US11443765B2 - Compact mode converter having first and second straight portions for heat-assisted magnetic recording device - Google Patents

Compact mode converter having first and second straight portions for heat-assisted magnetic recording device Download PDF

Info

Publication number
US11443765B2
US11443765B2 US17/221,945 US202117221945A US11443765B2 US 11443765 B2 US11443765 B2 US 11443765B2 US 202117221945 A US202117221945 A US 202117221945A US 11443765 B2 US11443765 B2 US 11443765B2
Authority
US
United States
Prior art keywords
write head
mode converter
light
mode
input coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/221,945
Other versions
US20210225397A1 (en
Inventor
Reyad Mehfuz
Aidan Dominic Goggin
Pierre Asselin
Christopher Neil Harvey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Priority to US17/221,945 priority Critical patent/US11443765B2/en
Publication of US20210225397A1 publication Critical patent/US20210225397A1/en
Application granted granted Critical
Publication of US11443765B2 publication Critical patent/US11443765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4866Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives the arm comprising an optical waveguide, e.g. for thermally-assisted recording
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6088Optical waveguide in or on flying head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Definitions

  • Embodiments described herein are directed to a write head comprising an input coupler configured to receive light excited by a light source.
  • a waveguide core is configured to receive light from the input coupler at a fundamental transverse electric (TE 00 ) mode.
  • the waveguide core comprises a first straight portion.
  • the waveguide core comprises a mode converter portion comprising a branched portion extending from the first straight portion.
  • the mode converter portion is configured to convert the light to a higher-order (TE 10 ) mode, the mode converter portion spaced apart from the input coupler.
  • the waveguide core comprises a second straight portion between the mode converter portion and a media-facing surface.
  • the write head comprises a near-field transducer at the media-facing surface, the near-field transducer receiving the light at the TE 10 mode from the waveguide and directing surface plasmons to a recording medium in response thereto.
  • Embodiments are directed to an apparatus comprising an input coupler configured to receive light excited by a light source.
  • a waveguide core is configured to receive light from the input coupler at a fundamental transverse electric (TE 00 ) mode.
  • the waveguide core comprises an input portion configured to receive light from the input coupler.
  • the waveguide core comprises a mode converter portion comprising a branched portion extending from the input portion.
  • the mode converter portion is configured to convert the light to a higher-order (TE 10 ) mode.
  • the mode converter portion is spaced apart from the input coupler.
  • the waveguide core comprises an output portion between the mode converter portion and a media-facing surface.
  • the write head comprises a near-field transducer at the media-facing surface, the near-field transducer receiving the light at the TE 10 mode from the waveguide and directing surface plasmons to a recording medium in response thereto.
  • FIG. 1A-1D are a perspective views of hard drive sliders that includes a waveguide in accordance with embodiments described herein;
  • FIG. 2 is a cross-sectional view shows details of a HAMR apparatus in accordance with embodiments described herein;
  • FIG. 3 illustrates a waveguide system having a mode converter in accordance with embodiments described herein;
  • FIG. 4 illustrates a waveguide system having a mode converter in accordance with embodiments described herein;
  • FIG. 5A illustrates a more detailed view of the mode converter portion of the waveguide in accordance with embodiments described herein;
  • FIG. 5B illustrates a field plot at different sections of the mode converting waveguide in accordance with embodiments described herein;
  • FIGS. 5C and 5D illustrate cross sectional views of the waveguide system of FIG. 5A in accordance with embodiments described herein;
  • FIG. 5E illustrates a field plot at a cross section of the mode converting waveguide in accordance with embodiments described herein.
  • FIGS. 6A-6C illustrate various configurations for the mode converter portion of the waveguide in accordance with embodiments described herein.
  • the present disclosure is generally related to an apparatus (e.g., a HAMR write head) having a waveguide that delivers light from an energy source (e.g., laser diode) to a near-field transducer (NFT).
  • the NFT may also be referred to as a plasmonic transducer, plasmonic antenna, near-field antenna, nano-disk, nan-patch, nano-rod, etc.
  • the light generates a surface plasmon field on the NFT, and the surface plasmons are directed out of a surface of the write head onto a magnetic recording medium. This creates a hotspot on the recording medium, lowering its magnetic coercivity and enabling a local magnetic field generated by a write pole to write data to the hotspot.
  • a perspective view shows a HAMR write head 100 according to an example embodiment.
  • the write head 100 includes a laser diode 102 located on input surface 103 of a slider body 101 .
  • the input surface 103 is a top surface, which is located opposite to a media-facing surface 108 that is positioned over a surface of a recording media (not shown) during device operation.
  • the media-facing surface 108 faces and is held proximate to the moving media surface while reading and writing to the media.
  • the media-facing surface 108 may be configured as an air-bearing surface (ABS) that maintains separation from the media surface via a thin layer of air.
  • ABS air-bearing surface
  • the laser diode 102 delivers light to a region proximate a HAMR read/write transducer 106 , which is located near the media-facing surface 108 .
  • the energy is used to heat the recording media as it passes by the read/write transducer 106 .
  • Optical coupling components such as a waveguide system 110 , are formed integrally within the slider body 101 (near a trailing edge surface 104 in this example) and function as an optical path that delivers energy from the laser diode 102 to the recording media via a near-field transducer 112 .
  • the near-field transducer 112 is located near the read/write transducer 106 and causes heating of the media during recording operations.
  • the near-field transducer 112 may be made from plasmonic materials such as gold, silver, copper, etc.
  • the laser diode 102 in this example may be configured as either an edge-emitting laser or surface-emitting laser.
  • the edge-emitting laser also called in-plane laser, emits light along the wafer surface of a semiconductor chip and a surface emitting laser emits light in a direction perpendicular to a semiconductor wafer surface.
  • An edge-emitting laser may be mounted on the top surface 103 of the slider body 101 (e.g., in a pocket or cavity) such that the light is emitted in a direction perpendicular to the media-facing surface (along the negative y-direction in this view).
  • the laser may be configured to have an offset light path.
  • the offset light path may be used when a laser is not centered on the submount, for example.
  • the light path may be offset in a range of about 3 ⁇ m to about 55 ⁇ m or in a range of about 4 ⁇ m to about 49.5 ⁇ m.
  • the light path may include an S-curve as shown in the read/write head 120 of FIG. 1B .
  • the light path may be tilted as shown in the read/write head 130 shown in FIG. 1C .
  • the different shaped light paths may be accomplished by having a tilted waveguide and/or a waveguide having an s-curve.
  • hard drive recording heads may use a different type of laser than what is shown in FIGS. 1A-1C .
  • a read/write head 140 using this alternate approach is shown in FIG. 1D , wherein components are given the same reference numbers as analogous components in FIGS. 1A-1C .
  • At least part of a semiconductor laser 122 or material to form a laser is not self-supporting (e.g., not a separately packaged device) but is physically transferred to a target read/write head substrate that does contain already or will contain, after further processing, the other components of the read/write head (e.g., write coil and poles, reader stack) without the use of a separate or intermediate support during attachment.
  • Carrying the semiconductor laser 122 with the read/write head substrate, without a separate or intermediate support substrate, can help to reduce the size and simplify the shape and connection methods, and it can also allow for the use of laser geometries and designs that are very different from simple edge-emitting cleaved facet lasers that have been proposed in the past.
  • parts of the laser 122 are incompatible with epitaxial growth on the target substrate of a slider, which may be formed of a dielectric such as alumina.
  • the laser 122 cannot be formed using the same layer deposition processes used to form the magnetic and optical components that are integrated into the head.
  • the laser may instead be formed on the substrate by transfer printing a thin, non-self-supporting crystalline layer (epitaxial layer), or a stack of such layers, from a growth substrate on which they were formed to a target substrate. Thereafter, the epitaxial layer and substrate are further processed (e.g., masked etched, further layers added) to form the integrated laser diode unit 122 .
  • This process of transferring non-self-supporting layers of epitaxial-growth-incompatible layers is referred to herein as On-Wafer Laser (OWL) process integration.
  • This process may also be referred to as transfer printing, dry transfer printing, nanoprinting, etc.
  • Embodiments described herein may be implemented in an OWL system.
  • the waveguide system 110 discussed herein and shown in FIGS. 1A-1D may be applicable to any type of light delivery configuration.
  • a laser may be mounted on the trailing edge surface 104 instead of the top surface 103 .
  • a laser may be mounted external to the write head 100 , and coupled to the slider by way of optic fiber and/or waveguide.
  • An input surface of the slider body 101 may include a grating or other coupling feature to receive light from the laser via the optic fiber and/or waveguide.
  • FIG. 2 a cross-sectional view illustrates portions of the slider body 101 near the near-field transducer 112 according to an example embodiment.
  • the near-field transducer 112 is shown proximate to a surface of magnetic recording medium 202 , e.g., a magnetic disk.
  • the waveguide system 110 delivers electromagnetic energy 204 to the near-field transducer 112 , which directs the energy 204 to create a small hot spot 208 on the recording medium 202 .
  • a magnetic write pole 206 causes changes in magnetic flux near the media-facing surface 108 in response to an applied current. Flux from the write pole 206 changes a magnetic orientation of the hot spot 208 as it moves past the write pole 206 in the downtrack direction (z-direction).
  • the waveguide system 110 includes a core layer 210 surrounded by cladding layers 212 , 214 .
  • the core layer 210 and cladding layers 212 , 214 may be made from dielectric materials such as Al 2 O 3 , SiOxNy, SiO 2 , Ta 2 O 5 , TiO 2 , ZnS, Si 3 N 4 , Nb 2 O 5 , AlN, Hf 2 O 3 , Y 2 O 3 , GaP, SiC, Si, AlO x , etc.
  • the dielectric materials are selected so that the refractive index of the core layer 210 is higher than refractive indices of the cladding layers 212 , 214 . This arrangement of materials facilitates efficient propagation of light through the waveguide system 110 .
  • a first end of the core 210 extends along the crosstrack direction (negative x-direction) where it is directly or indirectly coupled to a light/energy source.
  • a laser diode e.g., OWL laser diode
  • OWL laser diode may have an output facet that is coupled face-to-face with an end of the waveguide core 210 .
  • optical components such as lenses, mirrors, collimators, mode converters, etc., may be coupled between the waveguide core 210 and the light/energy source. In either case, the energy 204 coupled into the first end of the waveguide core 210 propagates to a second end 210 a that is proximate the near-field transducer.
  • the waveguide system may include a mode converter 220 .
  • the mode converter may be configured to convert an input mode of light into a different mode or modes of light.
  • the mode converter 220 may be configured to receive a substantially transverse electric (TE) mode from the laser diode and be configured to convert the light into a higher order TM mode and/or a substantially transverse magnetic (TM).
  • the mode converter 220 may be configured to receive fundamental TE mode (TE 00 ) light from the laser mode from the laser and be configured to convert the light into a higher order TE mode, e.g., TE 10 , mode.
  • TE substantially transverse electric
  • TM substantially transverse magnetic
  • the mode converter 220 may be configured to receive fundamental TE mode (TE 00 ) light from the laser mode from the laser and be configured to convert the light into a higher order TE mode, e.g., TE 10 , mode.
  • the waveguide system includes a compact mode converter that is about 85% shorter than conventional mode converters.
  • a compact mode converter allows the mode converter to be placed after the input coupler creating a more modular design. Moving the mode converter out of the input coupler frees up space that can be used to improve the input coupler performance.
  • the compact mode converter may allow for additional optical elements in the light path such as an isolator and/or a mode filter, for example.
  • FIG. 3 illustrates a waveguide system having a mode converter in accordance with embodiments described herein.
  • the waveguide system shown in FIG. 3 may be used in conjunction with a laser on slider configuration such as those shown in FIGS. 1A-1C .
  • Light enters the waveguide 310 at input location 305 in a TE 00 mode and exits the waveguide core in a TE 10 mode at the ABS 315 .
  • the waveguide includes a main branch 322 configured to receive light.
  • a secondary branch 324 of the waveguide 310 combines with the main branch 322 in a mode converter portion 320 of the waveguide 320 .
  • the mode converted light e.g., substantially TE 10
  • the mode converted light exits the waveguide and is coupled to an NFT at the ABS 315 .
  • FIG. 4 illustrates a waveguide system having a mode converter in accordance with embodiments described herein.
  • the waveguide system shown in FIG. 4 may be used in conjunction with an on-wafer laser system as shown in FIG. 1D , for example.
  • Light is input into the waveguide system in a TE 00 mode from a laser.
  • a lens 450 and optical coupler 460 couple the TE 00 mode light from the laser into the waveguide core 410 .
  • Light from a laser is emitted in a crosstrack direction (x-direction) and has a 180 degree turn 435 that redirects the light in the opposite crosstrack direction.
  • a second turn 445 directs the light normal to the media-facing surface of the read/write head where it is directed to a mode converter portion 420 of the waveguide 410 .
  • the second turn 445 is about a 90 degree turn.
  • Light enters the mode converter portion 420 in a main branch 422 .
  • a secondary branch 424 of the waveguide 410 combines with the main branch 422 .
  • the mode converted light e.g., substantially TE 10
  • light exits the waveguide and is coupled to an NFT at the ABS 415 . While the waveguide systems described in FIGS. 3 and 4 are used in conjunction with specific laser configurations, it is to be understood that any of the mode converter waveguide systems described herein may be used in conjunction with any laser configuration.
  • FIG. 5A illustrates a more detailed view of the mode converter portion of the waveguide in accordance with embodiments described herein.
  • the main branch 522 has a width (w 1 ) at the point before combining with the secondary branch 524 .
  • w 1 may be in a range of about 350 nm to about 600 nm or in a range of about 400 nm to about 550 nm.
  • w 1 is about 440 nm.
  • w 1 remains constant until the main branch 522 combines with a secondary branch 524 .
  • w 1 varies along the length of the main branch 522 .
  • the secondary branch 524 has a starting width (w br1 ) and a width (w br2 ) at a point that the secondary branch 524 combines with the main branch 522 .
  • w br1 is in a range of about 600 nm to about 800 nm or in a range of about 630 nm to about 750 nm.
  • w br1 is about 650 nm.
  • the value of w br1 may be the same as w br2 or may be a different value than w br2 in some cases.
  • w br2 is substantially the same as w 1 .
  • w br2 may be in a range of about 350 nm to about 600 nm or in a range of about 400 nm to about 550 nm. According to some implementations, w br2 is about 440 nm. w br2 may have substantially the same value as w 1 in some configurations.
  • the secondary branch 524 may have a taper angle, ⁇ in a range of 0.6 degrees to about 1.2 degrees.
  • a gap 526 may be disposed between the main branch 522 and the secondary branch 524 as illustrated in FIG. 5A .
  • the various dimensions of the gap 526 may be tuned to achieve a desired and/or a maximum amount of mode conversion from TE 00 to TE 10 .
  • the width of the gap 526 is constant for the entire length of the gap 526 .
  • the gap 526 may not have a constant width portion according to various configurations.
  • the width of the gap 526 may taper linearly or nonlinearly.
  • the width of the gap 526 is in a range of about 100 nm to about 200 nm or in a range of about 135 nm to about 170 nm. In some cases the width of the gap 526 is about 150 nm.
  • the length of the gap is represented by L br .
  • L br may be in a range of about 9 ⁇ m to about 15 ⁇ m. In some cases, L br is about 12 ⁇ m.
  • the final width (w 2 ) of the combined main branch 522 and the secondary branch 524 may be equal, greater than, or less than the sum of the widths of the main branch 522 , the secondary branch 524 , and the gap width.
  • One or both of the main branch 522 and the secondary branch 524 may have a taper to accommodate the change in width of the combined waveguide.
  • the waveguide includes a tapered portion 527 that starts at the point where the waveguide branches are combined and continues to taper substantially linearly for a length (L tap ).
  • L tap may be in a range of about 2 ⁇ m to about 8 ⁇ m. In some cases, L tap is about 5 ⁇ m.
  • One or both of the main branch 522 and the secondary branch 524 may include the taper. While FIG. 5A shows a linear decreasing taper, it is to be understood that the taper may be non-linear and/or may increase along the light propagation direction.
  • FIG. 5B is a field plot showing the electric field along the waveguide of FIG. 5A .
  • FIG. 5C illustrates a cross sectional view of the waveguide system of FIG. 5A from the cut-line 580 .
  • the waveguide core 510 is surrounded by cladding layers 560 , 562 , 564 , 566 , 568 .
  • a first top cladding layer 560 has a thickness in the range of 0.3 ⁇ m to about 2 ⁇ m.
  • a second top cladding layer 562 may have a thickness in a range of 0.1 ⁇ m to about 0.5 ⁇ m. In some cases the second top cladding layer 562 has a thickness of about 0.3 ⁇ m.
  • a third top cladding layer may be in direct contact with the waveguide core 510 and may surround three sides of the waveguide core 510 as shown in FIG. 5C .
  • the third top cladding layer 564 has a thickness in the range of 70 nm to about 200 nm.
  • FIG. 5C also shows a first bottom cladding layer 566 that is in contact with the waveguide core 510 .
  • the first bottom cladding layer 566 may have a thickness in a range of about 0.6 ⁇ m to about 1.0 ⁇ m. In some cases, the first bottom cladding layer 566 has a thickness of about 0.8 ⁇ m.
  • a second bottom cladding layer 568 may have a thickness in a range of 0.4 ⁇ m to about 1 ⁇ m.
  • FIG. 5D illustrates a cross sectional view of the waveguide system shown in FIG. 5A from the cut-line 585 .
  • the view shown in FIG. 5D shows the main branch 522 , the secondary branch 524 , and the gap 526 disposed between the main branch 522 and the secondary branch 524 .
  • the third top cladding layer 564 has a thickness, tcl t , between the waveguide core and the second top cladding layer 562 .
  • tcl t may be in a range of about 0.10 ⁇ m to about 0.16 ⁇ m.
  • tcl t is about 0.13 ⁇ m, for example.
  • FIG. 5E is a field plot illustrating the electric field in the cross section of the waveguide system.
  • FIGS. 6A-6C illustrate various configurations for the mode converter portion of the waveguide in accordance with various embodiments described herein.
  • Lengths L 1 , L 2 , L 3 of the mode conversion regions of the waveguide may be in a range of about 12 ⁇ m to about 30 ⁇ m, for example.
  • FIG. 6A shows an embodiment having a mode conversion region length, L 1 of about 24 ⁇ m.
  • w 1 substantially equals w br2 and has a value in a range of about 538 nm to about 562 nm.
  • w 1 and w br2 have a value of about 550 nm.
  • the value of w br1 has a range of about 725 nm to about 775 nm.
  • w br1 is about 750 nm.
  • the gap width may have a value of about 135 nm to about 165 nm. In some cases, the gap width is about 150 nm.
  • the TE 10 purity after the mode converter portion in this example is about 99.6% and the combined TE 00 and TE 10 mode after the mode converter portion is about 0.09%.
  • FIG. 6B shows an embodiment having a mode conversion region length, L 2 of about 17 ⁇ m.
  • w 1 substantially equals w br2 and have a value in a range of about 422 nm to about 458 nm.
  • w 1 and w br2 has a value of about 440 nm.
  • the value of w br1 has a range of about 620 nm to about 680 nm.
  • w br1 is about 650 nm.
  • the gap width may have a value of about 130 nm to about 170 nm. In some cases, the gap width is about 150 nm.
  • the TE 10 purity after the mode converter portion in this example is about 99.84% and the combined TE 00 and TE 10 mode after the mode converter portion is about 0.003%.
  • FIG. 6C shows an embodiment having a mode conversion region length, L 3 of about 15 ⁇ m.
  • w 1 substantially equals w br2 and has a value in a range of about 386 nm to about 414 nm.
  • w 1 and w br2 have a value of about 400 nm.
  • the value of w br1 has a range of about 605 nm to about 655 nm.
  • w br1 is about 630 nm.
  • the gap width may have a value of about 132 nm to about 168 nm. In some cases, the gap width is about 150 nm.
  • the TE 10 purity after the mode converter portion in this example is about 99.61% and the combined TE 00 and TE 10 mode after the mode converter portion is about 0.05%.

Abstract

A write head includes an input coupler configured to receive light excited by a light source. A waveguide core is configured to receive light from the input coupler at a fundamental transverse electric (TE00) mode. The waveguide core has a first straight portion. The waveguide core has a mode converter portion comprising a branched portion extending from the first straight portion. The mode converter portion is configured to convert the light to a higher-order (TE10) mode, the mode converter portion spaced apart from the input coupler. The waveguide core has a second straight portion between the mode converter portion and a media-facing surface. The write head has a near-field transducer at the media-facing surface, the near-field transducer receiving the light at the TE10 mode from the waveguide and directing surface plasmons to a recording medium in response thereto.

Description

RELATED PATENT DOCUMENTS
This application is a continuation of U.S. Ser. No. 16/433,467, filed on Jun. 6, 20219, which is a continuation of U.S. Ser. No. 15/962,229, filed on Apr. 25, 2018, now abandoned, to which priority is claimed and which are incorporated herein by reference in their entireties.
SUMMARY
Embodiments described herein are directed to a write head comprising an input coupler configured to receive light excited by a light source. A waveguide core is configured to receive light from the input coupler at a fundamental transverse electric (TE00) mode. The waveguide core comprises a first straight portion. The waveguide core comprises a mode converter portion comprising a branched portion extending from the first straight portion. The mode converter portion is configured to convert the light to a higher-order (TE10) mode, the mode converter portion spaced apart from the input coupler. The waveguide core comprises a second straight portion between the mode converter portion and a media-facing surface. The write head comprises a near-field transducer at the media-facing surface, the near-field transducer receiving the light at the TE10 mode from the waveguide and directing surface plasmons to a recording medium in response thereto.
Embodiments are directed to an apparatus comprising an input coupler configured to receive light excited by a light source. A waveguide core is configured to receive light from the input coupler at a fundamental transverse electric (TE00) mode. The waveguide core comprises an input portion configured to receive light from the input coupler. The waveguide core comprises a mode converter portion comprising a branched portion extending from the input portion. The mode converter portion is configured to convert the light to a higher-order (TE10) mode. The mode converter portion is spaced apart from the input coupler. The waveguide core comprises an output portion between the mode converter portion and a media-facing surface. The write head comprises a near-field transducer at the media-facing surface, the near-field transducer receiving the light at the TE10 mode from the waveguide and directing surface plasmons to a recording medium in response thereto.
The above summary is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The figures and the detailed description below more particularly exemplify illustrative embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
Throughout the specification reference is made to the appended drawings, where like reference numerals designate like elements, and wherein:
FIG. 1A-1D are a perspective views of hard drive sliders that includes a waveguide in accordance with embodiments described herein;
FIG. 2 is a cross-sectional view shows details of a HAMR apparatus in accordance with embodiments described herein;
FIG. 3 illustrates a waveguide system having a mode converter in accordance with embodiments described herein;
FIG. 4 illustrates a waveguide system having a mode converter in accordance with embodiments described herein;
FIG. 5A illustrates a more detailed view of the mode converter portion of the waveguide in accordance with embodiments described herein;
FIG. 5B illustrates a field plot at different sections of the mode converting waveguide in accordance with embodiments described herein;
FIGS. 5C and 5D illustrate cross sectional views of the waveguide system of FIG. 5A in accordance with embodiments described herein;
FIG. 5E illustrates a field plot at a cross section of the mode converting waveguide in accordance with embodiments described herein; and
FIGS. 6A-6C illustrate various configurations for the mode converter portion of the waveguide in accordance with embodiments described herein.
The figures are not necessarily to scale. Like numbers used in the figures refer to like components. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number.
DETAILED DESCRIPTION
The present disclosure is generally related to an apparatus (e.g., a HAMR write head) having a waveguide that delivers light from an energy source (e.g., laser diode) to a near-field transducer (NFT). The NFT may also be referred to as a plasmonic transducer, plasmonic antenna, near-field antenna, nano-disk, nan-patch, nano-rod, etc. The light generates a surface plasmon field on the NFT, and the surface plasmons are directed out of a surface of the write head onto a magnetic recording medium. This creates a hotspot on the recording medium, lowering its magnetic coercivity and enabling a local magnetic field generated by a write pole to write data to the hotspot.
In reference to FIG. 1A, a perspective view shows a HAMR write head 100 according to an example embodiment. The write head 100 includes a laser diode 102 located on input surface 103 of a slider body 101. In this example, the input surface 103 is a top surface, which is located opposite to a media-facing surface 108 that is positioned over a surface of a recording media (not shown) during device operation. The media-facing surface 108 faces and is held proximate to the moving media surface while reading and writing to the media. The media-facing surface 108 may be configured as an air-bearing surface (ABS) that maintains separation from the media surface via a thin layer of air.
The laser diode 102 delivers light to a region proximate a HAMR read/write transducer 106, which is located near the media-facing surface 108. The energy is used to heat the recording media as it passes by the read/write transducer 106. Optical coupling components, such as a waveguide system 110, are formed integrally within the slider body 101 (near a trailing edge surface 104 in this example) and function as an optical path that delivers energy from the laser diode 102 to the recording media via a near-field transducer 112. The near-field transducer 112 is located near the read/write transducer 106 and causes heating of the media during recording operations. The near-field transducer 112 may be made from plasmonic materials such as gold, silver, copper, etc.
The laser diode 102 in this example may be configured as either an edge-emitting laser or surface-emitting laser. Generally, the edge-emitting laser, also called in-plane laser, emits light along the wafer surface of a semiconductor chip and a surface emitting laser emits light in a direction perpendicular to a semiconductor wafer surface. An edge-emitting laser may be mounted on the top surface 103 of the slider body 101 (e.g., in a pocket or cavity) such that the light is emitted in a direction perpendicular to the media-facing surface (along the negative y-direction in this view).
In some cases, the laser may be configured to have an offset light path. The offset light path may be used when a laser is not centered on the submount, for example. The light path may be offset in a range of about 3 μm to about 55 μm or in a range of about 4 μm to about 49.5 μm. To accommodate the offset laser, the light path may include an S-curve as shown in the read/write head 120 of FIG. 1B. In some cases, the light path may be tilted as shown in the read/write head 130 shown in FIG. 1C. The different shaped light paths may be accomplished by having a tilted waveguide and/or a waveguide having an s-curve.
In the present disclosure, hard drive recording heads may use a different type of laser than what is shown in FIGS. 1A-1C. A read/write head 140 using this alternate approach is shown in FIG. 1D, wherein components are given the same reference numbers as analogous components in FIGS. 1A-1C. At least part of a semiconductor laser 122 or material to form a laser (e.g., epitaxial layer) is not self-supporting (e.g., not a separately packaged device) but is physically transferred to a target read/write head substrate that does contain already or will contain, after further processing, the other components of the read/write head (e.g., write coil and poles, reader stack) without the use of a separate or intermediate support during attachment. Carrying the semiconductor laser 122 with the read/write head substrate, without a separate or intermediate support substrate, can help to reduce the size and simplify the shape and connection methods, and it can also allow for the use of laser geometries and designs that are very different from simple edge-emitting cleaved facet lasers that have been proposed in the past.
In at least some cases, parts of the laser 122 (e.g., GaAs active region) are incompatible with epitaxial growth on the target substrate of a slider, which may be formed of a dielectric such as alumina. As such, the laser 122 cannot be formed using the same layer deposition processes used to form the magnetic and optical components that are integrated into the head. In embodiments described below, the laser may instead be formed on the substrate by transfer printing a thin, non-self-supporting crystalline layer (epitaxial layer), or a stack of such layers, from a growth substrate on which they were formed to a target substrate. Thereafter, the epitaxial layer and substrate are further processed (e.g., masked etched, further layers added) to form the integrated laser diode unit 122. This process of transferring non-self-supporting layers of epitaxial-growth-incompatible layers is referred to herein as On-Wafer Laser (OWL) process integration. This process may also be referred to as transfer printing, dry transfer printing, nanoprinting, etc. Embodiments described herein may be implemented in an OWL system.
The waveguide system 110 discussed herein and shown in FIGS. 1A-1D may be applicable to any type of light delivery configuration. For example, a laser may be mounted on the trailing edge surface 104 instead of the top surface 103. In another configuration known as free-space light delivery, a laser may be mounted external to the write head 100, and coupled to the slider by way of optic fiber and/or waveguide. An input surface of the slider body 101 may include a grating or other coupling feature to receive light from the laser via the optic fiber and/or waveguide.
In FIG. 2, a cross-sectional view illustrates portions of the slider body 101 near the near-field transducer 112 according to an example embodiment. In this view, the near-field transducer 112 is shown proximate to a surface of magnetic recording medium 202, e.g., a magnetic disk. The waveguide system 110 delivers electromagnetic energy 204 to the near-field transducer 112, which directs the energy 204 to create a small hot spot 208 on the recording medium 202. A magnetic write pole 206 causes changes in magnetic flux near the media-facing surface 108 in response to an applied current. Flux from the write pole 206 changes a magnetic orientation of the hot spot 208 as it moves past the write pole 206 in the downtrack direction (z-direction).
The waveguide system 110 includes a core layer 210 surrounded by cladding layers 212, 214. The core layer 210 and cladding layers 212, 214 may be made from dielectric materials such as Al2O3, SiOxNy, SiO2, Ta2O5, TiO2, ZnS, Si3N4, Nb2O5, AlN, Hf2O3, Y2O3, GaP, SiC, Si, AlOx, etc. Generally, the dielectric materials are selected so that the refractive index of the core layer 210 is higher than refractive indices of the cladding layers 212, 214. This arrangement of materials facilitates efficient propagation of light through the waveguide system 110.
A first end of the core 210 (not shown) extends along the crosstrack direction (negative x-direction) where it is directly or indirectly coupled to a light/energy source. For example, a laser diode (e.g., OWL laser diode) may have an output facet that is coupled face-to-face with an end of the waveguide core 210. In other configurations, optical components such as lenses, mirrors, collimators, mode converters, etc., may be coupled between the waveguide core 210 and the light/energy source. In either case, the energy 204 coupled into the first end of the waveguide core 210 propagates to a second end 210 a that is proximate the near-field transducer.
The waveguide system may include a mode converter 220. The mode converter may be configured to convert an input mode of light into a different mode or modes of light. In some cases, the mode converter 220 may be configured to receive a substantially transverse electric (TE) mode from the laser diode and be configured to convert the light into a higher order TM mode and/or a substantially transverse magnetic (TM). According to various embodiments, the mode converter 220 may be configured to receive fundamental TE mode (TE00) light from the laser mode from the laser and be configured to convert the light into a higher order TE mode, e.g., TE10, mode.
According to various embodiments described herein, the waveguide system includes a compact mode converter that is about 85% shorter than conventional mode converters. Using a compact mode converter allows the mode converter to be placed after the input coupler creating a more modular design. Moving the mode converter out of the input coupler frees up space that can be used to improve the input coupler performance. The compact mode converter may allow for additional optical elements in the light path such as an isolator and/or a mode filter, for example.
FIG. 3 illustrates a waveguide system having a mode converter in accordance with embodiments described herein. According to various implementations, the waveguide system shown in FIG. 3 may be used in conjunction with a laser on slider configuration such as those shown in FIGS. 1A-1C. Light enters the waveguide 310 at input location 305 in a TE00 mode and exits the waveguide core in a TE10 mode at the ABS 315. The waveguide includes a main branch 322 configured to receive light. A secondary branch 324 of the waveguide 310 combines with the main branch 322 in a mode converter portion 320 of the waveguide 320. After the mode converter portion 320, the mode converted light, e.g., substantially TE10, light exits the waveguide and is coupled to an NFT at the ABS 315.
FIG. 4 illustrates a waveguide system having a mode converter in accordance with embodiments described herein. The waveguide system shown in FIG. 4 may be used in conjunction with an on-wafer laser system as shown in FIG. 1D, for example. Light is input into the waveguide system in a TE00 mode from a laser. A lens 450 and optical coupler 460 couple the TE00 mode light from the laser into the waveguide core 410. Light from a laser is emitted in a crosstrack direction (x-direction) and has a 180 degree turn 435 that redirects the light in the opposite crosstrack direction. A second turn 445 directs the light normal to the media-facing surface of the read/write head where it is directed to a mode converter portion 420 of the waveguide 410. According to various implementations, the second turn 445 is about a 90 degree turn. Light enters the mode converter portion 420 in a main branch 422. A secondary branch 424 of the waveguide 410 combines with the main branch 422. After the mode converter portion 420, the mode converted light, e.g., substantially TE10, light exits the waveguide and is coupled to an NFT at the ABS 415. While the waveguide systems described in FIGS. 3 and 4 are used in conjunction with specific laser configurations, it is to be understood that any of the mode converter waveguide systems described herein may be used in conjunction with any laser configuration.
FIG. 5A illustrates a more detailed view of the mode converter portion of the waveguide in accordance with embodiments described herein. The main branch 522 has a width (w1) at the point before combining with the secondary branch 524. In some cases, w1 may be in a range of about 350 nm to about 600 nm or in a range of about 400 nm to about 550 nm. According to some implementations, w1 is about 440 nm. In some cases, w1 remains constant until the main branch 522 combines with a secondary branch 524. According to various embodiments, w1 varies along the length of the main branch 522. The secondary branch 524 has a starting width (wbr1) and a width (wbr2) at a point that the secondary branch 524 combines with the main branch 522. In some cases, wbr1 is in a range of about 600 nm to about 800 nm or in a range of about 630 nm to about 750 nm. According to various implementations, wbr1 is about 650 nm. The value of wbr1 may be the same as wbr2 or may be a different value than wbr2 in some cases. According to various embodiments, wbr2 is substantially the same as w1. In some cases, wbr2 may be in a range of about 350 nm to about 600 nm or in a range of about 400 nm to about 550 nm. According to some implementations, wbr2 is about 440 nm. wbr2 may have substantially the same value as w1 in some configurations. The secondary branch 524 may have a taper angle, θ in a range of 0.6 degrees to about 1.2 degrees.
A gap 526 may be disposed between the main branch 522 and the secondary branch 524 as illustrated in FIG. 5A. The various dimensions of the gap 526 may be tuned to achieve a desired and/or a maximum amount of mode conversion from TE00 to TE10. In some cases, the width of the gap 526 is constant for the entire length of the gap 526. The gap 526 may not have a constant width portion according to various configurations. For example, the width of the gap 526 may taper linearly or nonlinearly. According to various configurations, the width of the gap 526 is in a range of about 100 nm to about 200 nm or in a range of about 135 nm to about 170 nm. In some cases the width of the gap 526 is about 150 nm. The length of the gap is represented by Lbr. Lbr may be in a range of about 9 μm to about 15 μm. In some cases, Lbr is about 12 μm.
The final width (w2) of the combined main branch 522 and the secondary branch 524 may be equal, greater than, or less than the sum of the widths of the main branch 522, the secondary branch 524, and the gap width. One or both of the main branch 522 and the secondary branch 524 may have a taper to accommodate the change in width of the combined waveguide. In the example shown in FIG. 5A, the waveguide includes a tapered portion 527 that starts at the point where the waveguide branches are combined and continues to taper substantially linearly for a length (Ltap). Ltap may be in a range of about 2 μm to about 8 μm. In some cases, Ltap is about 5 μm. One or both of the main branch 522 and the secondary branch 524 may include the taper. While FIG. 5A shows a linear decreasing taper, it is to be understood that the taper may be non-linear and/or may increase along the light propagation direction. FIG. 5B is a field plot showing the electric field along the waveguide of FIG. 5A.
FIG. 5C illustrates a cross sectional view of the waveguide system of FIG. 5A from the cut-line 580. The waveguide core 510 is surrounded by cladding layers 560, 562, 564, 566, 568. A first top cladding layer 560 has a thickness in the range of 0.3 μm to about 2 μm. A second top cladding layer 562 may have a thickness in a range of 0.1 μm to about 0.5 μm. In some cases the second top cladding layer 562 has a thickness of about 0.3 μm. A third top cladding layer may be in direct contact with the waveguide core 510 and may surround three sides of the waveguide core 510 as shown in FIG. 5C. In some cases, the third top cladding layer 564 has a thickness in the range of 70 nm to about 200 nm. FIG. 5C also shows a first bottom cladding layer 566 that is in contact with the waveguide core 510. The first bottom cladding layer 566 may have a thickness in a range of about 0.6 μm to about 1.0 μm. In some cases, the first bottom cladding layer 566 has a thickness of about 0.8 μm. A second bottom cladding layer 568 may have a thickness in a range of 0.4 μm to about 1 μm.
FIG. 5D illustrates a cross sectional view of the waveguide system shown in FIG. 5A from the cut-line 585. The view shown in FIG. 5D shows the main branch 522, the secondary branch 524, and the gap 526 disposed between the main branch 522 and the secondary branch 524. The third top cladding layer 564 has a thickness, tclt, between the waveguide core and the second top cladding layer 562. According to various embodiments, tclt may be in a range of about 0.10 μm to about 0.16 μm. According to various embodiments, tclt is about 0.13 μm, for example. FIG. 5E is a field plot illustrating the electric field in the cross section of the waveguide system.
FIGS. 6A-6C illustrate various configurations for the mode converter portion of the waveguide in accordance with various embodiments described herein. Lengths L1, L2, L3 of the mode conversion regions of the waveguide may be in a range of about 12 μm to about 30 μm, for example. FIG. 6A shows an embodiment having a mode conversion region length, L1 of about 24 μm. In this example, w1 substantially equals wbr2 and has a value in a range of about 538 nm to about 562 nm. In some cases, w1 and wbr2 have a value of about 550 nm. The value of wbr1 has a range of about 725 nm to about 775 nm. In some cases, wbr1 is about 750 nm. The gap width may have a value of about 135 nm to about 165 nm. In some cases, the gap width is about 150 nm. According to various implementations, the TE10 purity after the mode converter portion in this example is about 99.6% and the combined TE00 and TE10 mode after the mode converter portion is about 0.09%.
FIG. 6B shows an embodiment having a mode conversion region length, L2 of about 17 μm. In this example, w1 substantially equals wbr2 and have a value in a range of about 422 nm to about 458 nm. In some cases, w1 and wbr2 has a value of about 440 nm. The value of wbr1 has a range of about 620 nm to about 680 nm. In some cases, wbr1 is about 650 nm. The gap width may have a value of about 130 nm to about 170 nm. In some cases, the gap width is about 150 nm. According to various implementations, the TE10 purity after the mode converter portion in this example is about 99.84% and the combined TE00 and TE10 mode after the mode converter portion is about 0.003%.
FIG. 6C shows an embodiment having a mode conversion region length, L3 of about 15 μm. In this example, w1 substantially equals wbr2 and has a value in a range of about 386 nm to about 414 nm. In some cases, w1 and wbr2 have a value of about 400 nm. The value of wbr1 has a range of about 605 nm to about 655 nm. In some cases, wbr1 is about 630 nm. The gap width may have a value of about 132 nm to about 168 nm. In some cases, the gap width is about 150 nm. According to various implementations, the TE10 purity after the mode converter portion in this example is about 99.61% and the combined TE00 and TE10 mode after the mode converter portion is about 0.05%.
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein. The use of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
The foregoing description of the example embodiments has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the inventive concepts to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. Any or all features of the disclosed embodiments can be applied individually or in any combination are not meant to be limiting, but purely illustrative. It is intended that the scope be limited not with this detailed description, but rather determined by the claims appended hereto.

Claims (22)

What is claimed is:
1. A write head comprising:
an input coupler configured to receive light excited by a light source;
a waveguide core configured to receive light from the input coupler at a fundamental transverse electric (TE00) mode, the waveguide core comprising:
a first straight portion extending from the input coupler;
a mode converter portion comprising a branched portion extending from the first straight portion, the mode converter portion configured to convert the light to a higher-order (TE10) mode, the mode converter portion separated from the input coupler by the first straight portion such that the mode converter is moved out of the input coupler; and
a second straight portion between the mode converter portion and a media-facing surface, wherein the first straight portion has a length greater than that of the second straight portion; and
a near-field transducer at the media-facing surface, the near-field transducer configured to receive the light at the TE10 mode from the waveguide and direct surface plasmons to a recording medium in response thereto.
2. The write head of claim 1, wherein the branched portion is separated from at least part of the first straight portion by a gap for a predetermined length.
3. The write head of claim 2, wherein the gap has a substantially constant cross-sectional width.
4. The write head of claim 1, wherein the branched portion comprises a taper.
5. The write head of claim 1, wherein the second straight portion and the branched portion combine to form a predetermined combined width.
6. The write head of claim 5, wherein one or both of the second straight portion and the branched portion has a taper to accommodate the difference in the combined width.
7. The write head of claim 6, wherein the taper has a length in a range of about 2 μm to about 8 μm.
8. The write head of claim 1, wherein the mode converter portion has a length in a range of about 15 μm to about 24 μm.
9. The write head of claim 1, wherein the mode converter portion has a length of about 17 μm.
10. The write head of claim 1, wherein the light source comprises an active region formed a non-self supporting, crystalline layer transfer printed to a substrate of the write head.
11. The write head of claim 1, wherein the waveguide core is configured to receive the light emitted in a crosstrack direction from the light source.
12. The write head of claim 11, wherein the waveguide core comprises:
a first turn that receives the light in the crosstrack direction redirects the light to an opposite crosstrack direction;
a second turn that redirects the light to a direction normal to a media-facing surface of the write head;
a first straight portion coupling the first and second turns; and
a second straight portion between the second turn and the media-facing surface.
13. A write head comprising:
an input coupler configured to receive light excited by a light source;
a waveguide core configured to receive light from the input coupler at a fundamental transverse electric (TE00) mode, the waveguide core comprising:
an input portion extending from the input coupler and configured to receive light from the input coupler;
a mode converter portion comprising a branched portion extending from the input portion, the mode converter portion configured to convert the light to a higher-order (TE10) mode, the mode converter potion separated from the input coupler by the input portion such that the mode converter is moved out of the input coupler; and
an output portion between the mode converter portion and a media-facing surface, wherein the input portion has a length greater than that of the output portion; and
a near-field transducer at the media-facing surface, the near-field transducer configured to receive the light at the TE10 to mode from the waveguide and direct surface plasmons to a recording medium in response thereto.
14. The write head of claim 13, wherein the mode converter portion comprises a main branch and a secondary branch, the main branch at least partially separated from the secondary branch by a by a gap for a predetermined length.
15. The write head of claim 14, wherein the gap has a substantially constant cross-sectional width.
16. The write head of claim 14, wherein the main branch and the secondary branch combine to form a predetermined combined width.
17. The write head of claim 16, wherein one or both of the main branch and the secondary branch has a taper to accommodate the difference in the combined width.
18. The write head of claim 17, wherein the taper has a length in a range of about 2 μm to about 8 μm.
19. The write head of claim 13, wherein the mode converter portion has a length in a range of about 15 μm to about 24 μm.
20. The write head of claim 13, wherein the mode converter portion has a length of about 17 μm.
21. The write head of claim 1, wherein the first straight portion has a length at least twice that of the second straight portion.
22. The write head of claim 13, wherein the input portion has a length at least twice that of the output portion.
US17/221,945 2018-04-25 2021-04-05 Compact mode converter having first and second straight portions for heat-assisted magnetic recording device Active US11443765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/221,945 US11443765B2 (en) 2018-04-25 2021-04-05 Compact mode converter having first and second straight portions for heat-assisted magnetic recording device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201815962229A 2018-04-25 2018-04-25
US16/433,467 US10971179B1 (en) 2018-04-25 2019-06-06 Compact mode converter having first and second straight portions for a heat-assisted magnetic recording device
US17/221,945 US11443765B2 (en) 2018-04-25 2021-04-05 Compact mode converter having first and second straight portions for heat-assisted magnetic recording device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/433,467 Continuation US10971179B1 (en) 2018-04-25 2019-06-06 Compact mode converter having first and second straight portions for a heat-assisted magnetic recording device

Publications (2)

Publication Number Publication Date
US20210225397A1 US20210225397A1 (en) 2021-07-22
US11443765B2 true US11443765B2 (en) 2022-09-13

Family

ID=75275733

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/433,467 Active US10971179B1 (en) 2018-04-25 2019-06-06 Compact mode converter having first and second straight portions for a heat-assisted magnetic recording device
US17/221,945 Active US11443765B2 (en) 2018-04-25 2021-04-05 Compact mode converter having first and second straight portions for heat-assisted magnetic recording device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/433,467 Active US10971179B1 (en) 2018-04-25 2019-06-06 Compact mode converter having first and second straight portions for a heat-assisted magnetic recording device

Country Status (1)

Country Link
US (2) US10971179B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971179B1 (en) * 2018-04-25 2021-04-06 Seagate Technology Llc Compact mode converter having first and second straight portions for a heat-assisted magnetic recording device
US11328744B1 (en) * 2021-01-29 2022-05-10 Seagate Technology Llc On-wafer integrated laser for heat-assisted magnetic recording
US11837256B1 (en) * 2021-06-28 2023-12-05 Seagate Technology Llc HAMR read-write head with coupler and waveguide

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127081A (en) 1990-08-03 1992-06-30 At&T Bell Laboratories Optical branching waveguide
US7898759B2 (en) 2007-02-22 2011-03-01 Hitachi, Ltd. Thermally assisted magnetic recording head and magnetic recording apparatus
US20110217003A1 (en) 2008-02-14 2011-09-08 Seagate Technology Llc Waveguide For Heat Assisted Magnetic Recording
US20110243176A1 (en) * 2010-03-31 2011-10-06 Seagate Technology Llc Integrating and aligning laser chips on sliders for hamr applications
US8170389B1 (en) 2011-01-28 2012-05-01 Tdk Corporation Optical waveguide, and thermally-assisted magnetic recording head including the same
US20140254335A1 (en) * 2013-03-07 2014-09-11 Seagate Technology Llc Waveguide with phase shifting portions
US9001628B1 (en) 2013-12-16 2015-04-07 Western Digital (Fremont), Llc Assistant waveguides for evaluating main waveguide coupling efficiency and diode laser alignment tolerances for hard disk
US20150131415A1 (en) * 2013-11-12 2015-05-14 Seagate Technology Llc Mode converter coupling energy at a high-order transverse electric mode to a plasmonic transducer
US9099130B2 (en) * 2013-07-12 2015-08-04 Seagate Technology Llc Plasmonic waveguide with an angled, elongated portion
US9218836B2 (en) 2014-02-28 2015-12-22 Seagate Technology Llc Heat assisted magnetic recording head having dual waveguides
US9322997B2 (en) 2014-03-25 2016-04-26 Seagate Technology Llc Branched waveguide configuration
US9424867B2 (en) 2014-11-11 2016-08-23 Seagate Technology Llc Excitation of a near-field transducer using combined transverse electric and transverse magnetic modes
US9786314B1 (en) 2016-06-17 2017-10-10 Seagate Technology Llc Waveguide system with inter-core coupler
US9978409B2 (en) 2016-03-04 2018-05-22 Seagate Technology Llc Offset waveguide system with a mode converter and a tapered bend
US10062400B1 (en) 2017-07-25 2018-08-28 Seagate Technology Llc Mode splitter between TE and TM polarization for heat-assisted magnetic recording
US10061082B1 (en) 2016-08-17 2018-08-28 Seagate Technology Llc Splitter waveguide used to perform active alignment of light source on slider
US10061088B1 (en) * 2017-01-06 2018-08-28 Seagate Technology Llc Optical spatial mode filter for removing fundamental mode components in a HAMR light path
US10121496B1 (en) 2017-02-23 2018-11-06 Seagate Technology Llc Heat-assisted magnetic recording head having peg coupler and plasmonic pad
US10170140B2 (en) * 2017-01-23 2019-01-01 Seagate Technology Llc Waveguide having mode converter for heat-assisted magnetic recording device
US10242702B1 (en) * 2016-02-29 2019-03-26 Seagate Technology Llc Near-field transducer with stacked features that reduce emission of polarization-rotated light
US10249326B1 (en) 2017-03-22 2019-04-02 Seagate Technology Llc Heat-assisted magnetic recording head including a waveguide with dielectric cavity to reduce optical feedback
US10431253B1 (en) * 2016-05-19 2019-10-01 Seagate Technology, Llc Waveguide input coupler with asymmetric taper
US10971179B1 (en) * 2018-04-25 2021-04-06 Seagate Technology Llc Compact mode converter having first and second straight portions for a heat-assisted magnetic recording device

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127081A (en) 1990-08-03 1992-06-30 At&T Bell Laboratories Optical branching waveguide
US7898759B2 (en) 2007-02-22 2011-03-01 Hitachi, Ltd. Thermally assisted magnetic recording head and magnetic recording apparatus
US20110217003A1 (en) 2008-02-14 2011-09-08 Seagate Technology Llc Waveguide For Heat Assisted Magnetic Recording
US20110243176A1 (en) * 2010-03-31 2011-10-06 Seagate Technology Llc Integrating and aligning laser chips on sliders for hamr applications
US8501536B2 (en) 2010-03-31 2013-08-06 Seagate Technology Llc Integrating and aligning laser chips on sliders for HAMR applications
US8170389B1 (en) 2011-01-28 2012-05-01 Tdk Corporation Optical waveguide, and thermally-assisted magnetic recording head including the same
US20140254335A1 (en) * 2013-03-07 2014-09-11 Seagate Technology Llc Waveguide with phase shifting portions
US9099139B2 (en) 2013-03-07 2015-08-04 Seagate Technology Llc Waveguide with phase shifting portions
US9099130B2 (en) * 2013-07-12 2015-08-04 Seagate Technology Llc Plasmonic waveguide with an angled, elongated portion
US9251819B2 (en) 2013-11-12 2016-02-02 Seagate Technology Llc Mode converter coupling energy at a high-order transverse electric mode to a plasmonic transducer
US20150131415A1 (en) * 2013-11-12 2015-05-14 Seagate Technology Llc Mode converter coupling energy at a high-order transverse electric mode to a plasmonic transducer
US9001628B1 (en) 2013-12-16 2015-04-07 Western Digital (Fremont), Llc Assistant waveguides for evaluating main waveguide coupling efficiency and diode laser alignment tolerances for hard disk
US9218836B2 (en) 2014-02-28 2015-12-22 Seagate Technology Llc Heat assisted magnetic recording head having dual waveguides
US9322997B2 (en) 2014-03-25 2016-04-26 Seagate Technology Llc Branched waveguide configuration
US9424867B2 (en) 2014-11-11 2016-08-23 Seagate Technology Llc Excitation of a near-field transducer using combined transverse electric and transverse magnetic modes
US10242702B1 (en) * 2016-02-29 2019-03-26 Seagate Technology Llc Near-field transducer with stacked features that reduce emission of polarization-rotated light
US9978409B2 (en) 2016-03-04 2018-05-22 Seagate Technology Llc Offset waveguide system with a mode converter and a tapered bend
US10431253B1 (en) * 2016-05-19 2019-10-01 Seagate Technology, Llc Waveguide input coupler with asymmetric taper
US9786314B1 (en) 2016-06-17 2017-10-10 Seagate Technology Llc Waveguide system with inter-core coupler
US10061082B1 (en) 2016-08-17 2018-08-28 Seagate Technology Llc Splitter waveguide used to perform active alignment of light source on slider
US10061088B1 (en) * 2017-01-06 2018-08-28 Seagate Technology Llc Optical spatial mode filter for removing fundamental mode components in a HAMR light path
US10170140B2 (en) * 2017-01-23 2019-01-01 Seagate Technology Llc Waveguide having mode converter for heat-assisted magnetic recording device
US10121496B1 (en) 2017-02-23 2018-11-06 Seagate Technology Llc Heat-assisted magnetic recording head having peg coupler and plasmonic pad
US10249326B1 (en) 2017-03-22 2019-04-02 Seagate Technology Llc Heat-assisted magnetic recording head including a waveguide with dielectric cavity to reduce optical feedback
US10062400B1 (en) 2017-07-25 2018-08-28 Seagate Technology Llc Mode splitter between TE and TM polarization for heat-assisted magnetic recording
US10971179B1 (en) * 2018-04-25 2021-04-06 Seagate Technology Llc Compact mode converter having first and second straight portions for a heat-assisted magnetic recording device

Also Published As

Publication number Publication date
US20210225397A1 (en) 2021-07-22
US10971179B1 (en) 2021-04-06

Similar Documents

Publication Publication Date Title
US11443765B2 (en) Compact mode converter having first and second straight portions for heat-assisted magnetic recording device
US10170140B2 (en) Waveguide having mode converter for heat-assisted magnetic recording device
US8451707B1 (en) Semiconductor wafer patterned with thermally-assisted recording (TAR) head structures
US8649245B2 (en) Direct waveguide light delivery to NFT for heat assisted magnetic recording
US9466320B1 (en) Thermal assisted magnetic recording light delivery waveguide circuit for reduced stray light induced writer protrusion
US10811043B2 (en) Mode splitter between TE and TM polarization for heat-assisted magnetic recording device
US8107326B1 (en) Slider with integrated thermally-assisted recording (TAR) head and integrated long laser diode
US9786314B1 (en) Waveguide system with inter-core coupler
US8184507B1 (en) Slider with integrated thermally-assisted recording (TAR) head and long laser diode with optical body for directing laser radiation
US9251830B1 (en) Waveguide cladding layer with transparent heat sink for heat-assisted magnetic recording device
US10127938B2 (en) Method for forming TE to TM mode converter of heat-assisted magnetic recording head
US9047912B1 (en) Write head mode optical mode converter using three-dimensional waveguide and dual-mode waveguide
EP2779164B1 (en) Layered optical waveguide and near field transducer
US9449627B2 (en) Angled waveguide
US10734019B1 (en) Curved-edge optical mode converter for heat-assisted magnetic recording
US8139448B1 (en) Slider with integrated thermally-assisted recording (TAR) head and vertical-cavity surface-emitting laser (VCSEL) with angled external cavity
US9524740B2 (en) Waveguide of a write head with reduced crosstrack width proximate a near-field transducer
US10431253B1 (en) Waveguide input coupler with asymmetric taper
US9202491B2 (en) Planar plasmon generator with thickened region and peg region
CN106548790B (en) Waveguide with shaped auxiliary layer
US11227633B1 (en) Laser feedback suppressor for heat-assisted magnetic recording
US11443764B1 (en) Waveguide having plasmonic strips for heat-assisted magnetic recording

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE