between the second circuit layer 116 b of the first circuit board 110 b and the third circuit layer 124 b of the second circuit board 120 b.
  • the orthographic projection of the first circuit board 110 b on the second circuit board 120 b does not overlap the orthographic projection of the first conductive leads 132 b on the second circuit board 120 b and the orthographic projection of the second conductive leads 134 b on the second circuit board 120 b .
  • the first circuit board 110 b in the embodiment is located between the first conductive lead 132 b and the second conductive lead 134 b .
  • the package structure 100 b in the embodiment further includes a bonding wire 147 , and the bonding wire 147 is electrically connected to the electronic component 140 b and the third circuit layer 124 b of the second circuit board 120 b .
  • the electronic component 140 b in the embodiment is also electrically connected to the third circuit layer 124 b through the bonding wire 147 .
  • the conductive lead 130 b directly contacts the third circuit layer 124 b of the second circuit board 120 b , and the vertical height H 2 of the first conductive lead 132 b is greater than the vertical distance G 2 between the second circuit layer 116 b and the third circuit layer 124 b . Therefore, in the embodiment, the package structure 100 b does not need to adopt conductive spacers and therefore may have a thinner package thickness. In addition, since the molding compound 160 exposes the first circuit layer 114 b of the first circuit board 110 b and the fourth circuit layer 126 b of the second circuit board 120 b , the package structure 100 b in the embodiment may have better performance in heat dissipation.
  • the conductive lead contacts at least one of the second circuit layer of the first circuit board and the third circuit layer of the second circuit board, and the vertical height of the conductive lead is greater than the vertical distance between the second circuit layer and the third circuit layer. Accordingly, in the disclosure, there is no need to adopt conductive spacers to maintain the distance between the first circuit board and the second circuit board, so the package structure in the disclosure may have a thinner package thickness. In addition, since the molding compound exposes the first circuit layer of the first circuit board and the fourth circuit layer of the second circuit board, the package structure in the embodiment may have better performance in heat dissipation.

Abstract

A package structure includes a first circuit board, a second circuit board, at least one electronic component, at least one conductive lead, and a molding compound. The first circuit board includes a first circuit layer and a second circuit layer. The second circuit board includes a third circuit layer and a fourth circuit layer. The electronic component is disposed between the first circuit board and the second circuit board. The conductive lead contacts at least one of the second circuit layer and the third circuit layer. The conductive lead has a vertical height, and the vertical height is greater than a vertical distance between the second circuit layer and the third circuit layer. The molding compound covers the first circuit board, the second circuit board, the electronic component, and the conductive lead. The molding compound exposes the first circuit layer and the fourth circuit layer, and the conductive lead extends outside the molding compound.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application claims the priority benefit of U.S. provisional application Ser. No. 63/087,316, filed on Oct. 5, 2020 and Taiwan application serial no. 110103619, filed on Feb. 1, 2021. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
BACKGROUND Technical Field
The disclosure relates to a semiconductor structure, and more particularly to a package structure.
Description of Related Art
To solve the heat dissipation problem, the package structure of a new power module has evolved to adopt the solution of double-sided heat dissipation. Generally, power modules require thicker conductive leads (a thickness greater than 0.5 mm) for signal transmission because of their higher power. However, the thickness of a power chip is only about 100 microns, so a conductive spacer is added between the upper and lower circuit boards to maintain the distance between the upper and lower circuit boards to accommodate the conductive leads. As a result, in addition to increasing the thickness of the overall power module, the conductive spacer itself also has thermal resistance, which further affects the overall heat dissipation efficiency of the power module.
SUMMARY
The disclosure provides a package structure capable of having a thinner package thickness and better performance in heat dissipation without adopting conductive spacers.
In the disclosure, a package structure includes a first circuit board, a second circuit board, at least one electronic component, at least one conductive lead, and a molding compound. The first circuit board includes a first circuit layer and a second circuit layer. The second circuit board includes a third circuit layer and a fourth circuit layer. The second circuit layer and the third circuit layer are located between the first circuit layer and the fourth circuit layer. The electronic component is disposed between the first circuit board and the second circuit board and electrically connected to the second circuit layer and the third circuit layer. The conductive lead contacts at least one of the second circuit layer and the third circuit layer. The conductive lead has a vertical height, and the vertical height is greater than a vertical distance between the second circuit layer and the third circuit layer. The molding compound covers the first circuit board, the second circuit board, the electronic component, and the conductive lead. The molding compound exposes the first circuit layer and the fourth circuit layer, and the conductive lead extends outside the molding compound.
In an embodiment of the disclosure, the first circuit board further includes a dielectric layer having an upper surface and a lower surface opposite to each other. The first circuit layer is disposed on the upper surface, and the second circuit layer is disposed on the lower surface.
In an embodiment of the disclosure, the material of the dielectric layer includes a ceramic material or a thermal interface material (TIM).
In an embodiment of the disclosure, the second circuit board further includes a dielectric layer having an upper surface and a lower surface opposite to each other. The third circuit layer is disposed on the upper surface, and the fourth circuit layer is disposed on the lower surface.
In an embodiment of the disclosure, the material of the dielectric layer includes a ceramic material or a thermal interface material.
In an embodiment of the disclosure, the first circuit board has a first edge and a second edge opposite to each other. The second circuit board has a third edge and a fourth edge opposite to each other. There is a first horizontal distance between the first edge and the third edge, and there is a second horizontal distance between the second edge and the fourth edge.
In an embodiment of the disclosure, the size of the first circuit board is the same as the size of the second circuit board. The at least one conductive lead includes a first conductive lead and a second conductive lead. The first conductive lead is relatively adjacent to the first edge of the first circuit board and contacts the second circuit layer. The second conductive lead is relatively adjacent to the fourth edge of the second circuit board and contacts the third circuit layer.
In an embodiment of the disclosure, the first horizontal distance is equal to the second horizontal distance.
In an embodiment of the disclosure, the size of the first circuit board is less than the size of the second circuit board. The at least one conductive lead includes a first conductive lead and a second conductive lead. The first conductive lead is relatively adjacent to the third edge of the second circuit board and contacts the third circuit layer. The second conductive lead is relatively adjacent to the fourth edge of the second circuit board and contacts the third circuit layer.
In an embodiment of the disclosure, the orthographic projection of the first circuit board on the second circuit board does not overlap the orthographic projection of the first conductive lead on the second circuit board and the orthographic projection of the second conductive lead on the second circuit board.
In an embodiment of the disclosure, the first horizontal distance is greater than the second horizontal distance.
In an embodiment of the disclosure, the package structure further includes a solder layer disposed between the second circuit layer of the first circuit board and the electronic component and between the electronic component and the third circuit layer of the second circuit board.
In an embodiment of the disclosure, the package structure further includes a bonding wire electrically connected to the electronic component and the third circuit layer of the second circuit board.
In an embodiment of the disclosure, the electronic component includes at least one die or at least one package body.
In an embodiment of the disclosure, the molding compound has a top surface and a bottom surface opposite to each other. The top surface is aligned with a first surface of the first circuit layer that is relatively away from the second circuit layer. The bottom surface is aligned with a second surface of the fourth circuit layer that is relatively away from the third circuit layer.
Base on the above, in the design of the package structure in the disclosure, the conductive lead contacts at least one of the second circuit layer of the first circuit board and the third circuit layer of the second circuit board, and the vertical height of the conductive lead is greater than the vertical distance between the second circuit layer and the third circuit layer. Accordingly, in the disclosure, there is no need to adopt conductive spacers to maintain the distance between the first circuit board and the second circuit board, so the package structure in the disclosure may have a thinner package thickness. In addition, since the molding compound exposes the first circuit layer of the first circuit board and the fourth circuit layer of the second circuit board, the package structure in the disclosure may have better performance in heat dissipation.
In order to make the aforementioned features and advantages of the invention comprehensible, embodiments accompanied with drawings are described in detail below.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic cross-sectional view of a package structure according to an embodiment of the disclosure.
FIG. 2 is a schematic cross-sectional view of a package structure according to another embodiment of the disclosure.
DESCRIPTION OF THE EMBODIMENTS
FIG. 1 is a schematic cross-sectional view of a package structure according to an embodiment of the disclosure. Referring to FIG. 1 , in the embodiment, a package structure 100 a includes a first circuit board 110 a, a second circuit board 120 a, at least one conductive lead 130 a, at least one electronic component (two electronic components 140 a and 150 are schematically shown), and a molding compound 160.
In detail, the first circuit board 110 a includes a dielectric layer 112 a, a first circuit layer 114 a, and a second circuit layer 116 a. The dielectric layer 112 a has an upper surface 111 and a lower surface 113 opposite to each other. For example, the material of the dielectric layer 112 a may include a ceramic material or a thermal interface material, and for example, the thermal interface material may include an inorganic filler mixed with organic resin, but the disclosure is not limited thereto. The first circuit layer 114 a is disposed on the upper surface 111 of the dielectric layer 112 a and covers the entire upper surface 111. The second circuit layer 116 a is disposed on the lower surface 113 of the dielectric layer 112 a, and a part of the lower surface 113 is exposed. That is, the second circuit layer 116 a is a patterned circuit layer.
Furthermore, the second circuit board 120 a in the embodiment includes a dielectric layer 122 a, a third circuit layer 124 a, and a fourth circuit layer 126 a. The dielectric layer 122 a has an upper surface 121 and a lower surface 123 opposite to each other. For example, the material of the dielectric layer 122 a may include a ceramic material or a thermal interface material, and for example, the thermal interface material may include an inorganic filler mixed with organic resin, but the disclosure is not limited thereto. The third circuit layer 124 a is disposed on the upper surface 121 of the dielectric layer 122 a, and a part of the upper surface 121 is exposed. That is, the third circuit layer 124 a is a patterned circuit layer. The fourth circuit layer 126 a is disposed on the lower surface 123 of the dielectric layer 122 a and covers the entire lower surface 123.
As shown in FIG. 1 , the second circuit layer 116 a of the first circuit board 110 a and the third circuit layer 124 a of the second circuit board 120 a in the embodiment are located between the first circuit layer 114 a and the fourth circuit layer 126 a. The size of the first circuit board 110 a and the size of the second circuit board 120 a are substantially the same. Furthermore, the first circuit board 110 a has a first edge S1 and a second edge S2 opposite to each other. The second circuit board 120 a has a third edge S3 and a fourth edge S4 opposite to each other. There is a first horizontal distance D11 between the first edge S1 and the third edge S3, and there is a second horizontal distance D21 between the second edge S2 and the fourth edge S4. The first horizontal distance D11 is substantially equal to the second horizontal distance D21. In other words, the first circuit board 110 a and the second circuit board 120 a in the embodiment are disposed in a staggered manner. On the other hand, the orthographic projection of the first circuit board 110 a on the second circuit board 120 a partially overlaps the second circuit board 120 a.
Furthermore, the electronic components 140 a and 150 in the embodiment are disposed between the first circuit board 110 a and the second circuit board 120 a and electrically connected to the second circuit layer 116 a and the third circuit layer 124 a. Meanwhile, for example, the electronic components 140 a and 150 are dies or package bodies, which is not limited in the disclosure. More specifically, the package structure 100 a in the embodiment further includes a solder layer 145 and a solder layer 155. The solder layer 145 is disposed between the second circuit layer 116 a of the first circuit board 110 a and the electronic component 140 a and between the electronic component 140 a and the third circuit layer 124 a of the second circuit board 120 a. The solder layer 155 is disposed between the second circuit layer 116 a of the first circuit board 110 a and the electronic component 150 and between the electronic component 150 and the third circuit layer 124 a of the second circuit board 120 a. In other words, the electronic components 140 a and 150 in the embodiment are electrically connected to the first circuit board 110 a and the second circuit board 120 a through the solder layers 145 and 155.
Referring to FIG. 1 again, in the embodiment, the conductive lead 130 a contacts at least one of the second circuit layer 116 a and the third circuit layer 124 a. In detail, the conductive lead 130 a in the embodiment includes a first conductive lead 132 a and a second conductive lead 134 a. The first conductive lead 132 a has a vertical height H1, there is a vertical distance G1 between the second circuit layer 116 a and the third circuit layer 124 a, and in particular the vertical height H1 is greater than the vertical distance G1. Similarly, the vertical height of the second conductive lead 134 a is also greater than the vertical distance G1. That is, in the embodiment, the conductive lead 132 a is not located between the second circuit layer 116 a of the first circuit board 110 a and the third circuit layer 124 a of the second circuit board 120 a. Specifically, the first conductive lead 132 a is relatively adjacent to the first edge S1 of the first circuit board 110 a and directly contacts the second circuit layer 116 a. The second conductive lead 134 a is relatively adjacent to the fourth edge S4 of the second circuit board 120 a and directly contacts the third circuit layer 124 a. That is, the first conductive lead 132 a is electrically connected to the second circuit layer 116 a of the first circuit board 110 a, and the second conductive lead 134 a is electrically connected to the third circuit layer 124 a of the second circuit board 120 a. In other words, the first conductive lead 132 a and the second conductive lead 134 a are respectively connected to different circuit boards.
In addition, the molding compound 160 in the embodiment covers the first circuit board 110 a, the second circuit board 120 a, the electronic components 140 a and 150, the first conductive lead 132 a, and the second conductive lead 134 a. In particular, the molding compound 160 exposes the first circuit layer 114 a and the fourth circuit layer 126 a, and the first conductive lead 132 a and the second conductive lead 134 a extend outside the molding compound 160. Furthermore, the molding compound 160 has a top surface 162 and a bottom surface 164 opposite to each other. The top surface 162 is aligned with a first surface 115 of the first circuit layer 114 a that is relatively away from the second circuit layer 116 a. The bottom surface 164 is aligned with a second surface 125 of the fourth circuit layer 126 a that is relatively away from the third circuit layer 124 a. That is, the molding compound 160 in the embodiment does not cover the entire first circuit board 110 a and the entire second circuit board 120 a but exposes the first circuit layer 114 a and the fourth circuit layer 126 a, which may effectively improve the performance of the package structure 100 a in heat dissipation. On the other hand, the molding compound 160 does not cover the entire conductive lead 130 a, and the part of the conductive leads 130 a extending outside the molding compound 160 may be adapted to transmit signals.
In short, in the embodiment, the conductive lead 130 a contacts the second circuit layer 116 a of the first circuit board 110 a and the third circuit layer 124 a of the second circuit board 120 a, and the vertical height H1 of the first conductive lead 132 a is greater than the vertical distance G1 between the second circuit layer 116 a and the third circuit layer 124 a. Accordingly, in the embodiment, there is no need to adopt conductive spacers to maintain the distance between the first circuit board 110 a and the second circuit board 120 a, so the package structure 100 a in the embodiment may have a thinner package thickness. In addition, since the molding compound 160 exposes the first circuit layer 114 a of the first circuit board 110 a and the fourth circuit layer 126 a of the second circuit board 120 a, the package structure 100 a in the embodiment may have better performance in heat dissipation.
It is to be noted that the following embodiments use the reference numerals and a part of the contents of the above embodiments, and the same reference numerals are used to denote the same or similar elements, and the description of the same technical contents is omitted. For the description of the omitted part, reference may be made to the above embodiments, and details are not described in the following embodiments.
FIG. 2 is a schematic cross-sectional view of a package structure according to another embodiment of the disclosure. Referring to both FIG. 1 and FIG. 2 , the package structure 100 b in the embodiment is similar to the package structure 100 a. The difference between the two is in the embodiment, the size of the first circuit board 110 b is less than that of the second circuit board 120 b.
In detail, the first circuit board 110 b includes a dielectric layer 112 b, a first circuit layer 114 b, and a second circuit layer 116 b located on opposite sides of the dielectric layer 112 b. The second circuit board 120 b includes a dielectric layer 122 b, a third circuit layer 124 b, and a fourth circuit layer 126 b located on opposite sides of the dielectric layer 122 b. There is a first horizontal distance D12 between a first edge S1′ of the first circuit board 110 b and a third edge S3′ of the second circuit board 120 b, and there is a second horizontal distance D22 between a second edge S2′ of the first circuit board 110 b and a fourth edge S4′ of the second circuit board 120 b. Meanwhile, the first horizontal distance D12 is greater than the second horizontal distance D22.
Furthermore, the conductive lead 130 b in the embodiment includes a first conductive lead 132 b and a second conductive lead 134 b. The first conductive lead 132 b is relatively adjacent to the third edge S3′ of the second circuit board 120 b and directly contacts the third circuit layer 124 b. The second conductive lead 134 b is relatively adjacent to the fourth edge S4′ of the second circuit board 120 b and directly contacts the third circuit layer 124 b. That is, the first conductive lead 132 b and the second conductive lead 134 b are electrically connected to the same circuit board (i.e., the second circuit board 120 b). In particular, the first conductive lead 132 b has a vertical height H2, there is a vertical distance G2 between the second circuit layer 116 b and the third circuit layer 124 b, and the vertical height H2 is greater than the vertical distance G2. Similarly, the vertical height of the second conductive lead 134 b is also greater than the vertical distance G2. That is, the first conductive lead 132 b and the second conductive lead 134 b are not located between the second circuit layer 116 b of the first circuit board 110 b and the third circuit layer 124 b of the second circuit board 120 b.
On the other hand, in the embodiment, the orthographic projection of the first circuit board 110 b on the second circuit board 120 b does not overlap the orthographic projection of the first conductive leads 132 b on the second circuit board 120 b and the orthographic projection of the second conductive leads 134 b on the second circuit board 120 b. As shown in FIG. 2 , the first circuit board 110 b in the embodiment is located between the first conductive lead 132 b and the second conductive lead 134 b. In addition, the package structure 100 b in the embodiment further includes a bonding wire 147, and the bonding wire 147 is electrically connected to the electronic component 140 b and the third circuit layer 124 b of the second circuit board 120 b. That is, in addition to being electrically connected to the second circuit layer 116 b and the third circuit layer 124 b through the solder layer 145, the electronic component 140 b in the embodiment is also electrically connected to the third circuit layer 124 b through the bonding wire 147.
In short, in the design of the package structure 100 b in the embodiment, the conductive lead 130 b directly contacts the third circuit layer 124 b of the second circuit board 120 b, and the vertical height H2 of the first conductive lead 132 b is greater than the vertical distance G2 between the second circuit layer 116 b and the third circuit layer 124 b. Therefore, in the embodiment, the package structure 100 b does not need to adopt conductive spacers and therefore may have a thinner package thickness. In addition, since the molding compound 160 exposes the first circuit layer 114 b of the first circuit board 110 b and the fourth circuit layer 126 b of the second circuit board 120 b, the package structure 100 b in the embodiment may have better performance in heat dissipation.
Base on the above, in the design of the package structure in the disclosure, the conductive lead contacts at least one of the second circuit layer of the first circuit board and the third circuit layer of the second circuit board, and the vertical height of the conductive lead is greater than the vertical distance between the second circuit layer and the third circuit layer. Accordingly, in the disclosure, there is no need to adopt conductive spacers to maintain the distance between the first circuit board and the second circuit board, so the package structure in the disclosure may have a thinner package thickness. In addition, since the molding compound exposes the first circuit layer of the first circuit board and the fourth circuit layer of the second circuit board, the package structure in the embodiment may have better performance in heat dissipation.
Although the invention has been described with reference to the above embodiments, it will be apparent to one of ordinary skill in the art that modifications to the described embodiments may be made without departing from the spirit and the scope of the invention. Accordingly, the scope of the invention will be defined by the attached claims and their equivalents and not by the above detailed descriptions.

Claims (15)

What is claimed is:
1. A package structure, comprising:
a first circuit board comprising a first circuit layer and a second circuit layer;
a second circuit board comprising a third circuit layer and a fourth circuit layer, wherein the second circuit layer and the third circuit layer are located between the first circuit layer and the fourth circuit layer;
at least one electronic component disposed between the first circuit board and the second circuit board and electrically connected to the second circuit layer and the third circuit layer;
at least one conductive lead contacting at least one of the second circuit layer and the third circuit layer, wherein the at least one conductive lead comprises a maximum vertical height, and the maximum vertical height is greater than a vertical distance between a lower surface of the second circuit layer and an upper surface of the third circuit layer; and
a molding compound covering the first circuit board, the second circuit board, the at least one electronic component, and the at least one conductive lead, wherein the molding compound exposes the first circuit layer and the fourth circuit layer, and the at least one conductive lead extends outside the molding compound.
2. The package structure according to claim 1, wherein the first circuit board further comprises a dielectric layer comprising an upper surface and a lower surface opposite to each other, the first circuit layer is disposed on the upper surface, and the second circuit layer is disposed on the lower surface.
3. The package structure according to claim 2, wherein a material of the dielectric layer comprises a ceramic material or a thermal interface material.
4. The package structure according to claim 1, wherein the second circuit board further comprises a dielectric layer comprising an upper surface and a lower surface opposite to each other, the third circuit layer is disposed on the upper surface, and the fourth circuit layer is disposed on the lower surface.
5. The package structure according to claim 4, wherein a material of the dielectric layer comprises a ceramic material or a thermal interface material.
6. The package structure according to claim 1, wherein the first circuit board comprises a first edge and a second edge opposite to each other, the second circuit board comprises a third edge and a fourth edge opposite to each other, there is a first horizontal distance between the first edge and the third edge, and there is a second horizontal distance between the second edge and the fourth edge.
7. The package structure according to claim 6, wherein a size of the first circuit board is the same as a size of the second circuit board, the at least one conductive lead comprises a first conductive lead and a second conductive lead, the first conductive lead is relatively adjacent to the first edge of the first circuit board and contacts the second circuit layer, and the second conductive lead is relatively adjacent to the fourth edge of the second circuit board and contacts the third circuit layer.
8. The package structure according to claim 7, wherein the first horizontal distance is equal to the second horizontal distance.
9. The package structure according to claim 6, wherein a size of the first circuit board is less than a size of the second circuit board as seen in a cross-sectional view, the at least one conductive lead comprises a first conductive lead and a second conductive lead, the first conductive lead is relatively adjacent to the third edge of the second circuit board and contacts the third circuit layer, and the second conductive lead is relatively adjacent to the fourth edge of the second circuit board and contacts the third circuit layer.
10. The package structure according to claim 9, wherein an orthographic projection of the first circuit board on the second circuit board does not overlap an orthographic projection of the first conductive lead on the second circuit board and an orthographic projection of the second conductive lead on the second circuit board.
11. The package structure according to claim 9, wherein the first horizontal distance is greater than the second horizontal distance.
12. The package structure according to claim 1, further comprising:
a solder layer disposed between the second circuit layer of the first circuit board and the at least one electronic component and between the at least one electronic component and the third circuit layer of the second circuit board.
13. The package structure according to claim 12, further comprising:
a bonding wire electrically connected to the at least one electronic component and the third circuit layer of the second circuit board.
14. The package structure according to claim 1, wherein the at least one electronic component comprises at least one die or at least one package body.
15. The package structure according to claim 1, wherein the molding compound comprises a top surface and a bottom surface opposite to each other, the top surface is aligned with a first surface of the first circuit layer that is relatively away from the second circuit layer, and the bottom surface is aligned with a second surface of the fourth circuit layer that is relatively away from the third circuit layer.
US17/206,108 2020-10-05 2021-03-18 Package structure Active 2041-09-10 US11631626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/206,108 US11631626B2 (en) 2020-10-05 2021-03-18 Package structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063087316P 2020-10-05 2020-10-05
TW110103619 2021-02-01
TW110103619A TWI767543B (en) 2020-10-05 2021-02-01 Package structure
US17/206,108 US11631626B2 (en) 2020-10-05 2021-03-18 Package structure

Publications (2)

Publication Number Publication Date
US20220108934A1 US20220108934A1 (en) 2022-04-07
US11631626B2 true US11631626B2 (en) 2023-04-18

Family

ID=80931646

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/206,108 Active 2041-09-10 US11631626B2 (en) 2020-10-05 2021-03-18 Package structure

Country Status (1)

Country Link
US (1) US11631626B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200520125A (en) 2003-10-24 2005-06-16 Int Rectifier Corp Semiconductor device package utilizing proud interconnect material
US20060071314A1 (en) 2004-10-05 2006-04-06 Via Technologies, Inc. Cavity-down stacked multi-chip package
US20060108700A1 (en) * 2004-11-19 2006-05-25 Denso Corporation Semiconductor device, method and apparatus for fabricating the same
US7317243B2 (en) * 2003-10-08 2008-01-08 Chung-Cheng Wang Encapsulated lead having step configuration
US20090174046A1 (en) * 2008-01-07 2009-07-09 Yong Liu Semiconductor package with an embedded printed circuit board and stacked die
US7728413B2 (en) * 2005-09-07 2010-06-01 Denso Corporation Resin mold type semiconductor device
US20100176498A1 (en) * 2001-06-11 2010-07-15 Fairchild Korea Semiconductor, Ltd. Power module package having excellent heat sink emission capability and method for manufacturing the same
US7936054B2 (en) * 2007-12-13 2011-05-03 Fairchild Korea Semiconductor Ltd. Multi-chip package
US20130168845A1 (en) * 2011-10-24 2013-07-04 Toyota Jidosha Kabushiki Kaisha Semiconductor module
US20160118314A1 (en) * 2014-10-28 2016-04-28 Hyundai Mobis Co., Ltd. Power module and method of packaging the same
TW201732968A (en) 2016-03-04 2017-09-16 尼克森微電子股份有限公司 Semiconductor package structure and manufacturing method thereof
US20180240731A1 (en) * 2017-02-22 2018-08-23 Jmj Korea Co., Ltd. Semiconductor package having double-sided heat dissipation structure
US10741500B2 (en) 2018-01-30 2020-08-11 Siliconware Precision Industries Co., Ltd. Electronic package

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100176498A1 (en) * 2001-06-11 2010-07-15 Fairchild Korea Semiconductor, Ltd. Power module package having excellent heat sink emission capability and method for manufacturing the same
US7317243B2 (en) * 2003-10-08 2008-01-08 Chung-Cheng Wang Encapsulated lead having step configuration
TW200520125A (en) 2003-10-24 2005-06-16 Int Rectifier Corp Semiconductor device package utilizing proud interconnect material
US20060071314A1 (en) 2004-10-05 2006-04-06 Via Technologies, Inc. Cavity-down stacked multi-chip package
US20060108700A1 (en) * 2004-11-19 2006-05-25 Denso Corporation Semiconductor device, method and apparatus for fabricating the same
US7728413B2 (en) * 2005-09-07 2010-06-01 Denso Corporation Resin mold type semiconductor device
US7936054B2 (en) * 2007-12-13 2011-05-03 Fairchild Korea Semiconductor Ltd. Multi-chip package
US20090174046A1 (en) * 2008-01-07 2009-07-09 Yong Liu Semiconductor package with an embedded printed circuit board and stacked die
US20130168845A1 (en) * 2011-10-24 2013-07-04 Toyota Jidosha Kabushiki Kaisha Semiconductor module
US20160118314A1 (en) * 2014-10-28 2016-04-28 Hyundai Mobis Co., Ltd. Power module and method of packaging the same
TW201732968A (en) 2016-03-04 2017-09-16 尼克森微電子股份有限公司 Semiconductor package structure and manufacturing method thereof
US20180240731A1 (en) * 2017-02-22 2018-08-23 Jmj Korea Co., Ltd. Semiconductor package having double-sided heat dissipation structure
CN109661723A (en) 2017-02-22 2019-04-19 Jmj韩国株式会社 Semiconductor packages with two-side radiation structure
US10741500B2 (en) 2018-01-30 2020-08-11 Siliconware Precision Industries Co., Ltd. Electronic package

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Office Action of Taiwan Counterpart Application", dated Oct. 28, 2021, p. 1-p. 9.

Also Published As

Publication number Publication date
US20220108934A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
US9848518B2 (en) Integrated power module packaging structure
US9892998B2 (en) Package module of power conversion circuit and manufacturing method thereof
US7391105B2 (en) Unit semiconductor chip and multi chip package with center bonding pads and methods for manufacturing the same
US9142473B2 (en) Stacked type power device module
TWI681519B (en) Semiconductor device
US9679786B2 (en) Packaging module of power converting circuit and method for manufacturing the same
KR102243285B1 (en) A semiconductor package
US20130093103A1 (en) Layered Semiconductor Package
KR102126977B1 (en) Semiconductor package
JP6119313B2 (en) Semiconductor device
CN1815733A (en) Semiconductor device and manufacturing method therefor
US10892205B2 (en) Package structure and power module using same
JP2017168586A (en) Semiconductor device
US20220346235A1 (en) Module
US11037879B2 (en) Semiconductor device
KR101343199B1 (en) Semiconductor device package
JP2007281201A (en) Semiconductor device
US11631626B2 (en) Package structure
US10412821B1 (en) Dual side cooling structure
US9397020B2 (en) Semiconductor package
TWI767543B (en) Package structure
JP2017028174A (en) Semiconductor device
CN1284239C (en) Semiconductor device
US10861766B1 (en) Package structures
KR100833184B1 (en) Stacked semiconductor package

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: UNIMICRON TECHNOLOGY CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAIN, RA-MIN;WANG, PO-HSIANG;PO, CHI-CHUN;REEL/FRAME:055661/0027

Effective date: 20210317

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCF Information on status: patent grant

Free format text: PATENTED CASE