US11575211B2 - System and method for shielding attenuation of electromagnetic interference emissions - Google Patents

System and method for shielding attenuation of electromagnetic interference emissions Download PDF

Info

Publication number
US11575211B2
US11575211B2 US17/031,505 US202017031505A US11575211B2 US 11575211 B2 US11575211 B2 US 11575211B2 US 202017031505 A US202017031505 A US 202017031505A US 11575211 B2 US11575211 B2 US 11575211B2
Authority
US
United States
Prior art keywords
pcb
module
shielding layer
emi
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/031,505
Other versions
US20220338343A1 (en
Inventor
Sean D. Howard
Julie M. Byrd
Eric Stewart
Raymond Y. Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwell Collins Inc
Original Assignee
Rockwell Collins Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwell Collins Inc filed Critical Rockwell Collins Inc
Priority to US17/031,505 priority Critical patent/US11575211B2/en
Assigned to ROCKWELL COLLINS, INC. reassignment ROCKWELL COLLINS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BYRD, JULIE M., HOWARD, SEAN D., STEWART, ERIC, ZHENG, Raymond Y.
Priority to EP21198977.7A priority patent/EP3975679A1/en
Publication of US20220338343A1 publication Critical patent/US20220338343A1/en
Application granted granted Critical
Publication of US11575211B2 publication Critical patent/US11575211B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0039Galvanic coupling of ground layer on printed circuit board [PCB] to conductive casing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0715Shielding provided by an outer layer of PCB

Definitions

  • Select avionics equipment may be designed for Electromagnetic Compatibility (EMC) to reduce Electromagnetic Interference (EMI).
  • EMC Electromagnetic Compatibility
  • EMI Electromagnetic Interference
  • Testing for EMI may be costly to both a program requiring the select avionics equipment and to a company designing, manufacturing, and/or using the select avionics equipment.
  • Designing for EMC may require costly calculations. Repurposing components with pre-designed EMC characteristics may require significant redesign and costs.
  • a printed circuit board (PCB) module configured for shielding attenuation of an electromagnetic interference (EMI) emission is disclosed, in accordance with one or more embodiments of the disclosure.
  • the PCB module may include a PCB with at least one internal PCB element and at least one external PCB element.
  • the at least one internal PCB element may be embedded between adjacent layers of the PCB.
  • the at least one external PCB element may be coupled to an exterior surface of the PCB.
  • the PCB module may include a shielding layer fabricated from a tunable metamaterial absorber. The shielding layer may be tuned in response to at least one measurement of the EMI emission and a determination of a frequency of the EMI emission from the at least one measurement.
  • the tuning of the shielding layer may include adjusting a plurality of fins within a plurality of elements of the metamaterial absorber.
  • the shielding layer may be configured to absorb at least a portion of the EMI emission following the tuning of the shielding layer.
  • the PCB module may include a structure housing the PCB.
  • the metamaterial absorber may be coupled to an exterior surface of the structure.
  • the metamaterial absorber may be tuned prior to being coupled to the exterior surface of the structure.
  • the metamaterial absorber may be tuned after being coupled to the exterior surface of the structure.
  • the metamaterial absorber may be coupled to an exterior surface of the structure during fabrication of the structure.
  • the metamaterial absorber may be coupled to an interior surface of the structure.
  • the metamaterial absorber may be tuned prior to being coupled to the interior surface of the structure.
  • the metamaterial absorber may be tuned after being coupled to the interior surface of the structure.
  • the metamaterial absorber may be coupled to an interior surface of the structure during fabrication of the structure.
  • the metamaterial absorber may be coupled to an exterior surface of the PCB.
  • the metamaterial absorber may be tuned prior to being coupled to the exterior surface of the PCB.
  • the metamaterial absorber may be tuned after being coupled to the exterior surface of the PCB.
  • the metamaterial absorber may be coupled to an exterior surface of the PCB during fabrication of the PCB.
  • the method may include, but is not limited to, determining a frequency of an electromagnetic interference (EMI) emission emitted by a printed circuit board (PCB) module.
  • the method may include, but is not limited to, tuning a shielding layer of the PCB module to attenuate the emitted EMI emission.
  • the shielding layer may be fabricated from a tunable metamaterial absorber.
  • the shielding layer may be tuned in response to at least one measurement of the EMI emission and a determination of a frequency of the EMI emission from the at least one measurement.
  • the tuning of the shielding layer may include adjusting a plurality of fins within a plurality of elements of the metamaterial absorber.
  • the tuned shielding layer may be configured to absorb at least a portion of the EMI emission following the tuning of the shielding layer.
  • the method may further include, but is not limited to, coupling the shielding layer to the PCB module during fabrication of the PCB module.
  • FIG. 1 A is a simplified block diagram of a system for testing electromagnetic interference (EMI) emissions of a module, in accordance with one or more embodiments of the disclosure;
  • EMI electromagnetic interference
  • FIG. 1 B is a simplified block diagram of a system for testing electromagnetic interference (EMI) emissions of a module including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
  • EMI electromagnetic interference
  • FIG. 1 C is a simplified block diagram of a system for testing electromagnetic interference (EMI) emissions of a module including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
  • EMI electromagnetic interference
  • FIG. 2 A is a simplified block diagram a system for testing electromagnetic interference (EMI) emissions of a circuit card, in accordance with one or more embodiments of the disclosure;
  • EMI electromagnetic interference
  • FIG. 2 B is a simplified block diagram of a system for testing electromagnetic interference (EMI) emissions of a circuit card including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
  • EMI electromagnetic interference
  • FIG. 2 C is a simplified block diagram of a system for testing electromagnetic interference (EMI) emissions of a circuit card including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
  • EMI electromagnetic interference
  • FIG. 3 A is an exploded perspective view of a module including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure
  • FIG. 3 B is an exploded perspective view of a module including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
  • FIG. 3 C is an exploded perspective view of a circuit card including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
  • FIG. 3 D is a simplified block diagram of a printed circuit board (PCB), in accordance with one or more embodiments of the disclosure.
  • PCB printed circuit board
  • FIG. 4 is a flow diagram illustrating a method for shielding attenuation of EMI emissions.
  • FIG. 5 is a flow diagram illustrating a method for shielding attenuation of EMI emissions.
  • a letter following a reference numeral is intended to reference an embodiment of the feature or element that may be similar, but not necessarily identical, to a previously described element or feature bearing the same reference numeral (e.g., 1 , 1 a , 1 b ).
  • Such shorthand notations are used for purposes of convenience only and should not be construed to limit the disclosure in any way unless expressly stated to the contrary.
  • any reference to “one embodiment” or “some embodiments” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment disclosed herein.
  • the appearances of the phrase “in some embodiments” in various places in the specification are not necessarily all referring to the same embodiment, and embodiments may include one or more of the features expressly described or inherently present herein, or any combination of sub-combination of two or more such features, along with any other features which may not necessarily be expressly described or inherently present in the instant disclosure.
  • FIGS. 1 A- 5 generally illustrate a system and method for shielding attenuation of electromagnetic interference (EMI) emissions, in accordance with one or more embodiments of the disclosure.
  • EMI electromagnetic interference
  • Select avionics equipment may be designed for Electromagnetic Compatibility (EMC) to reduce Electromagnetic Interference (EMI).
  • EMC Electromagnetic Compatibility
  • EMI Electromagnetic Interference
  • the EMI may emanate from the select avionics equipment.
  • EMI emissions may cause issues with outside components.
  • EMI emissions may cause weaknesses in security protocols by allowing access to a device such as operating information.
  • Testing for EMI may be costly to both a program requiring the select avionics equipment and to a company designing, manufacturing, and/or using the select avionics equipment. For example, EMI tests may be difficult and costly for companies to pinpoint signal propagation from these devices.
  • avionics labs may be setup to run EMI testing on a specific module such that only when testing has finished with the first module can testing begin on another, resulting in significant costs and delays when EMI testing needs to be done more than one time for a circuit board module.
  • Designing for EMC may require costly calculations on circuit board modules. Due to the unpredictability during the design process, initial EMC designs may have a high probability of failure, increasing costs and design time. Repurposing and retrofitting components (e.g., circuit boards or modules) with pre-designed EMC characteristics may require significant redesign and costs. In some cases where the components are being repurposed, inflexibility in the design (e.g., as necessary to main EMI characteristics) may mean the designs are not modifiable.
  • the system should be able to be included in a new design.
  • the system should also be able to be incorporated into an existing design to allow for repurposing and/or retrofitting components for the purpose of shielding attenuation.
  • FIGS. 1 A- 2 C generally illustrate a system 100 for testing for electromagnetic interference (EMI) emissions, in accordance with one or more embodiments of the disclosure.
  • FIGS. 3 A- 3 D generally illustrate example embodiments of a subsystem of one or more subsystems 102 within the system 100 , in accordance with one or more embodiments of the disclosure.
  • EMI electromagnetic interference
  • the system 100 may include any stationary system.
  • the stationary system may include, but is not limited to, a structure or a sub-system configured to be attached to a structure.
  • the structure may include, but is not limited to, a residential, commercial or industrial, or military establishment such as a home, a business, storage building, military building, or the like; a remote range device; or the like.
  • the system 100 may include any non-stationary system.
  • the non-stationary system may include, but is not limited to, a vehicle or a component configured to be attached to a vehicle.
  • the vehicle may be any air, space, land, or water-based personal equipment or vehicle; any air, space, land, or water-based commercial or industrial equipment or vehicle; any air, space, land, or water-based military equipment or vehicle; or the like.
  • the one or more subsystems 102 may include, but are not limited to, one or more areas (e.g., pods, rooms, cabins, engine bays, defined cavities, or the like) within the system 100 .
  • the one or more subsystems 102 may include, but are not limited to, a module 102 , one or more modules, one or more connectors of the one or more modules, one or more cables coupled to the one or more connectors of the one or more modules, or the like.
  • the system 100 may include one or more exterior subsystems 104 configured to receive an emitted electromagnetic interference (EMI) emission 106 from the one or more subsystems 102 .
  • the one or more exterior subsystems 104 may include, but are not limited to, a network analyzer.
  • the one or more exterior subsystems 104 may include, but are not limited to, exterior components 104 or devices capable of being disrupted or otherwise affected by the EMI emission 106 .
  • the receiving of the EMI emission 106 from the one or more subsystems 102 by the one or more exterior subsystems 104 may be intentional or unintentional with respect to the testing and/or operating of the one or more exterior subsystems 104 .
  • a module 102 may be designed or retrofitted for electromagnetic compatibility (EMC) to dampen the EMI emission 106 to a reduced EMI emission 108 .
  • EMC electromagnetic compatibility
  • the reduced EMI emission 108 may be of a significant magnitude of difference in terms of signal strength as compared to the EMI emission 106 .
  • Attenuating the EMI emission 106 may include reflecting or absorbing at least a portion of the EMI emission 106 back into the module 102 .
  • the reflecting or absorbing of the EMI emission 106 back at a source of the EMI emission 106 may cause anti-resonance and ultimately negate the EMI emission 106 .
  • Designing or retrofitting the module 102 for EMC may include adding one or more shielding layers 110 to a structure 200 of the module 102 .
  • the shielding layer 110 may reflect or absorb electromagnetic interference (EMI), acting as an EMI shield.
  • EMI electromagnetic interference
  • the EMI emission 106 emitted from inside the module 102 may be reflected or absorbed by the shielding layer 110 , attenuating the EMI emission 106 such that only the reduced EMI emission 108 is emitted by the module 102 .
  • the shielding layer 110 may be configured to attenuate EMI emission 106 signal frequencies by absorbing the EMI emission 106 or reflecting the EMI emission 106 back at to the source (e.g., the one or more components 202 ), causing anti-resonance and ultimately negation of the EMI emission 106 .
  • the structure 200 may include a chassis, a housing, a shell, or other structure capable of encasing or encompassing at least a portion of the one or more subsystems 102 and/or at least some components of one or more components 202 .
  • the structure 200 may be fabricated with one or more portions.
  • the structure 200 may include a main body 300 , sidewalls 302 , and a lid 304 .
  • the sidewalls 302 may be integrated with the main body 300 during fabrication.
  • the sidewalls 302 may be coupled to the main body 300 during fabrication.
  • the structure 200 may be fabricated as a single integrated unit including the main body 300 , the sidewalls 302 , and the lid 304 . It is noted herein the main body 300 , the one or more sidewalls 302 and/or the lid 304 may be coupled via an adhesive, fasteners, soldering, or other coupling mechanism.
  • the shielding layer 110 may line an exterior of the structure 200 or an interior of the structure 200 .
  • the shielding layer 110 may be exterior to the module 102 , such that the shielding layer 110 at least partially encases or encompasses the module 102 .
  • the shielding layer 110 may be coupled to an exterior surface of the main body 300 , the sidewalls 302 , and/or the lid 304 of the structure 200 .
  • the shielding layer 110 may be within of the module 102 , such that the module 102 at least partially encases or encompasses the shielding layer 110 .
  • the shielding layer 110 may be coupled to an interior surface of the main body 300 , the sidewalls 302 , and/or the lid 304 of the structure 200 .
  • the shielding layer 110 may be, but is not limited to, a panel, placard, sticker, or other element configured to couple to a surface of the structure 200 and attenuate the EMI emission 106 .
  • the shielding layer 110 may be coupled via an adhesive, fasteners, soldering, or other coupling mechanism.
  • a designed and fabricated structure 200 of the module 102 may be retrofitted with the shielding layer 110 by a manufacturer and/or by a customer post-manufacturing.
  • the shielding layer 110 being coupled to a surface of the structure 200 of the module 102
  • the structure 200 of the module 102 may be fabricated at least in part from the shielding layer 110 .
  • the shielding layer 110 may be at least partially embedded within the structure 200 of the module 102 .
  • a module 102 may be designed with the shielding layer 110 by a manufacturer and/or by a customer pre-manufacturing.
  • the system 100 may include one or more components 202 configured to emit the EMI emission 106 .
  • the one or more components 202 may include, but are not limited to, one or more circuit cards 202 or printed circuit boards 202 (PCB 202 ) installed within the structure 200 of the one or more modules 102 , one or more connectors of the one or more circuit cards 202 installed within the structure 200 of the one or more modules 102 , one or more cables coupled to the one or more connectors of the one or more circuit cards 202 installed within the structure 200 of the one or more modules 102 , or the like.
  • the combination of the module 102 and the circuit card 202 or PCB 202 may be considered a module assembly, circuit card assembly, or PCB assembly, for purposes of the present disclosure.
  • a PCB 202 may include one or more PCB layers 306 .
  • the PCB layers 306 may be separated by a PCB dielectric layer 308 .
  • the PCB 202 may include one or more internal or embedded structures (i.e., internal PCB element 310 ).
  • one or more PCB vias 310 may be embedded within (e.g., pass through) the PCB dielectric layer 308 , and may electrically couple the PCB layers 306 on either side of the PCB dielectric layer 308 .
  • the PCB layers 306 adjacent to the PCB dielectric layer 308 may be electrically coupled.
  • a PCB via 310 may be embedded within (e.g., pass through) at least one of the PCB layers 306 adjacent to the PCB dielectric layer 308 , such that non-adjacent PCB layers 306 may be electrically coupled.
  • the PCB 202 may include one or more external structures 312 .
  • the one or more external structures 312 i.e., internal PCB element 310
  • the one or more PCB passive or active devices 312 may be coupled (e.g., physically and/or electrically) to a surface of the one or more PCB layers 306 .
  • the one or more external PCB passive or active devices 312 may be coupled to a power or ground plate or layer 314 on an exterior surface of a PCB layer 306 .
  • one or more PCB passive or active devices may be embedded within the PCB 202 (e.g., embedded within a PCB dielectric layer 308 or between a PCB layer 306 and the PCB dielectric layer 308 ).
  • a PCB 202 may be designed or retrofitted for electromagnetic compatibility (EMC) to dampen the EMI emission 106 emitted from internal PCB layers and/or internal vias and/or external PCB passive or active devices 312 embedded within the PCB 202 to a reduced EMI emission 108 .
  • EMC electromagnetic compatibility
  • the reduced EMI emission 108 may be of a significant magnitude of difference in terms of signal strength as compared to the EMI emission 106 .
  • Attenuating the EMI emission 106 may include reflecting or absorbing at least a portion of the EMI emission 106 back into the PCB 202 .
  • the reflecting or absorbing of the EMI emission 106 back at a source of the EMI emission 106 may cause anti- resonance and ultimately negation of the EMI emission 106 .
  • Designing or retrofitting the PCB 202 for EMC may include adding one or more shielding layers 110 to the PCB 202 .
  • the shielding layer 110 may be placed on an exterior of the PCB 202 , such that the shielding layer 110 at least partially encases or encompasses the PCB 202 .
  • the shielding layer 110 may be coupled to an exterior surface of the PCB 202 (e.g., on a surface of an exterior PCB layer of the PCB 202 , or the like).
  • the shielding layer 110 may be, but is not limited to, a panel, placard, sticker, or other element configured to couple to a surface of the PCB 202 and attenuate the EMI emission 106 .
  • the shielding layer 110 may be coupled via an adhesive, fasteners, soldering, or other coupling mechanism.
  • a designed and fabricated PCB 202 may be retrofitted with the shielding layer 110 by a manufacturer and/or by a customer post-manufacturing.
  • the shielding layer 110 may be coupled to a surface of the PCB 202
  • the PCB 202 may be fabricated at least in part with the shielding layer 110 .
  • the shielding layer 110 may replace a PCB layer of the PCB 202 .
  • the shielding layer 110 may be a PCB layer (e.g., a reference or ground layer 314 ) repurposed to attenuate the EMI emission 106 or given an additional purpose of attenuating the EMI emission 106 (e.g., in addition to operating as the reference or ground layer 314 ).
  • the shielding layer 110 may be at least partially embedded within the PCB 202 .
  • the shielding layer 110 may be positioned between PCB layers.
  • a PCB 202 may be designed with the shielding layer 110 by a manufacturer and/or by a customer pre-manufacturing.
  • embodiments of the disclosure illustrate the shielding layer 110 being simultaneously coupled to (or integrated with) the main body 300 , the sidewalls 302 , and/or the lid 304 of the structure 200 for purposes of attenuating the EMI emissions 106
  • the shielding layer 110 may be coupled to (or integrated with) only the main body 300 , the sidewalls 302 , or the lid 304 of the structure 200 .
  • the shielding layer 110 may not be needed for the main body 300 and/or the sidewalls 302 where the shielding layer 110 is coupled to (or integrated with) the lid 304 and the EMI emission 106 is directed through the lid 304 . Therefore, the above description should not be interpreted as a limitation on the scope of the present disclosure but merely an illustration.
  • shielding layer 110 may be coupled to (or integrated with) only the structure 200 or the PCB 202 .
  • the shielding layer 110 may not be needed for the structure 200 where the shielding layer 110 is coupled to (or integrated with) the PCB 202 . Therefore, the above description should not be interpreted as a limitation on the scope of the present disclosure but merely an illustration.
  • the shielding layer 110 may be a metamaterial absorber 110 .
  • the metamaterial absorber 110 may absorb at least a part of the EMI emission 106 , acting as an EMI shield.
  • the EMI emission 106 emitted from inside the module 102 may be absorbed in part by the metamaterial absorber 110 , attenuating the EMI emission 106 such that only the reduced EMI emission 108 is emitted.
  • the metamaterial absorber 110 may be configured to cause anti-resonance and ultimately negation of the EMI emission 106 .
  • the metamaterial absorber 110 may include any material known in the art to absorb at least part of the EMI emission 106 to reduce the EMI emission 106 .
  • the metamaterial absorber 110 may include assemblies of multiple elements 112 fabricated from composite materials including, but not limited to, metals or plastics.
  • the metamaterial absorber 110 may include, but is not limited to, graphene, copper, fiberglass, or a combination of materials.
  • the elements 112 may be arranged in patterns (e.g., repeating or non-repeating patterns). For example, the patterns may be scaled smaller than the EMI emission 106 to be attenuated.
  • the elements 112 may include one or more adjustable fins 114 . Configurations of the elements 112 and the contained one or more fins 114 including, but not limited to, shape, size, orientation, geometry, arrangement, or the like may attenuate at least a part of the EMI emission 106 . The number and/or design of the adjustable fins 114 of the elements 112 may be determined based on the EMI emission 106 , either through modelling, testing, simulations, iterative trial-and-error, or the like
  • the metamaterial absorber 110 may be designed for an EMI emission 106 and/or tunable in response to the EMI emission 106 , such that at least a part of the EMI emission 106 may be absorbed.
  • the tuning of the one or more fins 114 may occur via circuitry installed within the module 102 and/or couplable to the module 102 .
  • the circuitry may include, but is not limited to, filters, modulators, amplifiers, transistors, resonators.
  • the circuitry may be manually tuned or automatically tuned via a controller (e.g., a controller coupled to the exterior component 104 measuring the EMI emissions 106 ) during the tuning process.
  • the circuitry may be statically tuned (e.g., based on a measurement or a model of the EMI emission 106 prior to installation or after installation) or dynamically tuned (e.g., during the measurement of the EMI emission 106 ).
  • the structure 200 may represent the bulk or majority of the weight of the module 102 .
  • the structure 200 may be fabricated from a particular material of a select weight to shield against the EMI emission 106 , including having a thicker top, bottom, and/or sides.
  • the shielding layer 110 such as the metamaterial absorber
  • the structure 200 may be differently designed. For example, the thickness of the top, bottom, and/or sides of the structure 200 may be reduced.
  • the type of material from which the structure 200 may be changed to a lighter material. In this regard, the weight of the module 102 may be reduced.
  • FIG. 4 is a flow diagram illustrating a method 400 for shielding attenuation of module emissions, in accordance with one or more embodiments of the disclosure.
  • a module or a component to be installed within a module may be fabricated.
  • the module 102 may include a structure 200 .
  • the structure 200 may include the main body 300 , the sidewalls 302 , and/or the lid 304 .
  • the component 202 may include a PCB 202 .
  • the module or the component to be installed within the module may be received.
  • a frequency of an EMI emission emitted by the module or the component to be installed within the module may be determined.
  • the EMI emission 106 may be emitted by the module 102 or by the component 202 to be installed within the module 102 .
  • the EMI emission 106 may be measured by a component 104 exterior to the module 102 .
  • the exterior component 104 may include, but is not limited to, a network analyzer.
  • a controller coupled to the network analyzer and/or circuity installed within and/or couplable to the module 102 may determine the frequency of the EMI emission 106 .
  • a shielding layer may be coupled to the module or to the component installed within the module.
  • the shielding layer 110 may include a metamaterial absorber.
  • the shielding layer 110 may be coupled to an exterior surface of the structure 200 of the module 102 .
  • the shielding layer 110 may be coupled to an interior surface of the structure 200 of the module 102 .
  • the shielding layer 110 may be coupled to an exterior surface of the component 202 .
  • steps 406 and 408 may be performed in either order.
  • the shielding layer may be tuned to attenuate the emitted EMI emission.
  • the tuning may be completed via the circuity installed within and/or couplable to the module 102 .
  • the tuning may be manual or automatic via a controller.
  • the tuning may be static or dynamic. It is noted herein the tuning may occur prior to or after the coupling of the shielding layer 110 to the module 102 or to the component 202 installed within the module 102 .
  • the reduced EMI emission 108 may be measured following the coupling to ensure the tuning is correct.
  • the reduced EMI emission 108 may be measured periodically to ensure the tuning is correct.
  • step 402 may be optional.
  • a first party may fabricate the module 102 or the component 202 to be installed within the module 102 per step 402 .
  • a second party may receive the module 102 or the component 202 to be installed within the module 102 , measure the EMI emission 106 , couple the shielding layer 110 , and tune the shielding layer 110 to attenuate the EMI emission 106 per steps 404 , 406 , 408 , and 410 .
  • step 404 may be optional.
  • the same party may fabricate the module 102 or the component 202 to be installed within the module 102 per step 402 , and may measure the EMI emission 106 , couple the shielding layer 110 , and tune the shielding layer 110 to attenuate the EMI emission 106 per steps 406 , 408 , and 410 . Therefore, the above description should not be interpreted as a limitation on the scope of the present disclosure but merely an illustration.
  • FIG. 5 is a flow diagram illustrating a method 500 for shielding attenuation of module emissions, in accordance with one or more embodiments of the disclosure.
  • a module or one or more components to be installed within a module may be fabricated with a shielding layer.
  • the module 102 may include a structure 200 .
  • the structure 200 may include the main body 300 , the sidewalls 302 , and/or the lid 304 .
  • the component 202 may include a PCB 202 .
  • the shielding layer 110 may include a metamaterial absorber.
  • the shielding layer 110 may be coupled to an exterior surface of the structure 200 of the module 102 .
  • the shielding layer 110 may be coupled to an interior surface of the structure 200 of the module 102 .
  • the shielding layer 110 may be coupled to an exterior surface of the component 202 .
  • the module or the component to be installed within the module may be received.
  • a frequency of an EMI emission emitted by the module or the component to be installed within the module may be determined.
  • the EMI emission 106 may be emitted by the module 102 or by the component 202 to be installed within the module 102 .
  • the EMI emission 106 may be measured by a component 104 exterior to the module 102 .
  • the exterior component 104 may include, but is not limited to, a network analyzer.
  • a controller coupled to the network analyzer and/or circuity installed within and/or couplable to the module 102 may determine the frequency of the EMI emission 106 .
  • the shielding layer may be tuned to attenuate the emitted EMI emission.
  • the tuning may be completed via circuity installed within and/or couplable to the module 102 .
  • the tuning may be manual or automatic via a controller.
  • the tuning may be static or dynamic. It is noted herein the tuning may occur prior to or after the coupling of the shielding layer 110 to the module 102 or to the component 202 installed within the module 102 .
  • the reduced EMI emission 108 may be measured following the coupling to ensure the tuning is correct.
  • the reduced EMI emission 108 may be measured periodically to ensure the tuning is correct.
  • step 502 may be optional.
  • a first party may fabricate the module 102 or the component 202 to be installed within the module 102 with the shielding layer 110 per step 502 .
  • a second party may receive the module 102 or the component 202 to be installed within the module 102 , measure the EMI emission 106 , and tune the shielding layer 110 to attenuate the EMI emission 106 per steps 504 , 506 , and 508 .
  • step 504 may be optional.
  • the same party may fabricate the module 102 or the component 202 to be installed within the module 102 with the shielding layer 110 per step 502 , and may measure the EMI emission 106 and tune the shielding layer 110 to attenuate the EMI emission 106 per steps 506 and 508 . Therefore, the above description should not be interpreted as a limitation on the scope of the present disclosure but merely an illustration.
  • the methods or processes 400 and 500 is not limited to the steps and/or sub-steps provided.
  • the methods or processes 400 and 500 may include more or fewer steps and/or sub-steps.
  • the methods or processes 400 and 500 may perform the steps and/or sub-steps simultaneously.
  • the methods or processes 400 and 500 may perform the steps and/or sub-steps sequentially, including in the order provided or an order other than provided. Therefore, the above description should not be interpreted as a limitation on the scope of the disclosure but merely an illustration.
  • including a tunable shielding layer 110 fabricated from a metamaterial absorber may reduce the number of design constraints on the module 102 (e.g., on the structure 200 of the module 102 and/or on the components 202 including, but not limited to, a PCB 202 installed within the module 102 ).
  • the tunable shielding layer 110 fabricated from the metamaterial absorber may be the adjustment mechanism to attenuate emitted EMI signals 106 instead of needing to design the module 102 to be able to address emitted EMI emissions 106 .
  • including the tunable shielding layer 110 fabricated from the metamaterial absorber may allow for retrofitting of modules 102 and/or components 202 including, but not limited to, a PCB 202 installed within the module 102 instead of scrapping the module due to the emitted EMI emissions 106 .
  • including a tunable shielding layer 110 fabricated from a metamaterial absorber may reduce the weight of the structure 200 , as a necessary thickness of structure walls may be reduced and replaced with the attenuating or shielding properties of the tunable shielding layer 110 fabricated from the metamaterial absorber.
  • one or more components of the system 100 may need to be configured in accordance with aviation guidelines and/or standards put forth by, but not limited to, the Federal Aviation Administration (FAA), the European Aviation Safety Agency (EASA) or any other flight certification agency or organization; the American National Standards Institute (ANSI), Aeronautical Radio, Incorporated (ARINC), or any other standards setting organization or company; the Radio Technical Commission for Aeronautics (RTCA) or any other guidelines agency or organization; or the like.
  • FAA Federal Aviation Administration
  • EASA European Aviation Safety Agency
  • ARINC Aeronautical Radio, Incorporated
  • RTCA Radio Technical Commission for Aeronautics

Abstract

A printed circuit board (PCB) module may include a PCB with at least one internal PCB element and at least one external PCB element, a shielding layer fabricated from a tunable metamaterial absorber, and a structure housing the PCB. The at least one internal PCB element may be embedded between adjacent layers of the PCB. The at least one external PCB element may be coupled to an exterior surface of the PCB. The shielding layer may be tuned in response to the at least one measurement of the EMI emission and a determination of a frequency of the EMI emission from the at least one measurement. The tuning of the shielding layer may include adjusting a plurality of fins within a plurality of elements of the metamaterial absorber to absorb at least a portion of the EMI emission.

Description

BACKGROUND
Select avionics equipment may be designed for Electromagnetic Compatibility (EMC) to reduce Electromagnetic Interference (EMI). Testing for EMI may be costly to both a program requiring the select avionics equipment and to a company designing, manufacturing, and/or using the select avionics equipment. Designing for EMC may require costly calculations. Repurposing components with pre-designed EMC characteristics may require significant redesign and costs.
SUMMARY
A printed circuit board (PCB) module configured for shielding attenuation of an electromagnetic interference (EMI) emission is disclosed, in accordance with one or more embodiments of the disclosure. The PCB module may include a PCB with at least one internal PCB element and at least one external PCB element. The at least one internal PCB element may be embedded between adjacent layers of the PCB. The at least one external PCB element may be coupled to an exterior surface of the PCB. The PCB module may include a shielding layer fabricated from a tunable metamaterial absorber. The shielding layer may be tuned in response to at least one measurement of the EMI emission and a determination of a frequency of the EMI emission from the at least one measurement. The tuning of the shielding layer may include adjusting a plurality of fins within a plurality of elements of the metamaterial absorber. The shielding layer may be configured to absorb at least a portion of the EMI emission following the tuning of the shielding layer. The PCB module may include a structure housing the PCB.
In some embodiments, the metamaterial absorber may be coupled to an exterior surface of the structure.
In some embodiments, the metamaterial absorber may be tuned prior to being coupled to the exterior surface of the structure.
In some embodiments, the metamaterial absorber may be tuned after being coupled to the exterior surface of the structure.
In some embodiments, the metamaterial absorber may be coupled to an exterior surface of the structure during fabrication of the structure.
In some embodiments, the metamaterial absorber may be coupled to an interior surface of the structure.
In some embodiments, the metamaterial absorber may be tuned prior to being coupled to the interior surface of the structure.
In some embodiments, the metamaterial absorber may be tuned after being coupled to the interior surface of the structure.
In some embodiments, the metamaterial absorber may be coupled to an interior surface of the structure during fabrication of the structure.
In some embodiments, the metamaterial absorber may be coupled to an exterior surface of the PCB.
In some embodiments, the metamaterial absorber may be tuned prior to being coupled to the exterior surface of the PCB.
In some embodiments, the metamaterial absorber may be tuned after being coupled to the exterior surface of the PCB.
In some embodiments, the metamaterial absorber may be coupled to an exterior surface of the PCB during fabrication of the PCB.
A method is disclosed, in accordance with one or more embodiments of the disclosure. The method may include, but is not limited to, determining a frequency of an electromagnetic interference (EMI) emission emitted by a printed circuit board (PCB) module. The method may include, but is not limited to, tuning a shielding layer of the PCB module to attenuate the emitted EMI emission. The shielding layer may be fabricated from a tunable metamaterial absorber. The shielding layer may be tuned in response to at least one measurement of the EMI emission and a determination of a frequency of the EMI emission from the at least one measurement. The tuning of the shielding layer may include adjusting a plurality of fins within a plurality of elements of the metamaterial absorber. The tuned shielding layer may be configured to absorb at least a portion of the EMI emission following the tuning of the shielding layer.
In some embodiments, the method may further include, but is not limited to, coupling the shielding layer to the PCB module during fabrication of the PCB module.
This Summary is provided solely as an introduction to subject matter that is fully described in the Detailed Description and Drawings. The Summary should not be considered to describe essential features nor be used to determine the scope of the Claims. Moreover, it is to be understood that both the foregoing Summary and the following Detailed Description are examples and explanatory only and are not necessarily restrictive of the subject matter claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
The detailed description is described with reference to the accompanying figures. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items. Various embodiments or examples (“examples”) of the present disclosure are disclosed in the following detailed description and the accompanying drawings. The drawings are not necessarily to scale. In general, operations of disclosed processes may be performed in an arbitrary order, unless otherwise provided in the claims. In the drawings:
FIG. 1A is a simplified block diagram of a system for testing electromagnetic interference (EMI) emissions of a module, in accordance with one or more embodiments of the disclosure;
FIG. 1B is a simplified block diagram of a system for testing electromagnetic interference (EMI) emissions of a module including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
FIG. 1C is a simplified block diagram of a system for testing electromagnetic interference (EMI) emissions of a module including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
FIG. 2A is a simplified block diagram a system for testing electromagnetic interference (EMI) emissions of a circuit card, in accordance with one or more embodiments of the disclosure;
FIG. 2B is a simplified block diagram of a system for testing electromagnetic interference (EMI) emissions of a circuit card including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
FIG. 2C is a simplified block diagram of a system for testing electromagnetic interference (EMI) emissions of a circuit card including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
FIG. 3A is an exploded perspective view of a module including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
FIG. 3B is an exploded perspective view of a module including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
FIG. 3C is an exploded perspective view of a circuit card including a metamaterial absorber for shielding attenuation of EMI emissions, in accordance with one or more embodiments of the disclosure;
FIG. 3D is a simplified block diagram of a printed circuit board (PCB), in accordance with one or more embodiments of the disclosure;
FIG. 4 is a flow diagram illustrating a method for shielding attenuation of EMI emissions; and
FIG. 5 is a flow diagram illustrating a method for shielding attenuation of EMI emissions.
DETAILED DESCRIPTION OF THE INVENTION
Reference will now be made in detail to the subject matter disclosed, which is illustrated in the accompanying drawings.
Before explaining one or more embodiments of the disclosure in detail, it is to be understood the embodiments are not limited in their application to the details of construction and the arrangement of the components or steps or methodologies set forth in the following description or illustrated in the drawings. In the following detailed description of embodiments, numerous specific details may be set forth in order to provide a more thorough understanding of the disclosure. However, it will be apparent to one of ordinary skill in the art having the benefit of the instant disclosure the embodiments disclosed herein may be practiced without some of these specific details. In other instances, well-known features may not be described in detail to avoid unnecessarily complicating the instant disclosure.
As used herein a letter following a reference numeral is intended to reference an embodiment of the feature or element that may be similar, but not necessarily identical, to a previously described element or feature bearing the same reference numeral (e.g., 1, 1 a, 1 b). Such shorthand notations are used for purposes of convenience only and should not be construed to limit the disclosure in any way unless expressly stated to the contrary.
Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by anyone of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
In addition, use of “a” or “an” may be employed to describe elements and components of embodiments disclosed herein. This is done merely for convenience and “a” and “an” are intended to include “one” or “at least one,” and the singular also includes the plural unless it is obvious that it is meant otherwise.
Finally, as used herein any reference to “one embodiment” or “some embodiments” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment disclosed herein. The appearances of the phrase “in some embodiments” in various places in the specification are not necessarily all referring to the same embodiment, and embodiments may include one or more of the features expressly described or inherently present herein, or any combination of sub-combination of two or more such features, along with any other features which may not necessarily be expressly described or inherently present in the instant disclosure.
FIGS. 1A-5 generally illustrate a system and method for shielding attenuation of electromagnetic interference (EMI) emissions, in accordance with one or more embodiments of the disclosure.
Select avionics equipment may be designed for Electromagnetic Compatibility (EMC) to reduce Electromagnetic Interference (EMI). The EMI may emanate from the select avionics equipment. For example, EMI emissions may cause issues with outside components. By way of another example, EMI emissions may cause weaknesses in security protocols by allowing access to a device such as operating information.
Testing for EMI may be costly to both a program requiring the select avionics equipment and to a company designing, manufacturing, and/or using the select avionics equipment. For example, EMI tests may be difficult and costly for companies to pinpoint signal propagation from these devices. By way of another example, avionics labs may be setup to run EMI testing on a specific module such that only when testing has finished with the first module can testing begin on another, resulting in significant costs and delays when EMI testing needs to be done more than one time for a circuit board module.
Designing for EMC may require costly calculations on circuit board modules. Due to the unpredictability during the design process, initial EMC designs may have a high probability of failure, increasing costs and design time. Repurposing and retrofitting components (e.g., circuit boards or modules) with pre-designed EMC characteristics may require significant redesign and costs. In some cases where the components are being repurposed, inflexibility in the design (e.g., as necessary to main EMI characteristics) may mean the designs are not modifiable.
As such, it would be beneficial to have a system and method for shielding attenuation of module emissions. The system should be able to be included in a new design. The system should also be able to be incorporated into an existing design to allow for repurposing and/or retrofitting components for the purpose of shielding attenuation.
FIGS. 1A-2C generally illustrate a system 100 for testing for electromagnetic interference (EMI) emissions, in accordance with one or more embodiments of the disclosure. FIGS. 3A-3D generally illustrate example embodiments of a subsystem of one or more subsystems 102 within the system 100, in accordance with one or more embodiments of the disclosure.
The system 100 may include any stationary system. For example, the stationary system may include, but is not limited to, a structure or a sub-system configured to be attached to a structure. For instance, the structure may include, but is not limited to, a residential, commercial or industrial, or military establishment such as a home, a business, storage building, military building, or the like; a remote range device; or the like.
The system 100 may include any non-stationary system. For example, the non-stationary system may include, but is not limited to, a vehicle or a component configured to be attached to a vehicle. For instance, the vehicle may be any air, space, land, or water-based personal equipment or vehicle; any air, space, land, or water-based commercial or industrial equipment or vehicle; any air, space, land, or water-based military equipment or vehicle; or the like.
The one or more subsystems 102 may include, but are not limited to, one or more areas (e.g., pods, rooms, cabins, engine bays, defined cavities, or the like) within the system 100. By way of another example, the one or more subsystems 102 may include, but are not limited to, a module 102, one or more modules, one or more connectors of the one or more modules, one or more cables coupled to the one or more connectors of the one or more modules, or the like.
The system 100 may include one or more exterior subsystems 104 configured to receive an emitted electromagnetic interference (EMI) emission 106 from the one or more subsystems 102. For example, in a testing environment, the one or more exterior subsystems 104 may include, but are not limited to, a network analyzer. By way of another example, in an operating environment, the one or more exterior subsystems 104 may include, but are not limited to, exterior components 104 or devices capable of being disrupted or otherwise affected by the EMI emission 106. It is noted herein the receiving of the EMI emission 106 from the one or more subsystems 102 by the one or more exterior subsystems 104 may be intentional or unintentional with respect to the testing and/or operating of the one or more exterior subsystems 104.
A module 102 may be designed or retrofitted for electromagnetic compatibility (EMC) to dampen the EMI emission 106 to a reduced EMI emission 108. For example, the reduced EMI emission 108 may be of a significant magnitude of difference in terms of signal strength as compared to the EMI emission 106. Attenuating the EMI emission 106 may include reflecting or absorbing at least a portion of the EMI emission 106 back into the module 102. For example, the reflecting or absorbing of the EMI emission 106 back at a source of the EMI emission 106 may cause anti-resonance and ultimately negate the EMI emission 106.
Designing or retrofitting the module 102 for EMC may include adding one or more shielding layers 110 to a structure 200 of the module 102. The shielding layer 110 may reflect or absorb electromagnetic interference (EMI), acting as an EMI shield. For example, the EMI emission 106 emitted from inside the module 102 may be reflected or absorbed by the shielding layer 110, attenuating the EMI emission 106 such that only the reduced EMI emission 108 is emitted by the module 102. The shielding layer 110 may be configured to attenuate EMI emission 106 signal frequencies by absorbing the EMI emission 106 or reflecting the EMI emission 106 back at to the source (e.g., the one or more components 202), causing anti-resonance and ultimately negation of the EMI emission 106.
The structure 200 may include a chassis, a housing, a shell, or other structure capable of encasing or encompassing at least a portion of the one or more subsystems 102 and/or at least some components of one or more components 202. The structure 200 may be fabricated with one or more portions. For example, as illustrated in FIGS. 3A-3C, the structure 200 may include a main body 300, sidewalls 302, and a lid 304. For instance, the sidewalls 302 may be integrated with the main body 300 during fabrication. In addition, the sidewalls 302 may be coupled to the main body 300 during fabrication. By way of another example, the structure 200 may be fabricated as a single integrated unit including the main body 300, the sidewalls 302, and the lid 304. It is noted herein the main body 300, the one or more sidewalls 302 and/or the lid 304 may be coupled via an adhesive, fasteners, soldering, or other coupling mechanism.
The shielding layer 110 may line an exterior of the structure 200 or an interior of the structure 200.
For example, as illustrated in FIGS. 1B, 2B, and 3A, the shielding layer 110 may be exterior to the module 102, such that the shielding layer 110 at least partially encases or encompasses the module 102. For instance, the shielding layer 110 may be coupled to an exterior surface of the main body 300, the sidewalls 302, and/or the lid 304 of the structure 200.
By way of another example, as illustrated in FIGS. 1C, 2C, and 3C, the shielding layer 110 may be within of the module 102, such that the module 102 at least partially encases or encompasses the shielding layer 110. For instance, the shielding layer 110 may be coupled to an interior surface of the main body 300, the sidewalls 302, and/or the lid 304 of the structure 200. In general, the shielding layer 110 may be, but is not limited to, a panel, placard, sticker, or other element configured to couple to a surface of the structure 200 and attenuate the EMI emission 106. The shielding layer 110 may be coupled via an adhesive, fasteners, soldering, or other coupling mechanism. In this regard, a designed and fabricated structure 200 of the module 102 may be retrofitted with the shielding layer 110 by a manufacturer and/or by a customer post-manufacturing.
Although embodiments of the disclosure describe the shielding layer 110 being coupled to a surface of the structure 200 of the module 102, it is noted herein the structure 200 of the module 102 may be fabricated at least in part from the shielding layer 110. In addition, it is noted herein the shielding layer 110 may be at least partially embedded within the structure 200 of the module 102. In this regard, a module 102 may be designed with the shielding layer 110 by a manufacturer and/or by a customer pre-manufacturing.
The system 100 may include one or more components 202 configured to emit the EMI emission 106. For example, the one or more components 202 may include, but are not limited to, one or more circuit cards 202 or printed circuit boards 202 (PCB 202) installed within the structure 200 of the one or more modules 102, one or more connectors of the one or more circuit cards 202 installed within the structure 200 of the one or more modules 102, one or more cables coupled to the one or more connectors of the one or more circuit cards 202 installed within the structure 200 of the one or more modules 102, or the like. It is noted herein the combination of the module 102 and the circuit card 202 or PCB 202 may be considered a module assembly, circuit card assembly, or PCB assembly, for purposes of the present disclosure.
As illustrated in FIGS. 3A-3D, a PCB 202 may include one or more PCB layers 306. In one example, where there are multiple PCB layers 306, the PCB layers 306 may be separated by a PCB dielectric layer 308. The PCB 202 may include one or more internal or embedded structures (i.e., internal PCB element 310). For example, one or more PCB vias 310 may be embedded within (e.g., pass through) the PCB dielectric layer 308, and may electrically couple the PCB layers 306 on either side of the PCB dielectric layer 308. For instance, the PCB layers 306 adjacent to the PCB dielectric layer 308 may be electrically coupled. In addition, a PCB via 310 may be embedded within (e.g., pass through) at least one of the PCB layers 306 adjacent to the PCB dielectric layer 308, such that non-adjacent PCB layers 306 may be electrically coupled.
The PCB 202 may include one or more external structures 312. For example, the one or more external structures 312 (i.e., internal PCB element 310) may include, but are not limited to, one or more external PCB passive devices 312 (e.g., resistors, or the like) or external active devices 312 (e.g., amplifiers, or the like). For example, the one or more PCB passive or active devices 312 may be coupled (e.g., physically and/or electrically) to a surface of the one or more PCB layers 306. For instance, the one or more external PCB passive or active devices 312 may be coupled to a power or ground plate or layer 314 on an exterior surface of a PCB layer 306. By way of another example, one or more PCB passive or active devices may be embedded within the PCB 202 (e.g., embedded within a PCB dielectric layer 308 or between a PCB layer 306 and the PCB dielectric layer 308).
A PCB 202 may be designed or retrofitted for electromagnetic compatibility (EMC) to dampen the EMI emission 106 emitted from internal PCB layers and/or internal vias and/or external PCB passive or active devices 312 embedded within the PCB 202 to a reduced EMI emission 108. For example, the reduced EMI emission 108 may be of a significant magnitude of difference in terms of signal strength as compared to the EMI emission 106. Attenuating the EMI emission 106 may include reflecting or absorbing at least a portion of the EMI emission 106 back into the PCB 202. For example, the reflecting or absorbing of the EMI emission 106 back at a source of the EMI emission 106 may cause anti- resonance and ultimately negation of the EMI emission 106.
Designing or retrofitting the PCB 202 for EMC may include adding one or more shielding layers 110 to the PCB 202. As illustrated in FIG. 2B, 2C, and 3C, the shielding layer 110 may be placed on an exterior of the PCB 202, such that the shielding layer 110 at least partially encases or encompasses the PCB 202. For example, the shielding layer 110 may be coupled to an exterior surface of the PCB 202 (e.g., on a surface of an exterior PCB layer of the PCB 202, or the like). In general, the shielding layer 110 may be, but is not limited to, a panel, placard, sticker, or other element configured to couple to a surface of the PCB 202 and attenuate the EMI emission 106. For example, the shielding layer 110 may be coupled via an adhesive, fasteners, soldering, or other coupling mechanism. In this regard, a designed and fabricated PCB 202 may be retrofitted with the shielding layer 110 by a manufacturer and/or by a customer post-manufacturing.
Although embodiments of the disclosure describe the shielding layer 110 being coupled to a surface of the PCB 202, it is noted herein the PCB 202 may be fabricated at least in part with the shielding layer 110. For example, the shielding layer 110 may replace a PCB layer of the PCB 202. By way of another example, the shielding layer 110 may be a PCB layer (e.g., a reference or ground layer 314) repurposed to attenuate the EMI emission 106 or given an additional purpose of attenuating the EMI emission 106 (e.g., in addition to operating as the reference or ground layer 314). In addition, it is noted herein the shielding layer 110 may be at least partially embedded within the PCB 202. For example, the shielding layer 110 may be positioned between PCB layers. In this regard, a PCB 202 may be designed with the shielding layer 110 by a manufacturer and/or by a customer pre-manufacturing.
Although embodiments of the disclosure illustrate the shielding layer 110 being simultaneously coupled to (or integrated with) the main body 300, the sidewalls 302, and/or the lid 304 of the structure 200 for purposes of attenuating the EMI emissions 106, it is noted herein the shielding layer 110 may be coupled to (or integrated with) only the main body 300, the sidewalls 302, or the lid 304 of the structure 200. For example, the shielding layer 110 may not be needed for the main body 300 and/or the sidewalls 302 where the shielding layer 110 is coupled to (or integrated with) the lid 304 and the EMI emission 106 is directed through the lid 304. Therefore, the above description should not be interpreted as a limitation on the scope of the present disclosure but merely an illustration.
Although embodiments of the disclosure illustrate the shielding layer 110 being simultaneously coupled to (or integrated with) the structure 200 and the PCB 202 for purposes of attenuating the EMI emissions 106, it is noted herein the shielding layer 110 may be coupled to (or integrated with) only the structure 200 or the PCB 202. For example, the shielding layer 110 may not be needed for the structure 200 where the shielding layer 110 is coupled to (or integrated with) the PCB 202. Therefore, the above description should not be interpreted as a limitation on the scope of the present disclosure but merely an illustration.
In one example embodiment as illustrated in FIGS. 1B, 1C, 2B, 2C, and 3A-3D, the shielding layer 110 may be a metamaterial absorber 110. The metamaterial absorber 110 may absorb at least a part of the EMI emission 106, acting as an EMI shield. For example, the EMI emission 106 emitted from inside the module 102 may be absorbed in part by the metamaterial absorber 110, attenuating the EMI emission 106 such that only the reduced EMI emission 108 is emitted. By way of another example, the metamaterial absorber 110 may be configured to cause anti-resonance and ultimately negation of the EMI emission 106.
The metamaterial absorber 110 may include any material known in the art to absorb at least part of the EMI emission 106 to reduce the EMI emission 106. The metamaterial absorber 110 may include assemblies of multiple elements 112 fabricated from composite materials including, but not limited to, metals or plastics. For example, the metamaterial absorber 110 may include, but is not limited to, graphene, copper, fiberglass, or a combination of materials. The elements 112 may be arranged in patterns (e.g., repeating or non-repeating patterns). For example, the patterns may be scaled smaller than the EMI emission 106 to be attenuated.
The elements 112 may include one or more adjustable fins 114. Configurations of the elements 112 and the contained one or more fins 114 including, but not limited to, shape, size, orientation, geometry, arrangement, or the like may attenuate at least a part of the EMI emission 106. The number and/or design of the adjustable fins 114 of the elements 112 may be determined based on the EMI emission 106, either through modelling, testing, simulations, iterative trial-and-error, or the like
The metamaterial absorber 110 may be designed for an EMI emission 106 and/or tunable in response to the EMI emission 106, such that at least a part of the EMI emission 106 may be absorbed. The tuning of the one or more fins 114 may occur via circuitry installed within the module 102 and/or couplable to the module 102. For example, the circuitry may include, but is not limited to, filters, modulators, amplifiers, transistors, resonators. The circuitry may be manually tuned or automatically tuned via a controller (e.g., a controller coupled to the exterior component 104 measuring the EMI emissions 106) during the tuning process. The circuitry may be statically tuned (e.g., based on a measurement or a model of the EMI emission 106 prior to installation or after installation) or dynamically tuned (e.g., during the measurement of the EMI emission 106).
It is noted herein the structure 200 may represent the bulk or majority of the weight of the module 102. In addition, it is noted herein the structure 200 may be fabricated from a particular material of a select weight to shield against the EMI emission 106, including having a thicker top, bottom, and/or sides. Where the shielding layer 110 such as the metamaterial absorber is used, the structure 200 may be differently designed. For example, the thickness of the top, bottom, and/or sides of the structure 200 may be reduced. By way of another example, the type of material from which the structure 200 may be changed to a lighter material. In this regard, the weight of the module 102 may be reduced.
FIG. 4 is a flow diagram illustrating a method 400 for shielding attenuation of module emissions, in accordance with one or more embodiments of the disclosure.
In a step 402, a module or a component to be installed within a module may be fabricated. The module 102 may include a structure 200. For example, the structure 200 may include the main body 300, the sidewalls 302, and/or the lid 304. The component 202 may include a PCB 202. In a step 404, the module or the component to be installed within the module may be received.
In a step 406, a frequency of an EMI emission emitted by the module or the component to be installed within the module may be determined. The EMI emission 106 may be emitted by the module 102 or by the component 202 to be installed within the module 102. The EMI emission 106 may be measured by a component 104 exterior to the module 102. For example, the exterior component 104 may include, but is not limited to, a network analyzer. A controller coupled to the network analyzer and/or circuity installed within and/or couplable to the module 102 may determine the frequency of the EMI emission 106.
In a step 408, a shielding layer may be coupled to the module or to the component installed within the module. The shielding layer 110 may include a metamaterial absorber. The shielding layer 110 may be coupled to an exterior surface of the structure 200 of the module 102. The shielding layer 110 may be coupled to an interior surface of the structure 200 of the module 102. The shielding layer 110 may be coupled to an exterior surface of the component 202.
It is noted herein the order of steps 406 and 408 may be performed in either order.
In a step 410, the shielding layer may be tuned to attenuate the emitted EMI emission. The tuning may be completed via the circuity installed within and/or couplable to the module 102. The tuning may be manual or automatic via a controller. The tuning may be static or dynamic. It is noted herein the tuning may occur prior to or after the coupling of the shielding layer 110 to the module 102 or to the component 202 installed within the module 102. For example, where the tuning occurs prior to the coupling of the shielding layer 110 to the module 102 or to the component 202 installed within the module 102, the reduced EMI emission 108 may be measured following the coupling to ensure the tuning is correct. By way of another example, where the tuning occurs after the coupling of the shielding layer 110 to the module 102 or to the component 202 installed within the module 102, the reduced EMI emission 108 may be measured periodically to ensure the tuning is correct.
It is noted herein step 402 may be optional. For example, a first party may fabricate the module 102 or the component 202 to be installed within the module 102 per step 402. By way of another example, a second party may receive the module 102 or the component 202 to be installed within the module 102, measure the EMI emission 106, couple the shielding layer 110, and tune the shielding layer 110 to attenuate the EMI emission 106 per steps 404, 406, 408, and 410. In addition, it is noted herein step 404 may be optional. For example, the same party may fabricate the module 102 or the component 202 to be installed within the module 102 per step 402, and may measure the EMI emission 106, couple the shielding layer 110, and tune the shielding layer 110 to attenuate the EMI emission 106 per steps 406, 408, and 410. Therefore, the above description should not be interpreted as a limitation on the scope of the present disclosure but merely an illustration.
FIG. 5 is a flow diagram illustrating a method 500 for shielding attenuation of module emissions, in accordance with one or more embodiments of the disclosure.
In a step 502, a module or one or more components to be installed within a module may be fabricated with a shielding layer. The module 102 may include a structure 200. For example, the structure 200 may include the main body 300, the sidewalls 302, and/or the lid 304. The component 202 may include a PCB 202. The shielding layer 110 may include a metamaterial absorber. The shielding layer 110 may be coupled to an exterior surface of the structure 200 of the module 102. The shielding layer 110 may be coupled to an interior surface of the structure 200 of the module 102. The shielding layer 110 may be coupled to an exterior surface of the component 202. In a step 504, the module or the component to be installed within the module may be received.
In a step 506, a frequency of an EMI emission emitted by the module or the component to be installed within the module may be determined. The EMI emission 106 may be emitted by the module 102 or by the component 202 to be installed within the module 102. The EMI emission 106 may be measured by a component 104 exterior to the module 102. For example, the exterior component 104 may include, but is not limited to, a network analyzer. A controller coupled to the network analyzer and/or circuity installed within and/or couplable to the module 102 may determine the frequency of the EMI emission 106.
In a step 508, the shielding layer may be tuned to attenuate the emitted EMI emission. The tuning may be completed via circuity installed within and/or couplable to the module 102. The tuning may be manual or automatic via a controller. The tuning may be static or dynamic. It is noted herein the tuning may occur prior to or after the coupling of the shielding layer 110 to the module 102 or to the component 202 installed within the module 102. For example, where the tuning occurs prior to the coupling of the shielding layer 110 to the module 102 or to the component 202 installed within the module 102, the reduced EMI emission 108 may be measured following the coupling to ensure the tuning is correct. By way of another example, where the tuning occurs after the coupling of the shielding layer 110 to the module 102 or to the component 202 installed within the module 102, the reduced EMI emission 108 may be measured periodically to ensure the tuning is correct.
It is noted herein step 502 may be optional. For example, a first party may fabricate the module 102 or the component 202 to be installed within the module 102 with the shielding layer 110 per step 502. By way of another example, a second party may receive the module 102 or the component 202 to be installed within the module 102, measure the EMI emission 106, and tune the shielding layer 110 to attenuate the EMI emission 106 per steps 504, 506, and 508. In addition, it is noted herein step 504 may be optional. For example, the same party may fabricate the module 102 or the component 202 to be installed within the module 102 with the shielding layer 110 per step 502, and may measure the EMI emission 106 and tune the shielding layer 110 to attenuate the EMI emission 106 per steps 506 and 508. Therefore, the above description should not be interpreted as a limitation on the scope of the present disclosure but merely an illustration.
It is noted herein the methods or processes 400 and 500 is not limited to the steps and/or sub-steps provided. The methods or processes 400 and 500 may include more or fewer steps and/or sub-steps. In addition, the methods or processes 400 and 500 may perform the steps and/or sub-steps simultaneously. Further, the methods or processes 400 and 500 may perform the steps and/or sub-steps sequentially, including in the order provided or an order other than provided. Therefore, the above description should not be interpreted as a limitation on the scope of the disclosure but merely an illustration.
In this regard, including a tunable shielding layer 110 fabricated from a metamaterial absorber may reduce the number of design constraints on the module 102 (e.g., on the structure 200 of the module 102 and/or on the components 202 including, but not limited to, a PCB 202 installed within the module 102). For example, the tunable shielding layer 110 fabricated from the metamaterial absorber may be the adjustment mechanism to attenuate emitted EMI signals 106 instead of needing to design the module 102 to be able to address emitted EMI emissions 106. In addition, including the tunable shielding layer 110 fabricated from the metamaterial absorber may allow for retrofitting of modules 102 and/or components 202 including, but not limited to, a PCB 202 installed within the module 102 instead of scrapping the module due to the emitted EMI emissions 106. Further, including a tunable shielding layer 110 fabricated from a metamaterial absorber may reduce the weight of the structure 200, as a necessary thickness of structure walls may be reduced and replaced with the attenuating or shielding properties of the tunable shielding layer 110 fabricated from the metamaterial absorber.
It is noted herein that one or more components of the system 100 may need to be configured in accordance with aviation guidelines and/or standards put forth by, but not limited to, the Federal Aviation Administration (FAA), the European Aviation Safety Agency (EASA) or any other flight certification agency or organization; the American National Standards Institute (ANSI), Aeronautical Radio, Incorporated (ARINC), or any other standards setting organization or company; the Radio Technical Commission for Aeronautics (RTCA) or any other guidelines agency or organization; or the like.
Although the disclosure been described with reference to the embodiments illustrated in the attached drawing figures, equivalents may be employed and substitutions made herein without departing from the scope of the claims. Components illustrated and described herein are merely examples of a system/device and components that may be used to implement embodiments of the disclosure and may be replaced with other devices and components without departing from the scope of the claims. Furthermore, any dimensions, degrees, and/or numerical ranges provided herein are to be understood as non-limiting examples unless otherwise specified in the claims.

Claims (15)

What is claimed:
1. A printed circuit board (PCB) module configured for shielding attenuation of an electromagnetic interference (EMI) emission, comprising:
a PCB including at least one internal PCB element and at least one external PCB element, the at least one internal PCB element being embedded between adjacent layers of the PCB, the at least one external PCB element being coupled to an exterior surface of the PCB;
a shielding layer fabricated from a tunable metamaterial absorber, the shielding layer being tuned in response to at least one measurement of the EMI emission and a determination of a frequency of the EMI emission from the at least one measurement, the tuning of the shielding layer including adjusting a plurality of fins within a plurality of elements of the metamaterial absorber, the tuned shielding layer being configured to absorb at least a portion of the EMI emission following the tuning of the shielding layer; and
a structure housing the PCB.
2. The PCB module of claim 1, the metamaterial absorber being coupled to an exterior surface of the structure.
3. The PCB module of claim 2, the metamaterial absorber being tuned prior to being coupled to the exterior surface of the structure.
4. The PCB module of claim 2, the metamaterial absorber being tuned after being coupled to the exterior surface of the structure.
5. The PCB module of claim 2, the metamaterial absorber being coupled to the exterior surface of the structure during fabrication of the structure.
6. The PCB module of claim 1, the metamaterial absorber being coupled to an interior surface of the structure.
7. The PCB module of claim 6, the metamaterial absorber being tuned prior to being coupled to the interior surface of the structure.
8. The PCB module of claim 6, the metamaterial absorber being tuned after being coupled to the interior surface of the structure.
9. The PCB module of claim 6, the metamaterial absorber being coupled to the interior surface of the structure during fabrication of the structure.
10. The PCB module of claim 1, the metamaterial absorber being coupled to the exterior surface of the PCB.
11. The PCB module of claim 10, the metamaterial absorber being tuned prior to being coupled to the exterior surface of the PCB.
12. The PCB module of claim 10, the metamaterial absorber being tuned after being coupled to the exterior surface of the PCB.
13. The PCB module of claim 10, the metamaterial absorber being coupled to the exterior surface of the PCB during fabrication of the PCB.
14. A method, comprising:
determining a frequency of an electromagnetic interference (EMI) emission emitted by a printed circuit board (PCB) module; and
tuning a shielding layer of the PCB module to attenuate the emitted EMI emission, the shielding layer being fabricated from a tunable metamaterial absorber, the shielding layer being tuned in response to at least one measurement of the EMI emission and a determination of a frequency of the EMI emission from the at least one measurement, the tuning of the shielding layer including adjusting a plurality of fins within a plurality of elements of the metamaterial absorber, the tuned shielding layer being configured to absorb at least a portion of the EMI emission following the tuning of the shielding layer.
15. The method of claim 14, further comprising:
coupling the shielding layer to the PCB module during fabrication of the PCB module.
US17/031,505 2020-09-24 2020-09-24 System and method for shielding attenuation of electromagnetic interference emissions Active 2041-06-26 US11575211B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/031,505 US11575211B2 (en) 2020-09-24 2020-09-24 System and method for shielding attenuation of electromagnetic interference emissions
EP21198977.7A EP3975679A1 (en) 2020-09-24 2021-09-24 System and method for shielding attenuation of electromagnetic interference emissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/031,505 US11575211B2 (en) 2020-09-24 2020-09-24 System and method for shielding attenuation of electromagnetic interference emissions

Publications (2)

Publication Number Publication Date
US20220338343A1 US20220338343A1 (en) 2022-10-20
US11575211B2 true US11575211B2 (en) 2023-02-07

Family

ID=78008107

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/031,505 Active 2041-06-26 US11575211B2 (en) 2020-09-24 2020-09-24 System and method for shielding attenuation of electromagnetic interference emissions

Country Status (2)

Country Link
US (1) US11575211B2 (en)
EP (1) EP3975679A1 (en)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864984A (en) 1994-08-19 1996-03-08 Hitachi Ltd Low emi structure
US5570270A (en) 1994-06-03 1996-10-29 Pulse Electronics, Inc. Chassis and personal computer for severe environment embedded applications
US5639989A (en) 1994-04-19 1997-06-17 Motorola Inc. Shielded electronic component assembly and method for making the same
US6608758B1 (en) 2000-09-07 2003-08-19 International Business Machines Corporation Chassis shielding system
US6756932B1 (en) * 2003-06-10 2004-06-29 Raytheon Company Microwave absorbing material
KR100735759B1 (en) 2006-08-04 2007-07-06 삼성전자주식회사 Multi layered printed circuit board
US7245507B2 (en) 1999-07-15 2007-07-17 Dibene Ii Joseph T Method and apparatus for providing power to a microprocessor with integrated thermal and EMI management
US7511970B2 (en) 2004-12-27 2009-03-31 Cisco Technology, Inc. Method and apparatus for shielding a circuit board of a circuit board chassis
US8569631B2 (en) 2011-05-05 2013-10-29 Tangitek, Llc Noise dampening energy efficient circuit board and method for constructing and using same
US20140008119A1 (en) * 2010-09-29 2014-01-09 Brandt Innovative Technologies, Inc. Apparatuses, systems, and methods for electromagnetic protection
US9245854B2 (en) 2013-01-29 2016-01-26 Globalfoundries Inc. Organic module EMI shielding structures and methods
US20170290209A1 (en) 2016-04-04 2017-10-05 Commscope Technologies Llc Systems and methods for thermal management for high power density emi shielded electronic devices
US9832915B2 (en) 2016-02-05 2017-11-28 Laird Technologies, Inc. Pressure locking board level shield assemblies
US9924619B2 (en) 2011-10-26 2018-03-20 Korea Institute Of Science And Technology Passive layer for attenuation of near-field electromagnetic waves and heatdissipation including graphene, and electromagnetic device including the same
US10068832B2 (en) 2017-01-13 2018-09-04 Samsung Electronics Co., Ltd. EMI shielding structure having heat dissipation unit and method for manufacturing the same
US10172265B2 (en) 2015-11-20 2019-01-01 Laird Technologies, Inc. Board level shield including an integrated heat sink
US10212806B2 (en) 2017-01-09 2019-02-19 Laird Technologies, Inc. Absorber assemblies having a dielectric spacer, and corresponding methods of assembly
US10264666B2 (en) 2016-06-20 2019-04-16 Avago Technologies International Sales Pte. Limited Method of providing compartment EMI shields on printed circuit board using a vacuum
US10455738B2 (en) 2016-09-22 2019-10-22 Apple Inc. Stacked circuit board architecture in an electronic device
CN110854546A (en) 2019-11-29 2020-02-28 安阳师范学院 Graphene-adjustable dual-band metamaterial absorber
US10871352B2 (en) * 2015-10-30 2020-12-22 The Regents Of The University Of California Metasurface device for cloaking and related applications
US20210318369A1 (en) * 2018-08-14 2021-10-14 Bluetest Ab An improved measurement device for antenna systems

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639989A (en) 1994-04-19 1997-06-17 Motorola Inc. Shielded electronic component assembly and method for making the same
US5570270A (en) 1994-06-03 1996-10-29 Pulse Electronics, Inc. Chassis and personal computer for severe environment embedded applications
JPH0864984A (en) 1994-08-19 1996-03-08 Hitachi Ltd Low emi structure
US7245507B2 (en) 1999-07-15 2007-07-17 Dibene Ii Joseph T Method and apparatus for providing power to a microprocessor with integrated thermal and EMI management
US6608758B1 (en) 2000-09-07 2003-08-19 International Business Machines Corporation Chassis shielding system
US6756932B1 (en) * 2003-06-10 2004-06-29 Raytheon Company Microwave absorbing material
US7511970B2 (en) 2004-12-27 2009-03-31 Cisco Technology, Inc. Method and apparatus for shielding a circuit board of a circuit board chassis
KR100735759B1 (en) 2006-08-04 2007-07-06 삼성전자주식회사 Multi layered printed circuit board
US20140008119A1 (en) * 2010-09-29 2014-01-09 Brandt Innovative Technologies, Inc. Apparatuses, systems, and methods for electromagnetic protection
US8569631B2 (en) 2011-05-05 2013-10-29 Tangitek, Llc Noise dampening energy efficient circuit board and method for constructing and using same
US9924619B2 (en) 2011-10-26 2018-03-20 Korea Institute Of Science And Technology Passive layer for attenuation of near-field electromagnetic waves and heatdissipation including graphene, and electromagnetic device including the same
US9245854B2 (en) 2013-01-29 2016-01-26 Globalfoundries Inc. Organic module EMI shielding structures and methods
US10871352B2 (en) * 2015-10-30 2020-12-22 The Regents Of The University Of California Metasurface device for cloaking and related applications
US10172265B2 (en) 2015-11-20 2019-01-01 Laird Technologies, Inc. Board level shield including an integrated heat sink
US9832915B2 (en) 2016-02-05 2017-11-28 Laird Technologies, Inc. Pressure locking board level shield assemblies
US20170290209A1 (en) 2016-04-04 2017-10-05 Commscope Technologies Llc Systems and methods for thermal management for high power density emi shielded electronic devices
US10264666B2 (en) 2016-06-20 2019-04-16 Avago Technologies International Sales Pte. Limited Method of providing compartment EMI shields on printed circuit board using a vacuum
US10455738B2 (en) 2016-09-22 2019-10-22 Apple Inc. Stacked circuit board architecture in an electronic device
US10212806B2 (en) 2017-01-09 2019-02-19 Laird Technologies, Inc. Absorber assemblies having a dielectric spacer, and corresponding methods of assembly
US10068832B2 (en) 2017-01-13 2018-09-04 Samsung Electronics Co., Ltd. EMI shielding structure having heat dissipation unit and method for manufacturing the same
US20210318369A1 (en) * 2018-08-14 2021-10-14 Bluetest Ab An improved measurement device for antenna systems
CN110854546A (en) 2019-11-29 2020-02-28 安阳师范学院 Graphene-adjustable dual-band metamaterial absorber

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Extended Search Report in European Application No. 21198977.7 dated Feb. 11, 2022, 13 pages.
Min Zhong et al: "Design and preparation of a single-band tunable metamaterial absorber in terahertz frequency", Physica Scripta, Institute of Physics Publishing, Bristol, GB, vol. 95, No. 5, Feb. 26, 2020 (Feb. 26, 2020), p. 55506, XP020353204, ISSN: 1402-4896, DOI: 10.1088/1402-4896/AB7681 [retrieved on Feb. 26, 2020].
MIN ZHONG; XIAOTING JIANG; XULIANG ZHU; JING ZHANG; JINGLIN ZHONG: "Design and preparation of a single-band tunable metamaterial absorber in terahertz frequency", PHYSICA SCRIPTA, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 95, no. 5, 26 February 2020 (2020-02-26), GB , pages 055506, XP020353204, ISSN: 1402-4896, DOI: 10.1088/1402-4896/ab7681
Song Jianxun et al: "Graphene-based Tunable Terahertz Metamaterial Absorber with High Absorptivity", 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), IEEE, Aug. 13, 2018 (Aug. 13, 2018), pp. 232-236, XP033458339, DOI: 10.1109/3M-NANO.2018.8552222[retrieved on Nov. 28, 2018].
SONG JIANXUN; XU YONGZHAO; LING DONGXIONG; WEI DONGSHAN; YANG CHANG; SHEN YUN: "Graphene-based Tunable Terahertz Metamaterial Absorber with High Absorptivity", 2018 IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), IEEE, 13 August 2018 (2018-08-13), pages 232 - 236, XP033458339, DOI: 10.1109/3M-NANO.2018.8552222

Also Published As

Publication number Publication date
EP3975679A1 (en) 2022-03-30
US20220338343A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
Frolik A case for considering hyper-Rayleigh fading channels
US20010050175A1 (en) Electromagnetic radiation shield for attenuating electromagnetic radiation from an active electronic device
RU2678760C2 (en) Wireless fuel sensor system
US11575211B2 (en) System and method for shielding attenuation of electromagnetic interference emissions
EP2642780B1 (en) Boundary System Designer for Wireless Aircraft Networks
CN213879802U (en) Multichannel short wave receiver
US5821454A (en) Method and apparatus for reducing electromagnetic emissions from openings in the enclosure of an electronic device
CN113126043B (en) Method for improving testability of Doppler radar
Xu A compact angularly‐stable frequency selective surface for GSM 900/1800‐MHz shielding using cascaded 2.5‐dimension structure
Li et al. Airborne operation of portable electronic devices
Lockyer et al. Development of a conformal load-carrying smart skin antenna for military aircraft
Busseti Modal and Fatigue Analysis of the Stratotimer
Kirchner et al. An EMC design approach for integrating COTS equipment into an existing military aircraft
CN117556624A (en) Method for optimizing quality of avionics equipment
Krchňák et al. Anechoic Chambers for Radio Waves
Tang et al. Design Technology of System-Level EMC Engineering
Zhao et al. Research and Application of Electromagnetic Compatibility Technology.
CN2667853Y (en) Electromagnetic wave isolation apparatus
CN113126078B (en) Method for realizing miniaturization of Doppler radar
Nguyen et al. Small aircraft RF interference path loss
Aydin et al. Design for EMC compliance: A rugged voice & data terminal
Omollo Shielding effectiveness investigations using a reverberation chamber
Freeman Method for Derivation and Synthesis of Electromagnetic Environmental Effects Requirement Limits for Achieving System Level Electromagnetic Compatibility
Pignatelli Improving and Expanding the Capabilities of the Polypicosatellite Orbital Deployer
Serksnis et al. EMC

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCKWELL COLLINS, INC., IOWA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOWARD, SEAN D.;BYRD, JULIE M.;STEWART, ERIC;AND OTHERS;SIGNING DATES FROM 20200810 TO 20200923;REEL/FRAME:053877/0222

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE